
For Peer Review
Practice of Alibaba Cloud on Elastic Resource Provisioning

for Large-scale Microservices Cluster

Journal: Software: Practice and Experience

Manuscript ID SPE-23-0220.R1

Wiley - Manuscript type: Research Article

Date Submitted by the
Author: 28-Jul-2023

Complete List of Authors: Xu, Minxian; Chinese Academy of Sciences Shenzhen Institutes of
Advanced Technology
Yang, Lei; Chinese Academy of Sciences Shenzhen Institutes of
Advanced Technology
Wang, Yang; Chinese Academy of Sciences Shenzhen Institutes of
Advanced Technology
Gao, Chengxi; Chinese Academy of Sciences Shenzhen Institutes of
Advanced Technology
Wen, Linfeng; Chinese Academy of Sciences Shenzhen Institutes of
Advanced Technology
Xu, Guoyao; Alibaba Group
Zhang, Liping; Alibaba Group
Ye, Kejiang; Chinese Academy of Sciences Shenzhen Institutes of
Advanced Technology
Xu, Chengzhong; University of Macau

Subject Area: Distributed Computing Paradigms: Service, Cloud, Fog, Edge

Keywords: Cloud-native, Microservice, Alibaba, Resource Provisioning, Latency

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

For Peer Review

Received: Added at production Revised: Added at production Accepted: Added at production
DOI: xxx/xxxx

ARTICLE TYPE

Practice of Alibaba Cloud on Elastic Resource Provisioning for
Large-scale Microservices Cluster

Minxian Xu1 | Lei Yang1 | Yang Wang1 | Chengxi Gao1 | Linfeng Wen1 | Guoyao Xu2 | Liping
Zhang2 | Kejiang Ye1 | Chengzhong Xu3

1Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences,
Shenzhen, China

2Alibaba Group, Hangzhou, China
3State Key Lab of IOTSC, Department of
Computer Science, University of Macau,
Macau SAR, China

Correspondence
Minxian Xu (mx.xu@siat.ac.cn) and Lei
Yang (lei.yang2@siat.ac.cn) are co-first
authors ; Kejiang Ye (kj.ye@siat.ac.cn) and
Chengzhong Xu (czxu@um.edu.mo) are
corresponding authors.

Summary

Cloud-native architecture is becoming increasingly crucial for today’s cloud comput-
ing environments due to the need for speed and flexibility in developing applications.
It utilizes microservice technology to break down traditional monolithic applica-
tions into light-weight and self-contained microservice components. However, as
microservices grow in scale and have dynamic inter-dependencies, they also pose
new challenges in resource provisioning that cannot be fully addressed by traditional
resource scheduling approaches. The various microservices with different resource
needs and latency requirements can create complex calling chains, making it dif-
ficult to provide fine-grained and accurate resource allocation to each component
while maintaining the overall quality of service in the chain. Alibaba Cloud has
fully embraced cloud-native and microservice technologies to drive its key busi-
ness and scenarios, including Double 11 Shopping Festival. In this work, we aim to
address the research problem on how to efficiently provision resources for the grow-
ing scale of microservice platform and ensure the performance of latency-critical
microservices. To address the problem, we present in-depth analyses of Alibaba’s
microservice cluster and propose optimized resource provisioning algorithms to
enhance resource utilization while ensuring the latency requirement. First, we ana-
lyze the distinct features of microservices in Alibaba’s cluster compared to traditional
applications. Then we present Alibaba’s resource capacity provisioning workflow
and framework to address challenges in resource provisioning for large-scale and
latency-critical microservice clusters. Finally, we propose enhanced resource pro-
visioning algorithms over Alibaba’s current practice by making both proactive and
reactive scheduling decisions based on different workloads patterns, which can
improve resource usage by 10-15% in Alibaba’s clusters, while maintaining the nec-
essary latency for microservices.
KEYWORDS:
Cloud-native, Microservice, Alibaba, Resource Provisioning, Latency

Page 1 of 19

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

For Peer Review

2 M. Xu ET AL

1 INTRODUCTION

Cloud-native architecture and related technologies aim to build and run scalable applications in modern and dynamic cloud
environments by taking full advantage of the cloud service model1. Key concerns of technologies are speed and agility . Business
systems require immediate transformation to accelerate business velocity and expand market growth. Meanwhile, the complexity
of a business system tends to increase dramatically with the users’ demand on rapid innovative features and rapid responsiveness.

Cloud-native architecture supports the service providers to embrace rapid change, resilience, and large scale, thus significant
changes can be made frequently with minimal efforts. Prominent companies such as Netflix, Uber, and WeChat, have adopted
cloud-native technologies, where hundreds of services in production can be deployed or updated 100 to 1000 times per day2. Key
pillar that supports the speed and agility of cloud-native is microservice architecture3. The microservice has shifted traditional
monolithic applications into loosely-coupled, light-weight, and self-contained microservice components. Each microservice unit
can be deployed and operated independently for different business objectives and functionalities. Moreover, the microservices
can interact with each other and collaborate as a whole application through light-weight communication. Through leveraging a set
of independent and light-weight microservice components, microservice architecture has significantly improved the efficiency
of application development and deployment4 5.

The growing scale of microservice platforms and dynamic inter-dependencies between microservices raise new challenges
in resource provisioning of cloud infrastructure6. The challenges include 1) multiple microservice units can form calling chains
with varied lengths to fulfill complicated functionalities (e.g. complex business transactions). The dependencies between the
microservice units make it challenging to investigate the relationship between the provisioned resources and quality of service
(QoS), such as identifying the root microservice unit that causes QoS degradation. 2) Microservice can be much more latency-
sensitive compared with a monolithic application, and the microservice units in the same chain can have varied latency and
resource requirements, which make the independent resource provisioning to the units difficult. For instance, provisioning more
resources to an under-utilized unit in the chain cannot mitigate the service delay of the microservice chain. 3) Co-locating
different microservices can reduce costs while also incurring a dramatic change in resource usage due to workload variance,
which can lead to high latency if resources are not provisioned timely.

Apart from the above challenges in resource provisioning, the industry also raises challenges due to the management of large-
scale microservice clusters. For instance, Alibaba has migrated its services to cloud-native clusters and comprehensively applied
microservice-based technologies7. The scale of Alibaba’s cloud-native clusters has reached 10 million cores in 2021, and Alibaba
System Infrastructure (ASI) has successfully supported China Double 11 Shopping Festival with 0.58 million transactions per
second during the peak time. At this scale of a cluster in a production environment, the ordinary resource provisioning approaches
validated in a research environment can be ineffective due to the power of scale. For instance, it is infeasible to explore all the
possible solution space with pressure tests in a production environment concerning the huge amount of configurable parameters.

To address the challenges in resource provisioning of production environment, in this paper, we present resource management
approaches of Alibaba’s current practice for large-scale microservice cluster. The approaches have successfully supported the
key businesses of Alibaba with high elasticity and plasticity. We also propose enhanced resource provisioning algorithms to
optimize resource usage over Alibaba’s practice while ensuring latency requirement.

The main contributions of this paper are as below:
• We present the architecture of Alibaba’s microservice cluster designed to handle large-scale microservice management,

along with comprehensive statistical analysis of the microservices in its production environment (Section 3).
• We provide key design of Alibaba’s general resource provisioning framework in current practice (Section 4).
• We propose enhanced resource allocation methods that build upon Alibaba’s current practices to efficiently and elastically

support services through various means such as workload estimation, capability modeling, and resource allocation policies
(Section 5).

