
1

OS Support for Building Distributed Applications:
Multithreaded Programming using Java Threads

Dr. Minxian Xu
Associate Professor
Research Center for Cloud Computing
Shenzhen Institute of Advanced Technology, CAS
http://www.minxianxu.info/dcp

四山旗似晴霞卷，万马蹄如骤雨来。
——（清）徐珽

http://www.minxianxu.info/

Sockets

Q1. Briefly discuss three aspects of the Socket
interface.

Review

2

Sockets

Q1. Briefly discuss three aspects of the Socket
interface.

Review

3

Sockets

Q1. Briefly discuss three aspects of the Socket
interface.

 Receiver process is bound to a local port.
 Socket can be used for sending and

receiving.
 Each socket is associated with a protocol

(UDP or TCP).

Review

4

UDP vs TCP

Review

5

UDP vs TCP

UDP: User Datagram Protocol
 Provides a message passing abstraction.
 Is the simplest form of Interprocess Communication (IPC).
 Transmits a single message (called a datagram) to the receiving process.

TCP: Transmission Control Protocol
 Provides an abstraction for a two-way stream.
 Streams do not have message boundaries.
 Stream provide the basis for producer/consumer communication.
 Data sent by the producer are queued until the consumer is ready to receive them.
 The consumer must wait when no data is available.

Review

6

UDP vs TCP

Q2. Briefly explain three possible failures that
can happen when using UDP for
communication.

Review

7

UDP vs TCP

Q2. Briefly explain three possible failures that
can happen when using UDP for
communication.

 Data Corruption.
 Omission failures.
 Order.

Review

8

UDP vs TCP

Q3. Briefly explain three aspects of TCP that
address issues not addressed by UDP.

Review

9

Q3. Briefly explain three aspects of TCP that
address issues not addressed by UDP.
 Message sizes: There is no limit on data size applications can use.
 Lost messages: TCP uses an acknowledgment scheme unlike UDP. If acknowledgments are not

received the messages are retransmitted.
 Flow control: TCP protocol attempts to match the speed of the process that reads the message

and writes to the stream.
 Message duplication or ordering: Message identifiers are associated with IP packets to enable

the recipient to detect and reject duplicates and reorder messages in case messages arrive out of
order.

 Message destinations: The communicating processes establish a connection before
communicating. The connection involves a connect request from the client to the server followed by
an accept request from the server to the client.

UDP vs TCP

Review

10

UDP vs TCP

Q4. List the steps involved at the client and at
the server to establish a TCP stream socket
connection.

Review

11

UDP vs TCP

Q4. List the steps involved at the client and at
the server to establish a TCP stream socket
connection.

Review

12

13

Outline

 Introduction to Middleware

 Thread Applications

 Defining Threads

 Java Threads and States

 Architecture of Multithreaded servers

 Threads Synchronization

 Summary

14

Introduction

 Middleware is a layer of software
(system) between Applications and
Operating System (OS) powering
the nodes of a distributed system.

 The OS facilitates:

 Encapsulation and protection of
resources inside servers;

 Invocation of mechanisms required to
access those resources including
concurrent access/processing.

Middleware

Applications

Distributed
Nodes with OS

15

Middleware and Network Operating
System (NOS)

 Many DOS (Distributed OS) have been investigated, but
there are none in general/wide use. But NOS are in
wide use for various reasons both technical and non-
technical.
 Users have much invested in their application software; they

will not adopt a new OS that will not run their applications.
 Users tend to prefer to have a degree of autonomy of their

machines, even in a closely knit organisation.

 A combination of middleware and NOSs provides an
acceptable balance between the requirement of
autonomy and network transparency.
 NOS allows users to run their favorite word processor.
 Middleware enables users to take advantage of services that

become available in their distributed systems.

Introducing a middleware

 Building Distributed Systems
 DOS or NOS are not enough to build a DS!

 NOS are a good starting point but ….

