
Distributed Objects Programming

- Remote Invocation

Some concepts are
drawn from Chapter 5

Dr. Minxian Xu
Associate Professor

Research Center for Cloud Computing

Shenzhen Institute of Advanced Technology, CAS

http://www.minxianxu.info/dcp

Sun Java online tutorials:

http://java.sun.com/docs/books/tutorial/rmi/

1

别酒青门路，归轩白马津。相知无远近，万里尚为邻。
——（唐）张九龄

http://www.minxianxu.info/dcp

Review

 Q1. Briefly explain the difference between a

client-server architecture and a peer-to-peer

architecture.

2

Review

3

4

Review

 Q2. Briefly explain each of the following

distributed system architecture variations,

giving also a reason or a benefit for its use:
- Services provided by multiple servers

- Proxy servers and caches

- Mobile code and Mobile Agents

- Network computers

- Thin clients

- Tiered Architecture

5

Services provided by multiple servers

Proxy servers and caches

Mobile code and mobile agents

Network computers and thin clients

Tiered Architecture

Review

 Q3. Briefly explain the purpose of the

following fundamental models and explain two

important considerations for each:

 Interaction Model.

 Failure Model.

 Security Model.

11

Review

12

Review

Q4. Explain the difference between a

synchronous protocol and an asynchronous

protocol.

13

Review

14

 Introduction to Distributed Objects

 Remote Method Invocation (RMI) Architecture

 RMI Programming and a Sample Example:
 Server-Side RMI programming

 Client-Side RMI programming

 Advanced RMI Concepts
 Security Policies

 Exceptions

 Dynamic Loading

 A more advanced RMI application
 Math Server

 RPC and Summary

Outline

15

Sockets

 A socket is defined as an endpoint for communication.

 Concatenation of IP address and port

 The socket 161.25.19.8:1625 refers to port 1625 on host

161.25.19.8

 Communication consists between a pair of sockets.

 Considered a low-level form of communication between

distributed processes.

 Sockets allow only an unstructured stream of bytes to be

exchanged. It is the responsibility of the client or server

application to impose a structure on the data.

16

Socket Communication

17

Introduction

 We cover high-level programming models for distributed

systems. Two widely used models are:

 Remote Procedure Call (RPC) - an extension of the conventional

procedure call model

 Remote Method Invocation (RMI) - an extension of the object-oriented

programming model.

Applications

Middleware
layersUnderlying interprocess communication primitives:

Sockets, message passing, multicast support, overlay networks

TCP and UDP

Remote invocation, indirect communication

18

Request-Reply Protocol

 Exchange protocol for the implementation of remote invocation

in a distributed system.

 We discuss the protocol based on three abstract operations:

doOperation, getRequest and sendReply

Request

ServerClient

doOperation

(wait)

(continuation)

Reply

message

getRequest

execute

method

message

select object

sendReply

19

Request-Reply Operations

 public byte[] doOperation (RemoteRef s, int operationId, byte[]

arguments)

 Sends a request message to the remote server and returns the reply

 The arguments specify the remote server, the operation to be invoked

and the arguments of that operation

 public byte[] getRequest ()

 Acquires a client request via the server port

 public void sendReply (byte[] reply, InetAddress clientHost, int

clientPort)

 Sends the reply message reply to the client at its Internet address and

port

20

Remote Invocation Issues

 Local invocations

 Executed exactly once

 Remote invocations

 via Request-Reply

 may suffer from communication failures

 retransmission of request/reply

 message duplication, duplication filtering

 no unique semantics..

21

Invocation Semantics

22

Invocation Semantics

 Middleware that implements remote invocation generally provides a certain

level of semantics:

 Maybe: The remote procedure call may be executed once or not at all. Unless the

caller receives a result, it is unknown as to whether the remote procedure was

called.

 At-least-once: Either the remote procedure was executed at least once, and the

caller received a response, or the caller received an exception to indicate the

remote procedure was not executed at all.

 At-most-once: The remote procedure call was either executed exactly once, in

which case the caller received a response, or it was not executed at all and the

caller receives an exception.