• We evaluate our resource provisioning approach and show that it can increase resource utilization by 10-15% while
maintaining QoS (Section 6).

The rest of this paper is organized as follows: the related work is discussed in Section 2. Section 3 presents the background
information of Alibaba’s cluster to support its scenario and the analyses of the features of its microservices along with the iden-
tified key challenges in resource provisioning. The current resource capacity provisioning practice of Alibaba and our enhanced

Page 2 of 19

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

For Peer Review

M. Xu ET AL 3

solutions are proposed in Section 4 and Section 5 respectively. Section 6 demonstrates the conducted experiments in the Alibaba
cluster and the conclusions and future work are given in Section 7.

2 RELATED WORK

Resource capacity provisioning for cloud applications is a popular topic, and we categorize prior work into two buckets for
traditional cloud applications and modern microservice applications.

Resource Capacity Provisioning for Traditional Cloud Applications. Prior research has proposed a set of resource capac-
ity provisioning approaches for traditional application deployed on virtual machines8 9. Kiani et al.10 proposed a hierarchical
capacity provisioning scheme that applies a two-tier network architecture with shallow and deep cloudlets. Two models for net-
work delay scenario with bufferless and finite-size buffer shallow cloudlets are modeled. Stochastic ordering is also applied
to solve the optimization problem formulated for the models. Ma et al.11 proposed a cloud-assisted mobile edge computing
framework to optimize the computation capacity of edge hosts, and investigated the resource capacity provisioning problem
with dynamic requests and proves it to be piecewise convex, which can determine the optimal computation capacity of edge
hosts. Aslanpour et al.12 presented an automatic resource provisioning approach considering resource usage, SLA, and user
behavior. The proposed approach applies radial basis function neural networks to ensure dynamic resource provisioning. Xu et
al.13 proposed a resource provisioning approach to improve system fault tolerance for data-intensive meteorological workflows.
The approach exploits virtual layer network topology and genetic algorithm to optimize makespan and balance loads. How-
ever, these approaches are designed for traditional monolithic applications or virtual machines in cloud computing environment,
which are not suitable for the new features of microservices such as fine-grained and time-sensitive. In addition, the structure of
microservices are not considered in these approaches, thus utilizing these approaches without modification can undermine the
performance of microservices.

Resource Capacity Provisioning for Microservices. More attention has been paid to resource capacity provisioning for
microservice applications under cloud-native environment14,6,15. Yu et al.16 presented an online approach to dynamically identify
microservices needed to be scaled and provision resources for microservices to assure the quality of services. The online learning
approach and heuristic method have been utilized to achieve an optimal amount of scaled resources and they can achieve a faster
convergence rate than baselines. Abdulla et al.15 introduced a burst-aware auto-scaling approach to detect burst in dynamic work-
loads by workloads prediction and resource usage estimation. The scaling decisions for microservice can significantly reduce
service level objective violations based on evaluations on synthetic and realistic bursty workloads for microservices. Zhang et
al.17 proposed data-driven cluster management for online and QoS-aware microservices. A set of machine learning (ML) models
are applied to determine the appropriate resources to preserve end-to-end tail latency target. Sinan has been evaluated in experi-
mental microservice cluster to improve utilization while ensuring QoS. Hou et al.18 presented a power management framework
for microservices focusing on decreasing power consumption of microservices cluster while reducing configuration latency by
coordinating both macro and micro resource provisioning. The coordinated framework provides necessary abstraction and opti-
mization based on resource provisioning to achieve better trade-offs between performance and power can be investigated. Kwan
et al.19 proposed a hybrid scaling approach combining vertical scaling and horizontal scaling for microservices. The proposed
approach can leverage both the high availability of horizontal scaling and fine-grained control on resources of vertical scaling.
Xu et al.20 proposed deep learning based approach for cloud workloads prediction and reinforcement learning based approach
to make auto-scaling decisions for microservices. These approaches have advanced the research area of resource capacity pro-
visioning for microservices, however, they are mainly based on small-scale experience and cannot represent the practice in
production environments.

Large-scale Microservice Cluster Management. Some industry articles have demonstrated their practice in production
environment21. Newell et al.22 described Facebook’s region-scale resource scheme to dynamically assign servers to containers
based on reservation to address correlated hardware failures, which has been utilized to the scale of millions of servers. Zhou
et al.23 managed large-scale WeChat microservices with overload control. The overload control scheme monitors load status in
real-time and determines load shedding to match the upstream and downstream services. The scheme can also adjust resource
provisioning to match the upstream and downstream services. Luo et al.24 provided the analyses of the deployed microser-
vice in Alibaba’s production environment with focus of graph-based dependency. However, these work focuses on addressing
microservice failures recovery, load balancing and dependency characterization rather than elastic capacity provisioning. In this
paper, we present comprehensive statistical data of microservice behavior and general resource provisioning framework design

Page 3 of 19

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

For Peer Review

4 M. Xu ET AL

of Alibaba’s production environment. Moreover, we also propose optimized policies for Alibaba’s platform to optimize resource
usage while assuring QoS.

3 BACKGROUND AND CHALLENGES

In this section, we present a comprehensive overview of Alibaba’s microservice clusters, including its architecture, scale, and
key features. The clusters were able to successfully handle the high demand of China’s Double 11 Shopping Festival, reaching
a peak of 0.58 million transactions per second.

3.1 Architecture of Alibaba Microservice Clusters
Alibaba aims to provide uniform infrastructure for various microservice applications with heterogeneous hardware, therefore,
Alibaba has developed the infrastructure, named ASI, based on Kubernetes1 as shown in Fig. 1. A representative project derived
from the infrastructure is PouchContainer to provide applications with a light-weight runtime environment with strong isolation
and minimal overhead25. To satisfy the development of Alibaba’s business and daily maintenance, a set of add-on exten-
sions have been integrated to improve the capability of application deployment and management. The containerized pods are
deployed on X-Dragon bare metals, which can support virtualization of computing, network, and storage resources. The X-
Dragon physical machines exploit field-programmable gate array (FPGA) acceleration technology to enhance the performance
of data communication and storage by reducing virtualization costs.

Cloud Native Application; Web;
 Computing; IoT

Microservice Serverless

Service Mesh

Alibaba Serverless Infrastructure

Kubernetes Add-on Extensions

Containers

X-Dragon Bare Metal/ ECS

Computing
 Virtualization

Network
Virtualization

Storage
Virtualization

Figure 1 Microservice architecture of Alibaba.

Above ASI, cloud-native applications including microservice, service mesh, and serverless can all be supported. Taking full
advantage of the cloud platform, ASI can support tasks with different service level objectives (SLOs), including long lifetime
pod replicates, batch tasks, computation-intensive tasks, and I/O intensive tasks. Alibaba has mainly categorized its services
into three types with different priorities in resource capacity provisioning: 1) Product Services (e.g. critical and long lifetime
services for business transactions) allocated with a specific budget quota and the resource capacity provisioner must assure the

1https://kubernetes.io/

Page 4 of 19

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

For Peer Review

M. Xu ET AL 5

service availability with the highest priority. These services require strict computation resources, high reliability, low delay, and
uninterrupted assurance. 2) Batch Services (e.g. document processing services) that are insensitive to the response time and
has non-strict quota, while high availability should still be ensured. 3) Best Effort Services generally use the resources left by
product and batch services and can be interrupted.