 … we need an additional layer “gluing” all together

NOS

Middleware

16

 Middleware
 High-level features for DS

 Communication
 Management
 Application specific

 Uniform layer where to build DS services
 Runtime environment of applications

 Operating System
 Low / medium level (core) features

 Process / threads management
 Local hardware (CPU, disk, memory)
 Security (users, groups, domain, ACLs)
 Basic networking

Building Distributed Systems

17

18

Operating system layers and
Middleware

 Unix and Windows are two examples of Network Operating Systems – have a
networking capability built into them and so can be used to access remote
resources using basic services such as rlogin, telnet.

Applications, services

Computer &

Platform

Middleware

OS: kernel,
libraries &
servers

network hardware

OS1

Computer &
network hardware

Node 1 Node 2

Processes, threads ,
communication, ...

OS2
Processes, threads ,
communication, ...

19

Core OS components and functionality

Communication

manager

Thread manager Memory manager

Supervisor

Process manager

Threaded Applications

 Modern Applications and Systems
 Operating System Level

 Multitasking: multiple applications running at once

 Application Level

 Multithreading: multiple operations performed at the
same time within an application.

 Bottom Line:

 Illusion of concurrency

20

Threaded Applications

 Modern Systems
 Multiple applications run concurrently!
 This means that… there are multiple processes on

your computer

web & email

multimedia

office automation

games

pictures

Multitasking

21

22

A single threaded program

class ABC

{

….

public void main(..)

{

…

..

}

}

begin

body

end

Trade-offs involved

 Threads can increase performance
 Create parallelism on multiprocessors

 Intuitive way to get concurrent I/O and computation

 Natural fit for some programming paradigms
 Event processing

 Simulations

 Trade-off: increased complexity
 Need to think about safety, liveness, composability

 Shared heap, complex interleavings

 Higher resource usage

23

Thread Programming Model

 Threads exist in many languages

 C, C++, C#, Java, Smalltalk, F#, . . .

 In many languages (e.g., C, C++) threads a
an add-on library

 Not a part of the language specification

 Java threads are part of the language
specification

24

Threaded Applications

 Modern Systems
 Applications perform many tasks at once!
 This means that… there are multiple threads within

a single process.

Background printing

GUI rendering

Application core logic

25

26

A Multithreaded Program

Main Thread

Thread A Thread B Thread C

start start
start

Threads may switch or exchange data/results

27

Single and Multithreaded Processes

Single-threaded Process

Single instruction stream Multiple instruction stream

Multi-threaded Process

Threads of

Execution

Common

Address Space

threads are light-weight processes within a process

Multithreaded Server: For Serving
Multiple Clients Concurrently

 Modern Applications

 Example: Multithreaded Web Server

Web/FTP

server

Client 1

Client 2

Client N

Process Request Client 1

Process Request Client 2

Process Request Client N

28

 Modern Applications

 Example: Internet Browser + YouKu

Threaded Applications

Video Streaming

Favorities, Share,

Comments Posting

29

30

Printing Thread

Editing Thread

Modern Applications need Threads (ex1):
Editing and Printing documents in background.

31

Multithreaded/Parallel File Copy

reader()

{

- - - - - - - - -

-

lock(buff[i]);

read(src,buff[i]);

unlock(buff[i]);

- - - - - - - - -

-

}

writer()

{

- - - - - - - - - -

lock(buff[i]);

write(src,buff[i]);

unlock(buff[i]);

- - - - - - - - - -

}

buff[0]

buff[1]

Cooperative Parallel Synchronized
Threads

Defining Threads

 Applications – Threads are used to
perform:

 Parallelism and concurrent execution of
independent tasks / operations.

 Implementation of reactive user interfaces.

 Non blocking I/O operations.

 Asynchronous behavior.

 Timer and alarms implementation.

32

Defining Threads

 Example: Web/FTP Server

Web/FTP

server

while <running>

{

<wait for request>

<create a new worker thread>

<start the thread>

}

Main Thread

<request 1>

Worker
Thread <request 2>

Worker
Thread

<request N>

Worker
Thread

E
x

ec
u

ti
o

n
 T

im
el

in
e

33

Defining Threads

 A Thread is a piece of code that runs in
concurrent with other threads.

 Each thread is a statically ordered sequence
of instructions.