 Java RMI (Remote Method Invocation) supports at-most-once invocation.
 It is supported in various editions including J2EE.

 Sun RPC (Remote Procedure Call) supports at-least-once semantics.
 Popularly used in Unix/C programming environments

23

Objects

 Object = data + methods

 – logical and physical encapsulation

 – accessed by means of references

 – first class citizens, can be passed as arguments

 Interaction via interfaces

 – define types of arguments and exceptions of

methods

24

The Object Model

 Programs are (logically and physically) partitioned

into objects

 distributing objects natural and easy

 Interfaces

 the only means to access data

 make them remote

 Actions – via method invocation

 interaction, chains of invocations

 may lead to exceptions -> part of interface

 Garbage collection

 reduces programming effort, error-free (Java, not C++)

25

Distributed Objects

 A programming model based on Object-Oriented principles for
distributed programming.

 Enables reuse of well-known programming abstractions
(Objects, Interfaces, methods…), familiar languages (Java,
C++, C#...), and design principles and tools (design patterns,
UML…)

 Each process contains a collection of objects, some of which
can receive both remote and local invocations:
 Method invocations between objects in different processes are known as

remote method invocation, regardless the processes run in the same
or different machines.

 Distributed objects may adopt a client-server architecture, but
other architectural models can be applied as well.

26

 Introduction to Distributed Objects

 Remote Method Invocation (RMI) Architecture

 RMI Programming and a Sample Example:
 Server-Side RMI programming

 Client-Side RMI programming

 Advanced RMI Concepts
 Security Policies

 Exceptions

 Dynamic Loading

 A more advanced RMI application
 Math Server

 RPC and Summary

Outline

27

Java RMI

 Java Remote Method Invocation (Java RMI) is an
extension of the Java object model to support distributed
objects
 methods of remote Java objects can be invoked from other Java

virtual machines, possibly on different hosts

 Single-language system with a proprietary transport
protocol (JRMP, java remote method protocol)
 Also supports IIOP (Internet Inter-Orb Protocol) from CORBA

 RMI uses object serialization to marshal and unmarshal
 Any serializable object can be used as parameter or method

return

 Releases of Java RMI
 Java RMI is available for Java Standard Edition (JSE), Java

Micro Edition (JME), and Java Enterprise Edition (Java EE)

28

RMI Architecture and Components

object A object Bskeleton
Requestproxy for B

Reply

CommunicationRemote Remote referenceCommunication

modulemodulereference module
module

for B’s class

& dispatcher

remote
client server

servant

 Remote reference module (at client & server) is responsible for providing

addressing to the proxy (stub) object

 Proxy is used to implement a stub and provide transparency to the client. It

is invoked directly by the client (as if the proxy itself was the remote object),

and then marshal the invocation into a request

 Communication module is responsible for networking

 Dispatcher selects the proper skeleton and forward message to it

 Skeleton un-marshals the request and calls the remote object

29

Invocation Lifecycle

Client

Client Code

Stub

Network

Server

RMI Object

Skeleton

1 8 54

2 37 6

Invoke

method via

stub

Serializes

arguments,

transmit

Calls actual

method

with args

Receives,

deserialises

arguments

Returns

response /

exception

Serialises

response,

transmit

Returns

response

Receives,

deserialises

response

30

Outline

 Introduction to Distributed Objects

 Remote Method Invocation (RMI) Architecture

 RMI Programming and a Sample Example:
 Server-Side RMI programming

 Client-Side RMI programming

 Advanced RMI Concepts
 Security Policies

 Exceptions

 Dynamic Loading

 A more advanced RMI application
 Math Server

 RPC and Summary

31

Case Study with RMI: iBrownout

32

• The prototype system can be installed on existing Docker Swarm cluster

without modifying the configurations.

• System achieves transparency via the interactions with the public APIs of

Docker Swarm.

• System components are deployed on both swarm master and worker

nodes.