3.2 Scale and Capability of Alibaba Microservice Clusters
The ASI is currently comprised of 50 large-scale clusters, each capable of hosting over 10,000 nodes and 10 million cores.
The ASI supports around 10,000 applications and 100,000 business pods, serving all key business scenarios, including online
sales, online video, mapping, food delivery, and virtual business meetings. The usage patterns of Alibaba’s applications fluctuate
based on user behavior. For example, food delivery applications experience high demand during mealtime and online shopping
applications may see double the workload2 during peak periods compared to off-peak periods26. The difference in queries per
second (QPS) between peak and off-peak times for backend applications can be as high as 10 times. During major events, such
as the Double 11 Shopping Festival, the number of transactions can reach ten times the ordinary workload. In 2019, the number
of sale transactions reached 544,000 per second, and in 2020, it grew to 583,000 per second, a 1400% increase compared to ten
years prior.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Microservice Chain Length

0

50

100

150

200

250

300

Th
e

N
um

be
r o

f S
pe

ci
fic

 C
ha

in
 L

en
gt

h

(a) Chain length distribution
0 100 200 300 400

Response Time(#P95/ms)

A
B
C
D
E
F
G
H
I
J

K

Se
rv

ic
e

C
ha

in

103
10

99
179

82
90
92

206
264

113
468

(b) Service latency

Parallel Requests

Sequential Requests

Services

Send

Receive

Database

Storage

Other Requests

(c) Execution History Graph
Figure 2 Complex structure of microservice chains.

3.3 Feature Analyses for Alibaba Microservices
From 2019, ASI has transformed all the core services into microservice-based applications and firmly served the largest Internet
workloads in the world. To comprehensively understand the features of Alibaba’s large-scale microservices and design optimized

2It is also called "traffic" in Alibaba scenario

Page 5 of 19

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

For Peer Review

6 M. Xu ET AL

resource provisioning policies, we first collect and analyze 15 TB raw data of Alibaba’s microservice run-time information. We
then summarize our key observations are as follows:

Observation 1 (𝑂𝑏1): Chain length and service latency exhibit significant variability due to the intricate nature of
microservice chains. As depicted in Fig. 2a, the length of a typical commercial microservice chain can range anywhere from two
nodes to over 20 nodes. Furthermore, as shown in Fig. 2b, the latency across various microservice chains can differ dramatically,
with values ranging from 10 milliseconds to 400 milliseconds. This short latency necessitates the latency-critical microservice
to perform faster than traditional cloud applications. Moreover, as demonstrated in Fig. 2c, the execution history graph depicts
how requests can be executed across various microservices in either a sequential or parallel manner. These fluctuations render
the behavior of microservice chains complex, making it challenging to provision adequate resources. For instance, excessive
scaling of the resources can negatively impact the performance of the microservices.

Figure 3 Calling times of nodes based on different applications.

Observation 2 (𝑂𝑏2): Fluctuations in the frequency of calls lead to increased resource demands on specific nodes. A
microservice chain can comprise multiple microservices, and we have observed that the calling times of these microservices
can vary significantly. As depicted in Fig. 3, we have selected two representative microservice chains in a business transaction
scenario and found that even within the same microservice chain, the calling times of different microservices can vary by over five
times. This observation highlights the importance of adequate resource allocation for the most frequently called microservice,
such as node A6 in Service A or node B1 in Service B. If these nodes are not adequately resourced, it can result in a significant
degradation of the performance of the entire microservice chain.

00:00
02:00

04:00
06:00

08:00
10:00

12:00
14:00

16:00
18:00

20:00
22:00

23:59

A
B

D
E

F
I

J
K

L

System CPU Util

00:00
02:00

04:00
06:00

08:00
10:00

12:00
14:00

16:00
18:00

20:00
22:00

23:59

A
B

D
E

F
I

J
K

L

System Memory Util

00:00
02:00

04:00
06:00

08:00
10:00

12:00
14:00

16:00
18:00

20:00
22:00

23:59

A
B

D
E

F
I

J
K

L

System Net In

0.1

0.2

0.3

0.4

0.5

0.55

0.60

0.65

0.70

0.75

0.80

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time

Ro
ot

 A
pp

 of
 M

icr
os

er
vi

ce
 C

ha
in

Figure 4 Resource usage fluctuations via time in (a) CPU, (b) memory, and (c) network.

Observation 3 (𝑂𝑏3): The utilization of CPU and network resources fluctuates dynamically, while memory usage
remains consistent. The amount of resources required by each microservice instance is subject to change based on the volume
of requests processed. To minimize costs, microservices are often co-located to promote efficient resource usage while avoid-
ing resource contention. As illustrated in Fig. 4, the diagram demonstrates the resource usage during various time periods and

Page 6 of 19

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

For Peer Review

M. Xu ET AL 7

shows that the utilization of CPU and network resources can vary among different microservices, while memory usage remains
stable. CPU and network are the primary resource bottlenecks, while out-of-memory issues are rare in the Alibaba scenario.

00:00
03:00

06:00
09:00

12:00
15:00

18:00
21:00

00:00

TimeStamp

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Th
e

N
or

m
al

iz
ed

 Q
PS

The QPS of HSF Provider

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Th
e

N
or

m
al

iz
ed

 R
T

The RT of HSF Provider

Figure 5 QPS and response time fluctuations.

Observation 4 (𝑂𝑏4): An inconsistent relationship exists between QPS and response time. Response time and QPS are
crucial metrics for online business transactions, as depicted in Fig. 5, which illustrates the fluctuations in response time and
variations in QPS. It is observed that the response time does not always follow the same trend as QPS. For example, it may
decrease when QPS increases (e.g., at 6:00). This inconsistency can be attributed to resource mismatch. Based on an analysis of
approximately 10,000 applications in Alibaba, we have observed that there is a misalignment of resources, such as CPU, memory,
and Java virtual machine heap utilization. As shown in Fig. 6, 95% of the microservices consume less than 40% CPU utilization
but higher memory utilization, 40% of the microservices require more than 80% memory, and 40% of the microservices can
demand more than 60% heap utilization.

0 50 100
0.0

0.2

0.4

0.6

0.8

1.0
Avg Value of Resource Util

0 50 100
0.0

0.2

0.4

0.6

0.8

1.0
Max Value of Resource Util

jvm.mem.heap.usage system.cpu.util system.mem.util

C
um

ul
at

iv
e

Fr
ac

tio
n

Util(%)

Figure 6 Mismatched resource usage in CPU and memory.

3.4 Challenges in Alibaba’s Resource Provisioning
Based on the above observations, we can notice that the ASI faces heterogeneous nature of resources and tasks with different
SLOs, the processing of massive workloads, and the management of microservices with complex properties, such as intricate

Page 7 of 19

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

For Peer Review

8 M. Xu ET AL

service chains, fluctuating resource utilization, and mismatched resources. These have made several key challenges in efficient
resource provisioning of Alibaba’s microservices cluster as follows:

Challenge 1 (𝐶1): How to maintain low latency for latency-critical services in the face of an extra-large and hetero-
geneous hardware environment with numerous and complicated microservice applications? Given the diverse types of
microservice workloads, including online, offline, machine learning, and real-time stream processing, resource competition can
lead to unpredictable fluctuations in QoS for online business, resulting in performance degradation, high tail latency, and even
request failures. This is particularly true during high-load events such as the Double 11 Festival, when the large-scale cluster is
more susceptible to increased latency. Despite the complexity of the environment, it is still crucial to maintain low latency for
the microservice application, posing a challenge for resource capacity provisioning policies.