 Threads are used to express concurrency on
both single and multiprocessors machines.

 Programming a task having multiple threads
of control – Multithreading or Multithreaded
Programming.

34

35

Java Threads

 Java has built in support for Multithreading

 Synchronization

 Thread Scheduling

 Inter-Thread Communication:
 currentThread start setPriority

 yield run getPriority

 sleep stop suspend

 resume

 Java Garbage Collector is a low-priority
thread.

36

Threading Mechanisms...

 Create a class that extends the Thread class

 Create a class that implements the Runnable
interface

Thread

MyThread

Runnable

MyClass

Thread

(objects are threads) (objects with run() body)

[a] [b]

37

1st method: Extending Thread class

 Create a class by extending Thread class and override
run() method:

class MyThread extends Thread

{

public void run()

{

// thread body of execution

}

}

 Create a thread:

MyThread thr1 = new MyThread();

 Start Execution of threads:

thr1.start();

 Create and Execute:
new MyThread().start();

38

An example

class MyThread extends Thread {
public void run() {

System.out.println(" this thread is running ... ");
}

}

class ThreadEx1 {
public static void main(String [] args) {

MyThread t = new MyThread();
t.start();

}
}

39

2nd method: Threads by implementing
Runnable interface

 Create a class that implements the interface Runnable and
override run() method:

class MyThread implements Runnable

{

.....

public void run()

{

// thread body of execution

}

}

 Creating Object:
MyThread myObject = new MyThread();

 Creating Thread Object:
Thread thr1 = new Thread(myObject);

 Start Execution:
thr1.start();

40

An example

class MyThread implements Runnable {
public void run() {

System.out.println(" this thread is running ... ");
}

}

class ThreadEx2 {
public static void main(String [] args) {

Thread t = new Thread(new MyThread());
t.start();

}
}

41

Life Cycle of Thread

new

ready

start()

running

deadstop()

dispatch

completion

wait()

waiting
sleeping blocked

notify()

sleep()

Block on I/O

I/O completed

Time expired/
interrupted

suspend()

resume()

42

A Program with Three Java Threads

 Write a program that creates 3 threads

43

Three threads example

 class A extends Thread
 {
 public void run()
 {
 for(int i=1;i<=5;i++)
 {
 System.out.println("\t From ThreadA: i= "+i);
 }
 System.out.println("Exit from A");
 }
 }

 class B extends Thread
 {
 public void run()
 {
 for(int j=1;j<=5;j++)
 {
 System.out.println("\t From ThreadB: j= "+j);
 }
 System.out.println("Exit from B");
 }
 }

44

 class C extends Thread
 {
 public void run()
 {
 for(int k=1;k<=5;k++)
 {
 System.out.println("\t From ThreadC: k= "+k);
 }

 System.out.println("Exit from C");
 }
 }

 class ThreadTest
 {
 public static void main(String args[])
 {
 new A().start();
 new B().start();
 new C().start();
 }
 }

Three threads example

45

Run 1

 [mx@msiat] threads [1:76] java ThreadTest
From ThreadA: i= 1
From ThreadA: i= 2
From ThreadA: i= 3
From ThreadA: i= 4
From ThreadA: i= 5

Exit from A
From ThreadC: k= 1
From ThreadC: k= 2
From ThreadC: k= 3
From ThreadC: k= 4
From ThreadC: k= 5

Exit from C
From ThreadB: j= 1
From ThreadB: j= 2
From ThreadB: j= 3
From ThreadB: j= 4
From ThreadB: j= 5

Exit from B

46

Run 2

 [mx@siat] threads [1:77] java ThreadTest
From ThreadA: i= 1
From ThreadA: i= 2
From ThreadA: i= 3
From ThreadA: i= 4
From ThreadA: i= 5
From ThreadC: k= 1
From ThreadC: k= 2
From ThreadC: k= 3
From ThreadC: k= 4
From ThreadC: k= 5

Exit from C
From ThreadB: j= 1
From ThreadB: j= 2
From ThreadB: j= 3
From ThreadB: j= 4
From ThreadB: j= 5

Exit from B
Exit from A

47

Thread Priority

 In Java, each thread is assigned priority, which
affects the order in which it is scheduled for
running. The threads so far had same default
priority (NORM_PRIORITY) and they are served
using FCFS policy.