Challenge 2 (𝐶2): How to measure the performance interference under the co-location scenario given the extremely
long and complicated chain of microservice applications? When a performance issue occurs within a container, it can affect
the performance of the service running within it, resulting in high tail latency27. To address this challenge, there is a need for
clear, quantitative measurement of runtime QoS. Traditional monitoring methods may not be sufficient when handling millions
of requests, and there is a need for a monitoring solution that is lightweight and can effectively handle dynamic scaling, node
failures, load balancing, and failure migration. The solution should ensure transparent and accurate measurement of runtime
QoS while reducing the burden on the system to maintain stability.

Challenge 3 (𝐶3): How to represent the capability of computation units and pinpoint resource bottlenecks? To optimize
the resource provisioning and system performance, the bottleneck of resource types should be identified. However, analyzing
the relationship between the QPS and response time is challenging due to the vast number of configurable parameters and the
complex relationship between the two metrics. This makes it difficult to clearly determine the cause of performance degradation.
Therefore, accurately modeling the capacity of computational units to handle QPS is crucial, as it directly affects the ability to
identify resource bottlenecks.

4 RESOURCE PROVISIONING SOLUTION IN ALIBABA

In this section, we will present the basic resource management solution of Alibaba’s current practice. The solution is designed
based on following key principles:

Unified Scheduler: based on 𝑂𝑏1 and 𝐶1, the ASI needs to have the capability to provide scheduling for tasks with dif-
ferent priorities and QoS requirements with a unified scheduler. ASI provides scheduling and preemption mechanisms to
over-provision resources, and cold memory can be recollected to enlarge the available resources of over-provisioning. More
details will presented in Section 4.1.

Fine-grained Management: according to 𝑂𝑏2 and 𝐶2, co-located applications deployed on multiple containers can share
the resources of different hardwares. ASI can restrict the CPU and memory resource usage of containers by blocking the calls
of APIs to achieve fine-grained resource management. More details will be discussed in Section 4.2.

History-based Resource Estimation: as per 𝑂𝑏3, 𝑂𝑏4 and 𝐶3, the solution should predict the resource usage to optimize
the resource provisioning. Therefore, the historical resource usage for statistical analyses should be collected, and the prediction
and scheduling algorithms should be applied for workloads with different patterns. More details will be provided in Section 4.3.

4.1 Workflow of Resource Capacity Platform
ASI offers a unified platform and workflow with comprehensive functions to manage and provision resources for Alibaba sce-
nario, and its main workflow of the Capacity Platform is illustrated in Fig. 7. The AHPA (Advanced Horizontal Pod Autoscaler)
is responsible for executing the decisions of Capacity Platform to provision resources based on microservice chain status, node
utilization and various QoS requirements of applications to achieve the unified scheduling and optimize system performance.
The Metrics Collector obtains the metrics of system and application status, and then stores them into the database (e.g. Mysql
and HBase) for further use by other modules like Data Processor, Application Filter and Algorithm Characterization. The
Algorithm Filter classifies the suitable applications based on resource usage pattern and workloads fluctuations to assign proper
amount of resources. The characterization approach aims to mine the periodical tendency and generate the profile relation-
ship between resource usage and performance indicators, which mainly contains rule-based characterization technique based on
human maintenance experience, and benchmark characterization technique that records the number of containers used for the

Page 8 of 19

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

For Peer Review

M. Xu ET AL 9

Figure 7 Workflow of Resource Capacity Platform.

peak workloads during the last time period (e.g. Alibaba uses 35 days as baseline). Based on these models, the Capacity Plat-
form can send the decision plan to the AHPA component according to a predefined trigger policy (e.g. threshold-based). The
platform also provides the risk management and control mechanisms to block failures and networks, roll back to previous ver-
sions, and anomaly detection. In this work, we focus on discussing resource provisioning, therefore the detailed design of other
components, like data recovery and data storage, are omitted.

4.2 Resource Provisioning Framework
Fig. 8 shows the general resource provisioning framework of ASI derived from the Kubernetes. Alibaba has integrated AHPA
into the framework as an add-on to support the execution of resource provisioning actions. The AHPA accepts the resource
provisioning decisions from the Capacity Platform as presented in Section 4.1, and interacts with the API Server that provides
the unique entrance to conduct resource scheduling operations. AHPA manages the provisioned resources for pods in a fine-
grained manager. It labels the pod replicates with traffic-on or traffic-off tags to decide whether admitting more workloads to
specific pods or not. AHPA can also dynamically modify the number of pod replicates3 via the StatefulSet component, which is
aware of the resource updates of its associated pods, thus replicates can be created or deleted to reduce management risks. All
fine-grained cluster resource usage data (e.g. pod level) is stored in the ETCD component that is a distributed key-value storage
including configuration data, state data, and metadata. The Walle component is deployed on each node to collect the monitored
metrics for nodes and pods, and the collected data is stored in the offline computation module to characterize resource capacity
profile. Based on the collected data, the Capacity Profile module is responsible for searching available resources periodically,
forecasting the future workloads, determining the capability of pod replicates to process QPS, and calculating the required
resource capacity.

4.3 Resource Provisioning Algorithms
The basic resource provisioning algorithms of Alibaba mainly consist of 5 key steps:

Step 1: Data Collection. The monitoring component plays a crucial role in collecting comprehensive metrics, such as QPS
and response time, which are vital indicators of online business transaction performance. To ensure accurate and reliable data
collection, ASI employs a sliding window approach with a window size of 5 minutes. The data is picked up at a second-rate

3In this work, the replicates refer to the pod replicates.

Page 9 of 19

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

For Peer Review

10 M. Xu ET AL

Figure 8 Resource Provisioning Framework.

to reduce the noise and minimize the risk of incorrect workload predictions. By configuring the maximum data of each sliding
window as the data of the current window, the system can effectively mitigate the impact of fluctuating metrics and provide
more stable and accurate results.

Step2: Workloads Analyses and Estimation. ASI also utilizes traditional machine learning techniques, such as LSTM and
ARIMA, to predict the patterns of the workloads. This allows the system to effectively make use of spare resources, such as
memory, as observed in the 𝑂𝑏3. To optimize the performance of these applications, ASI applies different resource provisioning
policies depending on the type of workloads. For workloads that are periodical in nature, the system proactively makes scaling
decisions based on the predicted workloads. On the other hand, for non-periodical workloads that cannot be predicted accurately,
decisions are made reactively based on predefined thresholds.

Step 3: QPS Modelling. As highlighted in 𝑂𝑏4, establishing a direct correlation between QPS and response time is chal-
lenging. To address this, ASI utilizes a different approach to explore the relationship between QPS and provisioned resources.
Instead of trying to fit the relationship between QPS and response time, ASI models the relationship between QPS and the com-
putational capacity of resources based on pressure tests and practical experience. For example, using median QPS value as an
indicator of a pod’s capacity. This approach helps to maintain SLOs while optimizing resource utilization. The goal is to trans-
late the workloads into the number of active pod replicas needed. With this information, ASI can determine and allocate the
necessary number of pods to handle the workloads.

Step 4: Proactive Resource Capacity Provisioning. For workloads with periodical patterns (e.g. steady requests), proactive
resource management policies can be implemented. ASI leverages a combination of machine learning techniques for workload
prediction and empirical methods (such as provisioning the maximum number of historical replicas to avoid SLA violations) to
determine the most appropriate scheduling actions for pods in the microservice calling chain.

Step 5: Reactive Resource Capacity Provisioning. For workloads that lack clear patterns and are difficult to predict (e.g.
spikes), ASI employs a threshold-based approach inspired by the native Kubernetes HPA. This approach leverages predefined
thresholds to make reactive scaling decisions for microservices.

Page 10 of 19

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

For Peer Review

M. Xu ET AL 11

5 ENHANCED ALIBABA CAPACITY PROVISIONING (ALI-PRO) APPROACH

In this section, we propose our enhanced approach over Alibaba’s current practice, named as Ali-Pro. The approach optimizes
steps 2 to 5 of basic resource provisioning algorithms in Section 4.3.

5.1 Workloads Analyses and Estimation
Under E-Business scenario, the workloads are closely relevant to the behavior of users. Therefore, most applications can have an
apparent tendency during the observed period. It is reasonable to make workloads analyses to identify the typical features and
estimate the future workloads. Based on the periodical feature, the workloads can be classified into two categories: periodical
and non-periodical.

For applications with periodical pattern, we apply LightGBM28, which is based on gradient boosting decision tree (GBDT) and
has been validated to be efficient and accurate. The traditional GBDT approach used in Alibaba previously faces the challenges to
balance the trade-offs between accuracy and efficiency as it needs to scan all the data for each feature to estimate the information
gain of all possible points, which is not suitable for large-scale cluster due to high computation complexity. In addition, the scale
of Alibaba’s makes it unsuitable to use heavy deep learning approaches for prediction to ensure efficiency. LightGBM is light-
weight and overcomes the limitations by combining gradient-based one-side sampling that randomly drops instances with small
gradients and exclusive feature bundling that reduces effective features. To improve accuracy of model, we also apply grid search
to the key parameters of decision trees including the maximum depth, number of leaf nodes, and learning rate. The statistical
information such as mean, standard error, minimum value, maximum value, skewness, and kurtosis are obtained for analyses.

5.2 QPS Modelling
After the workloads with apparent periodical trends are predicted by LightGBM, the workloads can be converted into resource
usage based on the capability of instances to handle the variance of QPS. As at each moment, the Alibaba applications can be
called by multiple middlewares and web requests sent from clients, the QPS is defined as the sum of QPS from web users and
enterprise middlewares, where only the processed requests are counted. The workload data comes from long-term running data
of online applications, and the configurations of provisioned resources are obtained from the maintenance experience.

We notice that the distribution of QPS tends toward a normal distribution, thus we apply regression-based approaches com-
bining with the three-sigma rule, the QPS capability for a single instance can be modelled as 𝜇+3𝜎 by removing anomaly data,
where 𝜇 is the mean of the distribution and 𝜎 is the standard deviation. In this way, the 𝜇 + 3𝜎 value falls into the range of the
dataset and has been evaluated in a realistic environment. With the load balancer in the system to distribute the requests evenly
to different instances, this approach can efficiently avoid SLA violations in practice.

5.3 Proactive Resource Capacity Provisioning
Based on our workloads prediction and QPS modeling techniques, proactive resource capacity provisioning for managing the
number of pod replicates can be conducted to handle workloads with periodical patterns. These actions can inform the scaling
module about how many replicates should be provisioned during different periods. By extending the empirical practice of
Alibaba, we propose Algorithm 1 as finding the shortest path in the directed acyclic graph, where the shortest path represents
the minimum number of required replicates.

Algorithm 1 shows the shortest path based approach to achieve the objective that ensures system performance with the mini-
mum resources. The algorithm firstly converts the number of replicates at different time slot (e.g. each slot is one hour and 24
hours in total) into nodes in a graph. Then it initializes all nodes with infinite distance and the source node is initialized with
0 (lines 1-3). The distance between different nodes is initialized by the LightGBM prediction algorithm, for instance, distance
with value of 5 means that 5 more replicates should be added. After that, the algorithm calculates the distance of all neighbor
nodes and finds the node with the smallest distance. The selected node with the minimum distance is put into the solution set as
an element. The operations continue until all the nodes have been checked (lines 7-12), where the final solution 𝑆 contains the
minimum number of replicates should be provisioned at different time slots. The solution can be implemented based on prior-
ity queue (the head of the queue is with the minimum value) and the algorithm complexity is 𝑂(𝐸 + 𝑉 𝑙𝑜𝑔𝑉), where 𝐸 is the
number of edges in the graph and 𝑉 is the number of the vertex.

Page 11 of 19

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

For Peer Review

12 M. Xu ET AL

Algorithm 1: Proactive Capacity Provisioning
Input: Directed acyclic graph 𝐺 with node 𝑣 ∈ 𝐺, 𝑝𝑟𝑒[𝑣] stores the previous node of 𝑣, 𝑑𝑖𝑠𝑡[𝑢] stores predicted number

of provisioned replicates of node 𝑢, 𝑑𝑖𝑠𝑡[𝑣, 𝑢] stores the changed number of replicates by prediction, solution set
𝑆, neighbour nodes 𝑁(𝑢) of node 𝑢.

Output: Solution 𝑆 containing provisioned number of pod replicates
1 for 𝑣 ∈ 𝐺 do
2 𝑑𝑖𝑠𝑡[𝑣] = ∞
3 𝑝𝑟𝑒[𝑣] =Ø
4 𝑆 = {𝑠}
5 𝑑𝑖𝑠𝑡[𝑠] = 0
6 while 𝐺 ≠Ø do
7 𝑢 = node in 𝐺 with the smallest dist[]
8 𝐺 = 𝐺 ∖ {𝑢}
9 for 𝑣 ∈ 𝑁(𝑢) do

10 if 𝑑𝑖𝑠𝑡[𝑢] + 𝑑𝑖𝑠𝑡[𝑢, 𝑣] < 𝑑𝑖𝑠𝑡[𝑣] then
11 𝑑𝑖𝑠𝑡[𝑣] = 𝑑𝑖𝑠𝑡[𝑢] + 𝑑𝑖𝑠𝑡[𝑢, 𝑣]
12 𝑆 = 𝑆

⋃

𝑢

5.4 Reactive Resource Capacity Provisioning
By extending Alibaba’s threshold-based reactive resource capacity provisioning, we propose an algorithm based on resource
utilization threshold to adjust the number of pods. Algorithm 2 shows the pseudocode of reactive resource capacity provisioning
with periodical analyses. There are two principles in designing the algorithm: a) configuring threshold with safety parameter to
avoid the request bursts; b) configuring cooling time to avoid high costs incurred by frequent scaling operations.