 Java allows users to change priority:

 ThreadName.setPriority(intNumber)

 MIN_PRIORITY = 1

 NORM_PRIORITY=5

 MAX_PRIORITY=10

48

Thread Priority Example

class A extends Thread

{
public void run()
{

System.out.println("Thread A started");
for(int i=1;i<=4;i++)

{
System.out.println("\t From ThreadA: i= "+i);

}
System.out.println("Exit from A");

}
}
class B extends Thread
{

public void run()
{

System.out.println("Thread B started");
for(int j=1;j<=4;j++)

{
System.out.println("\t From ThreadB: j= "+j);

}
System.out.println("Exit from B");

}
}

49

Thread Priority Example

class C extends Thread
{

public void run()
{

System.out.println("Thread C started");
for(int k=1;k<=4;k++)

{
System.out.println("\t From ThreadC: k= "+k);

}
System.out.println("Exit from C");

}
}
class ThreadPriority
{

public static void main(String args[])
{

A threadA=new A();
B threadB=new B();
C threadC=new C();

threadC.setPriority(Thread.MAX_PRIORITY);
threadB.setPriority(threadA.getPriority()+1);
threadA.setPriority(Thread.MIN_PRIORITY);
System.out.println("Started Thread A");
threadA.start();
System.out.println("Started Thread B");
threadB.start();
System.out.println("Started Thread C");
threadC.start();
System.out.println("End of main thread");

}
}

50

Assignment 1 at a Glance: Multithreaded Dictionary
Server – Using Sockets and Threads

Multithreaded
Dictionary Server

A Client Program
Meaning(“guru”)?

A Client Program
Meaning(“love”)?

A Client
Program in “C++”

Meaning(“channel”)?

A Client
Program in “C”

Meaning(“java”)?

Meaning (“guru”)

“master or teacher”

51

Accessing Shared Resources

 Applications access to shared resources need to
be coordinated.

 Printer (two person jobs cannot be printed at the
same time)

 Simultaneous operations on your bank account.

 Can the following operations be done at the same
time on the same account?

 Deposit()

 Withdraw()

 Enquire()

Online Bank: Serving Many Customers
and Operations

Internet

Bank Server

Bank Local Area Network

Client N

Client 2

Client 1 Bank Operator 1

Bank Operator M

Bank Database

52

53

Shared Resources

 If one thread tries to read the data and other
thread tries to update the same data, it leads to
inconsistent state.

 This can be prevented by synchronising access
to the data.

 Use “synchronized” method:
 public synchronized void update()

 {
 …

 }

54

the driver: 3 Threads sharing the
same object

class InternetBankingSystem {

public static void main(String [] args) {

Account accountObject = new Account ();

Thread t1 = new Thread(new MyThread(accountObject));

Thread t2 = new Thread(new YourThread(accountObject));

Thread t3 = new Thread(new HerThread(accountObject));

t1.start();

t2.start();

t3.start();

// DO some other operation

} // end main()

}

55

Shared account object between 3
threads

class MyThread implements Runnable {

Account account;

public MyThread (Account s) { account = s;}

public void run() { account.deposit(); }

} // end class MyThread

class YourThread implements Runnable {

Account account;

public YourThread (Account s) { account = s;}

public void run() { account.withdraw(); }

} // end class YourThread

class HerThread implements Runnable {

Account account;

public HerThread (Account s) { account = s; }

public void run() {account.enquire(); }

} // end class HerThread

account

(shared

object)

56

Monitor (shared object access):
serializes operation on shared objects

class Account { // the 'monitor'
int balance;

// if 'synchronized' is removed, the outcome is unpredictable
public synchronized void deposit() {

// METHOD BODY : balance += deposit_amount;
}

public synchronized void withdraw() {
// METHOD BODY: balance -= deposit_amount;

}
public synchronized void enquire() {

// METHOD BODY: display balance.
}

}

57

Architecture for Multithread Servers

 Multithreading enables servers to maximize
their throughput, measured as the number of
requests processed per second.