The algorithm firstly initializes the system parameters, including the size of the sliding window, the predefined maximum and
minimum number of replicates, and other configurable parameters. In the scheduling time interval 𝑇 , the algorithm calculates
the statistical data of metrics in each time interval 𝑡 (lines 1-2). The statistical data include the mean value, the maximum value,
or the 95 percent value of metrics like response time and CPU utilization. Then the algorithm computes the scaling parameter
based on the predefined scaling threshold 𝑡∗ and the current metric data (line 3). If the scaling parameter is within the safety
area, the predicted number of replicates ̂𝐶𝑡+𝜎 can be obtained through the calculated parameter from previous steps and the
number of replicates at the current time interval (line 4). Compared with the maximum and the minimum number of replicates,
the predicted number of replicates will be updated (lines 5-12). To avoid too frequent scaling with high costs, a cooling time of
removing replicates is also defined. If the previous time is within the cooling time, then the replicates removal operations will
not be executed (lines 13-16). Finally, the expected number of replicates can be decided as 𝐶𝑡+𝜎 .

6 PERFORMANCE EVALUATIONS

In this section, we provide a detailed overview of the experimental setup and the metrics we utilized for evaluations. Subse-
quently, we present the results obtained from Alibaba’s cluster using our proposed Ali-Pro approach compared with several
baseline methods.

6.1 Experiment Setup
In this subsection, we will introduce the cluster used for our experiments, along with the state-of-the-art baseline approaches
we have chosen for comparison. Additionally, we will outline the metrics we employed to evaluate the performance of these
approaches.

Page 12 of 19

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

For Peer Review

M. Xu ET AL 13

Algorithm 2: Reactive Capacity Provisioning
Input: Sliding window size 𝑊 to measure the statistical data, time interval 𝑡, the maximum number of replicates 𝐶𝑚𝑎𝑥,

the minimum number of replicates 𝐶𝑚𝑖𝑛, the number of replicates 𝐶𝑡 at time interval 𝑡, the safety parameter for
scaling 𝑠𝑝 ∈ [0, 1], cooling time 𝑐𝑡 of removing replicates, threshold 𝑡∗, statistical data 𝑆𝐷 for specific metric,
e.g. response time 𝑟𝑡, a period of time interval 𝜎.

Output: Number of replicates 𝐶𝑡+𝜎
1 for 𝑡 = 1 to 𝑇 do
2 𝑟𝑡(𝑡)← 𝑆𝐷𝑟𝑡(𝑟𝑡(𝜏)|𝜏 ∈ [𝑡 −𝑊 , 𝑡])
3 𝑛𝑟(𝑡)← 𝑟𝑡(𝑡)∕𝑡∗

4 ̂𝐶𝑡+𝜎 ← 𝑛𝑟(𝑡) ∗ 𝐶𝑡
5 if |𝑛𝑟(𝑡) − 1| > 𝑠𝑝 then
6 if 𝐶𝑚𝑖𝑛 < ̂𝐶𝑡+𝜎 < 𝐶𝑚𝑎𝑥 then
7 𝐶∗

𝑡+𝜎 = ̂𝐶𝑡+𝜎

8 else
9 if 𝐶𝑚𝑖𝑛 ≥ ̂𝐶𝑡+𝜎 then

10 𝐶∗
𝑡+𝜎 = 𝐶𝑚𝑖𝑛

11 else
12 𝐶∗

𝑡+𝜎 = 𝐶𝑚𝑎𝑥

13 if 𝐶∗
𝑡+𝜎 < 𝐶𝑡 & 𝛿 < 𝑐𝑡 then

14 𝐶𝑡+𝜎 = 𝐶𝑡

15 else
16 𝐶𝑡+𝜎 = 𝐶∗

𝑡+𝜎

6.1.1 Cluster and Baselines
To evaluate the performance of improving resource capacity provisioning, we have conducted our experiments on cluster of
ASI. The physical nodes are with Intel Xeon Platinum 8163 CPU @2.50 GHz and Platinum 8269CY CPU @ 2.5 GHz. The
workloads are derived from a typical E-Business application that we name as application A whose features are demonstrated in
Section 3.3. The application is distributed on homogeneous virtual machines with 104 cores, 512 GB memory, and 320 GB disk.
The instances of application A are running in pods, each pod can require resources with a maximum 4 cores CPU, maximum 8
GB memory, and maximum 64 GB disk.

Several baselines have been used for comparison with our extended approach Ali-Pro:
Over-Pro is the static algorithm that always keeps the maximum number of replicates by resource over-provisioning, which

can assure QoS.
Kube-Pro29 is derived from the society version of Kubernetes. It has been optimized and used in Alibaba with the mechanisms

introduced in Section 4.3.
Optimal-Pro16 is a theoretical number of replicates based on the amount of workloads coming into the system, which is a

white box approach that can reach optimal results.
Conserv-Pro is a conservative approach based on Ali-Pro to allocate more resources, where the time to make scaling oper-

ations has been shifted to a longer period than Ali-Pro, i.e., 30 minutes earlier to add replicates and 30 minutes later to remove
replicates than Ali-Pro.

6.1.2 Metrics
Apart from the widely used metrics like resource utilization and latency30 to validate elasticity, the following metrics have been
adopted to evaluate prediction accuracy and resource usage:

1) RMSE: it represents the root mean square error that can measure the difference between the predicted and actual workloads,
which is defined as:

Page 13 of 19

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

For Peer Review

14 M. Xu ET AL

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑦𝑖)2 (1)

where 𝑛 is the size of data, 𝑦𝑖 is the actual data, and 𝑦𝑖 is the predicted data.
2) MAPE: it is another widely used metric to measure prediction errors as:

𝑀𝐴𝑃𝐸 = 1
𝑛

𝑛
∑

𝑖=1
|

𝑦𝑖 − 𝑦𝑖
𝑦𝑖

| (2)
3) SP: one major concern of Alibaba is to improve resource usage, and this metric is used to evaluate the percentage of saved

resources, 𝑇 is the period that indexed by 𝑖 and 𝑗 to scale resources, and 𝑅 is the number of replicates in each period:

𝑆𝑃 = 1 −
∑

𝑖=1 𝑅𝑖 ∗ 𝑇𝑖
∑

𝑗=1 𝑅𝑗 ∗ 𝑇𝑗
(3)

6.2 Workloads Estimation Results
In order to evaluate the accuracy of the workloads prediction, we compare LightGBM with several ML-based approaches for
time-series data prediction, including LSTM, ChatBoost, Random Forest and ARIMA31. Four applications derived from online
shopping are evaluated. Table 1 shows the RMSE and MAPE for the applications, which shows the LightGBM based approach
can obtain the best prediction results in applications A and B. Although for Applications C and D, the prediction results are
not the best, the LightGBM still outperforms LSTM and Random Forest, and achieves close results with the best approach, like
ARIMA. The main reason is that LightGBM can produce much more complicated trees by following leaf wise split approach
to achieve higher prediction accuracy.

Table 1 The evaluations of workloads prediction models
LSTM LightGBM CatBoost Random Forest ARIMA

Application A
RMSE 5603.78 1255.57 1460.36 6949.45 12966.83
MAPE 0.25 0.10 0.11 0.59 0.63

Application B
RMSE 516.89 2671.97 3323.82 6949.45 5231.03
MAPE 0.12 0.11 0.12 0.15 0.21

Application C
RMSE 472.65 191.335 143.41 639.69 491.47
MAPE 0.27 0.13 0.12 0.59 0.45

Application D
RMSE 982.93 697.61 742.76 1814.86 650.63
MAPE 0.163 0.13 0.12 0.274 0.108

6.3 QPS Modelling for Pods
To investigate the pattern of QoS modelling for pods, We use the statistical data of application A for analyses, and other applica-
tions can be analyzed in the same way. To obtain the threshold of the single instance with corresponding QPS, we select the data
generated between 8:00 to 20:00, as the workloads outside of this period is much lower than the observed period. We collect
442,686 data about the processed QPS by each instance within 11 days, and the observed distribution is demonstrated in Fig. 9.
The red line is the fitted normal distribution based on the collected data, where the mean value 𝜎 = 573.7 and standard deviation
value 𝜇 = 65.9. Therefore, the threshold of QPS for a pod can be configured as 𝜇 + 3𝜎 = 771.4 based on the three-sigma rule.
With this modelled value and total number of requests, the required number of replicates can be computed to optimize resource
usage (e.g. obtaining the demanded number of replicates).

Page 14 of 19

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

For Peer Review

M. Xu ET AL 15

400 500 600 700 800
QPS per Instance

0.000

0.002

0.004

0.006

0.008

0.010

Pr
ob

ab
ili

ty

Fitted Normal Distribution
Histogram

Figure 9 QPS distribution of pods.

6.4 Resource Capacity Provisioning Performance Analyses
Fig. 10 illustrates the number of used replicates based on different approaches, which can represent the resource utilization.
We can notice that our proposed Ali-Pro can achieve better performance than other baselines except the Optimal-Pro with
the theoretical results, which is hard to realize in practice. Over-Pro keeps the maximum number of replicates as 18 by over-
provisioning, which leads to the maximum amount of wastage resources. Conserv-Pro based on a sliding window can have more
pods than required during midnight, as its decision is based on results in 15:00 to 24:00 that with a large number of pods. Kube-
Pro does not perform well as it is mainly based on the static threshold. With Over-Pro as the baseline to calculate 𝑆𝑃 metric in
Equation (3), considering Over-Pro as 0.0, then Conserv-Pro is 15.9%, Kube-Pro is 13.3%, Optimal-Pro is 24.0% and Ali-Pro
is 18.1%. Moreover, the proposed approach performs well during the period from 0:00 to 7:00 with low workloads, where the
𝑆𝑃 of Conserv-Pro is around 80.0%.

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
Timestamp

8

10

12

14

16

18

Th
e

N
um

 o
f P

od
s

Optimal-Pro
Ali-Pro
Conserv-Pro
Kube-Pro
Over-Pro

Figure 10 Number of used pod replicates.

As Ali-Pro and Conserv-Pro have demonstrated good performance in saving replicates, we also investigate their performance
on assuring QPS. Since Conserv-Pro and Ali-Pro can achieve close results, to avoid the overlapping of results on the same figure,
we only use Conserv-Pro for comparison. Additionally, Conserv-Pro is more conservative than Ali-Pro, and the industry is more
prone to use conservation approach to provide stable user experience. Fig. 11a demonstrates that Conserv-Pro can achieve the
close performance with Over-Pro, and Fig. 11b shows Conserv-Pro can improve the CPU utilization of pods from about 10% to
15% compared with Over-Pro. The utilization is not high as the left resources on the pods can be used for other types of services,
e.g. batch and best efforts.

We also conduct experiments to compare the application latency of Conserv-Pro and Over-Pro. Over-Pro can assure QoS
as resources are over-provisioned, therefore, we compare Conserv-Pro with Over-Pro. Fig. 12a shows the latency distribution

Page 15 of 19

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

For Peer Review

16 M. Xu ET AL

00:00 03:20 06:40 10:00 13:20 16:40 20:00 23:20
Timestamp

0.0

0.2

0.4

0.6

0.8

1.0
Th

e
N

or
m

al
iz

ed
 Q

PS
Conserv-Pro
Over-Pro

(a) QPS results

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
The CPU Util. of Pod

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

Fu
nc

tio
n

Over-Pro
Conserv-Pro

(b) CPU utilization of pods
Figure 11 QPS and utilization comparison.

comparison, and the results of Conserv-Pro demonstrate it can achieve close latency performance with Over-Pro, which means
the performance on latency can also be ensured by Conserv-Pro. Fig. 12b represents the load distribution, which shows that the
Conserv-Pro can also keep a similar distribution with Over-Pro. We also use Kullback-Leibler divergence (KL)32 to measure
how the distribution is different from the other, the lower KL value represents a closer relationship. Based on the distributions,
the KL values of latency and load are 0.025 and 0.227 respectively, which validate the closeness of the distributions.

2 3 5 64
Latency (ms)

0

1000

2000

3000

4000

5000

6000

7000

8000

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0
Load Utilization

0

1000

2000

3000
4000

5000

Fr
eq

ue
nc

y

REAL
OPRO

Conserv-Pro
Over-Pro

(a) Latency distribution

2 3 5 64
Latency (ms)

0

1000

2000

3000

4000

5000

6000

7000

8000

Fr
eq

ue
nc

y

REAL
OPRO

0.0 0.2 0.4 0.6 0.8 1.0
Load Utilization

0

1000

2000

3000

4000

5000

Fr
eq

ue
nc

y

Conserv-Pro
Over-Pro

(b) Load distribution
Figure 12 Response time and load distribution.

In conclusion, our enhanced approach can optimize the number of used replicates over Alibaba’s current practice while
ensuring QPS and latency. This can benefit Alibaba to improve its revenues while assuring user experience.

7 CONCLUSIONS AND FUTURE WORK

This work introduces Alibaba’s extensive expertise in providing resource capacity for large-scale microservices clusters. The
ASI platform, equipped with a unified scheduler, fine-grained scheduling, and history-based resource estimation, has effectively

Page 16 of 19

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

For Peer Review

M. Xu ET AL 17

optimized resource utilization in microservice systems and has been instrumental in supporting Alibaba’s core business for sev-
eral years. To enhance our understanding of microservices, we conduct thorough analyses of microservices clusters, emphasizing
key observations and challenges related to resource provisioning.

Based on these observations, we employ ML-based workload prediction, QPS modeling, as well as proactive and reac-
tive resource provisioning techniques to tackle various workload patterns and address the identified challenges. We introduce
resource provisioning algorithms capable of improving resource utilization by 10-15% while maintaining QPS and latency for
microservice-based clusters. This work contributes to both academic and industrial knowledge by enhancing our understand-
ing of large-scale microservice clusters, designing general resource provisioning frameworks for production environments, and
optimizing resource provisioning for microservices.

For future research, we aim to investigate complex aspects of microservice dependency in large-scale clusters to further
enhance resource usage efficiency. Additionally, we plan to explore the interference between different microservices in co-
location environments, particularly for deep learning applications where various deep learning or machine learning tasks are
deployed on heterogeneous CPUs and GPUs, necessitating the assurance of performance.

ACKNOWLEDGMENT

This work is supported by National Key R&D Program of China (No.2021YFB3300200), the National Natural Science
Foundation of China (No. 62072451, 62102408), Shenzhen Industrial Application Projects of undertaking the National
key R & D Program of China (No. CJGJZD20210408091600002), Shenzhen Science and Technology Program (No.
RCBS20210609104609044) and Alibaba Innovative Research Program.

References

1. Laszewski T, Arora K, Farr E, Zonooz P. Cloud Native Architectures: Design High-Availability and Cost-Effective
Applications for the Cloud. Packt Publishing . 2018.