 Threads may need to treat requests with
varying priorities:
 A corporate server could prioritize request

processing according to class of customers.

 Architectures:
 Worker pool
 Thread-per-request
 Thread-per-connection
 Thread-per-object

58

Client and server with threads
(worker-pool architecture)

 In worker-pool architectures, the server creates a fixed pool of worker
threads to process requests.

 The module “receipt and queuing” receives requests from sockets/ports
and places them on a shared request queue for retrieval by the workers.

Server

N threads

Input-output

Client

Thread 2 makes

T1

Thread 1

requests to server

generates

results

Requests

Receipt &
queuing

59

Alternative server threading
architectures

a. Thread-per-request b. Thread-per-connection c. Thread-per-object

remote

workers

I/O remote
remote I/O

per-connection threads per-objec t threads

objects objects
objects

IO Thread creates a
new worker thread for

each request and
worker thread

destroys itself after
serving the request.

Server associates a Thread
with each connection and

destroys when client closes
the connection.

Client may make many
requests over the

connection.

Associates Thread with each
object. An IO thread

receives request and queues
them for workers, but this
time there is a per-object

queue.

60

Scheduler activations

Process
A

Process
B

Virtual processors Kernel

Process

Kernel

P idle

P needed

P added

SA blocked

SA unblocked

SA preempted

A. Assignment of virtual processors

 to processes

B. Events between user-level scheduler & kernel

 Key: P = processor; SA = scheduler activation

61

Invocations between address spaces

Control transfer via

trap instruction

User Kernel

Thread

User 1 User 2

Control transfer via

privileged instructi ons

Thread 1 Thread 2

Protection domain

boundary

(a) System call

(b) RPC/RMI (within one computer)

Kernel

(c) RPC/RMI (between computers)

User 1 User 2

Thread 1 Network Thread 2

Kernel 2Kernel 1

62

A lightweight remote procedure call

1. Copy args

2. Trap to Kernel

4. Execute procedure

and copy results

Client

User stub

Server

Kernel

stub

3. Upcall 5. Return (trap)

A
 A stack

63

Times for serialized and concurrent
invocations

Client Server

execute request

Send

Receive
unmarshal

marshal

Receive
unmarshal

process results

marshal
Send

process args

marshal
Send

process args

transmission

Receive
unmarshal

process results

execute request

Send

Receive
unmarshal

marshal

marshal
Send

process args

marshal
Send

process args

execute request

Send

Receive
unmarshal

marshal

execute request

Send

Receive
unmarshal

marshal
Receive

unmarshal
process results

Receive
unmarshal

process results

time

Client Server

Serialised invocations Concurrent invocations

64

Summary

 Operating system provides various types of facilities to support
middleware for distributed system:
 encapsulation, protection, and concurrent access and management of

node resources.

 Multithreading enables servers to maximize their throughput,
measured as the number of requests processed per second.

 Threads support treating of requests with varying priorities.
 Various types of architectures can be used in concurrent

processing:
 Worker pool
 Thread-per-request
 Thread-per-connection
 Thread-per-object

 Threads need to be synchronized when accessing and
manipulating shared resources.

 New OS designs provide flexibility in terms of separating
mechanisms from policies.

65

References

 CDK Book (Text Book)

 Chapter 7 – “Operating System Support”

 Chapter 14: Multithread Programming

 R. Buyya, S. Selvi, X. Chu, “Object
Oriented Programming with Java:
Essentials and Applications”, McGraw
Hill, New Delhi, India, 2009.

Code Demonstration – Multi-threading in Java

Demo

 Sleep
 Pauses the execution of a thread

 Join
 Allows one thread to wait for the completion of another

 Synchronized methods
 Intrinsic object locks
 When a thread starts executing an object’s synchronized method, it

obtains the object lock, when it finishes executing the synchronized
method, it releases the lock

 Only one thread at a time can hold the object’s lock
 When one thread is executing a synchronized method for an object, all

other threads that invoke synchronized methods for the same object
block (suspend execution) until the first thread is done with the object

66