2. Vettor R, Smith S. Architecting Cloud Native .NET Applications for Azure. Microsoft Developer Division, .NET, and Visual
Studio product teams . 2022.

3. Balalaie A, Heydarnoori A, Jamshidi P. Microservices Architecture Enables DevOps: Migration to a Cloud-Native
Architecture. IEEE Software 2016; 33(3): 42-52. doi: 10.1109/MS.2016.64

4. Newman S. Building Microservices. " O’Reilly Media, Inc." . 2015.
5. Jamshidi P, Pahl C, Mendonça NC, Lewis J, Tilkov S. Microservices: The Journey So Far and Challenges Ahead. IEEE

Software 2018; 35(3): 24-35. doi: 10.1109/MS.2018.2141039
6. Zhong Z, Xu M, Rodriguez M, Xu C, Buyya R. Machine Learning-based Orchestration of Containers: A Taxonomy and

Future Directions. ACM Computing Surveys 2022; 54(10s).
7. Li F. Cloud-Native Database Systems at Alibaba: Opportunities and Challenges. Proc. VLDB Endow. 2019; 12(12):

2263–2272. doi: 10.14778/3352063.3352141
8. Wang B, Wang C, Song Y, Cao J, Cui X, Zhang L. A survey and taxonomy on workload scheduling and resource provisioning

in hybrid clouds. Cluster Computing 2020; 23: 2809–2834.
9. Xu M, Song C, Wu H, Gill SS, Ye K, Xu C. EsDNN: Deep Neural Network Based Multivariate Workload Prediction in

Cloud Computing Environments. ACM Transactions on Internet Technology 2022; 22(3). doi: 10.1145/3524114
10. Kiani A, Ansari N, Khreishah A. Hierarchical Capacity Provisioning for Fog Computing. IEEE/ACM Transactions on

Networking 2019; 27(3): 962-971. doi: 10.1109/TNET.2019.2906638

Page 17 of 19

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

http://dx.doi.org/10.1109/MS.2016.64
http://dx.doi.org/10.1109/MS.2018.2141039
http://dx.doi.org/10.14778/3352063.3352141
http://dx.doi.org/10.1145/3524114
http://dx.doi.org/10.1109/TNET.2019.2906638

For Peer Review

18 M. Xu ET AL

11. Ma X, Wang S, Zhang S, Yang P, Lin C, Shen X. Cost-Efficient Resource Provisioning for Dynamic Requests
in Cloud Assisted Mobile Edge Computing. IEEE Transactions on Cloud Computing 2021; 9(3): 968-980. doi:
10.1109/TCC.2019.2903240

12. Aslanpour MS, Dashti SE, Ghobaei-Arani M, Rahmanian AA. Resource provisioning for cloud applications: a 3-D,
provident and flexible approach. The Journal of Supercomputing 2018; 74: 6470-6501.

13. Xu X, Mo R, Dai F, Lin W, Wan S, Dou W. Dynamic Resource Provisioning With Fault Tolerance for Data-Intensive
Meteorological Workflows in Cloud. IEEE Transactions on Industrial Informatics 2020; 16(9): 6172-6181. doi:
10.1109/TII.2019.2959258

14. Soldani J, Tamburri DA, Van Den Heuvel WJ. The pains and gains of microservices: A systematic grey literature review.
Journal of Systems and Software 2018; 146: 215–232.

15. Abdullah M, Iqbal W, Berral JL, Polo J, Carrera D. Burst-Aware Predictive Autoscaling for Containerized Microservices.
IEEE Transactions on Services Computing 2022; 15(3): 1448-1460. doi: 10.1109/TSC.2020.2995937

16. Yu G, Chen P, Zheng Z. Microscaler: Automatic Scaling for Microservices with an Online Learning Approach. In: ; 2019:
68-75

17. Yanqi Z, Weizhe H, Zhuangzhuang Z, G. Edward S, Christina D. Sinan: ML-Based & QoS-Aware Resource Management
for Cloud Microservices. In: ; 2021: 167–181.

18. Hou X, Li C, Liu J, Zhang L, Hu Y, Guo M. ANT-man: towards agile power management in the microservice era. In: ;
2020: 1098–1111.

19. Kwan A, Wong J, Jacobsen H, Muthusamy V. HyScale: Hybrid and Network Scaling of Dockerized Microservices in Cloud
Data Centres. In: ; 2019: 80-90

20. Xu M, Song C, Ilager S, et al. CoScal: Multi-faceted Scaling of Microservices with Reinforcement Learning. IEEE
Transactions on Network and Service Management 2022: 1-15. doi: 10.1109/TNSM.2022.3210211

21. Wang Z, others . DeepScaling: Microservices Autoscaling for Stable CPU Utilization in Large Scale Cloud Systems. In: ;
2022: 16–30

22. Newell A, Skarlatos D, Fan J, et al. RAS: Continuously Optimized Region-Wide Datacenter Resource Allocation. In: ; 2021:
505–520.

23. Zhou H, Chen M, Lin Q, et al. Overload control for scaling wechat microservices. In: ; 2018: 149–161.
24. Luo S, Xu H, Lu C, et al. An In-Depth Study of Microservice Call Graph and Runtime Performance. IEEE Transactions on

Parallel and Distributed Systems 2022; 33(12): 3901-3914. doi: 10.1109/TPDS.2022.3174631
25. Inc A. PouchContainer - An Efficient Enterprise-class Rich Container Engine. [EB/OL]; . https://github.com/alibaba/pouch

2019.
26. Chen W, Ye K, Wang Y, Xu G, Xu CZ. How Does the Workload Look Like in Production Cloud? Analysis and Clustering

of Workloads on Alibaba Cluster Trace. In: ; 2018: 102-109
27. Yu G, Chen P, Chen H, et al. MicroRank: End-to-End Latency Issue Localization with Extended Spectrum Analysis in

Microservice Environments. In: ; 2021: 3087–3098.
28. Ke G, Meng Q, Finley T, et al. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information

processing systems 2017; 30: 3146–3154.
29. Burns B, Beda J, Hightower K. Kubernetes: up and running: dive into the future of infrastructure. O’Reilly Media . 2019.
30. Herbst N, Krebs R, Oikonomou G, et al. Ready for rain? A view from SPEC research on the future of cloud metrics. arXiv

preprint arXiv:1604.03470 2016.

Page 18 of 19

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

http://dx.doi.org/10.1109/TCC.2019.2903240
http://dx.doi.org/10.1109/TCC.2019.2903240
http://dx.doi.org/10.1109/TII.2019.2959258
http://dx.doi.org/10.1109/TII.2019.2959258
http://dx.doi.org/10.1109/TSC.2020.2995937
http://dx.doi.org/10.1109/TNSM.2022.3210211
http://dx.doi.org/10.1109/TPDS.2022.3174631
https://github.com/alibaba/pouch

For Peer Review

M. Xu ET AL 19

31. Siami-Namini S, Tavakoli N, Namin AS. A comparison of ARIMA and LSTM in forecasting time series. In: IEEE. ; 2018:
1394–1401.

32. Erven vT, Harremos P. Rényi Divergence and Kullback-Leibler Divergence. IEEE Transactions on Information Theory
2014; 60(7): 3797-3820. doi: 10.1109/TIT.2014.2320500

Page 19 of 19

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

http://dx.doi.org/10.1109/TIT.2014.2320500