M. Xu and et al., iBrownout: An Integrated Approach for Managing Energy and Brownout in Container-based

Clouds”, IEEE Transactions on Sustainable Computing, 2019

Steps for implementing an RMI application

 Design and implement the components of your
distributed application
 Remote interface

 Servant program

 Server program

 Client program

 Compile source code and generate stubs
 Client proxy stub

 Server dispatcher and skeleton

 Make classes network accessible
 Distribute the application on server side

 Start the application

33

RMI Programming and Examples

 Application Design

 Remote Interface
 Exposes the set of methods and properties available

 Defines the contract between the client and the server

 Constitutes the root for both stub and skeleton

 Servant component
 Represents the remote object (skeleton)

 Implements the remote interface

 Server component
 Main driver that makes available the servant

 It usually registers with the naming service

 Client component

34

Java RMI

Client

RemotObj

proxy
<implements

RemoteInterface>

Client

RMI Registry

Server

RemoteObj
<implements

RemoteInterface>

Server

RemoteObj

Dispatcher/

Skeleton

<“myRO”, Remote Ref. to RemoteObj>

1. new RemoteObj()

2. bind(“myRO”, RemoteObj)

3. lookup(“myRO”)

4. Return RemoteObj proxy

5. method1()

6. method1()

<Request over the network> 7. method1()

8. return value

9. Return value

<Reply over the network>

10. Return

value

35

Example application – Hello World

 Server side

 Create a HelloWorld interface

 Implement HelloWorld interface with methods

 Create a main method to register the HelloWorld
service in the RMI Name Registry

 Generate Stubs and Start RMI registry

 Start Server

 Client side

 Write a simple Client with main to lookup
HelloWorld Service and invoke the methods

36

1. Define Interface of remote method

//file: HelloWorld.java

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface HelloWorld extends Remote {

public String sayHello(String who) throws RemoteException;

}

37

2. Define RMI Server Program

// file: HelloWorldServer.java

import java.rmi.Naming;

import java.rmi.Remote;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

public class HelloWorldServer extends UnicastRemoteObject implements HelloWorld {

public HelloWorldServer() throws RemoteException {

super();

}

public String sayHello(String who) throws RemoteException {

return "Hello "+who+" from your friend RMI 433-652 :-)";

}

public static void main(String[] args) {

String hostName = "localhost";

String serviceName = "HelloWorldService";

if(args.length == 2){

hostName = args[0];

serviceName = args[1];

}

try{

HelloWorld hello = new HelloWorldServer();

Naming.rebind("rmi://"+hostName+"/"+serviceName, hello);

System.out.println("HelloWorld RMI Server is running...");

}catch(Exception e){

e.printStackTrace();

}

}

} 38

3. Define Client Program

// file: RMIClient.java

import java.rmi.Naming;

public class RMIClient {

public static void main(String[] args) {

String hostName = "localhost";

String serviceName = "HelloWorldService";

String who = “minxian";

if(args.length == 3){

hostName = args[0];

serviceName = args[1];

who = args[2];

}

else if(args.length == 1){

who = args[0];

}

try{

HelloWorld hello = (HelloWorld)Naming.lookup("rmi://"+hostName+"/"+serviceName);

System.out.println(hello.sayHello(who));

}catch(Exception e){

e.printStackTrace();

}

}

}

39

Define Access Policy

 Example: File HelloPolicy to contain

grant { permission java.security.AllPermission "", ""; };

40

Java RMI Example

 Running the Server and Client

 Compile Client and Server classes

 Develop a security policy file (e.g., HelloPolicy)

 grant { permission java.security.AllPermission "", ""; };

 Start RMI registry

 rmiregistry &

 Start server

 java -Djava.security.policy=HelloPolicy HelloWorldServer

 Run a client program

 java -Djava.security.policy=HelloPolicy RMIClient

 java -Djava.security.policy=HelloPolicy RMIClient Pascal

41

Outline

 Introduction to Distributed Objects

 Remote Method Invocation (RMI) Architecture

 RMI Programming and a Sample Example:
 Server-Side RMI programming

 Client-Side RMI programming

 Advanced RMI Concepts
 Security Policies

 Exceptions

 Dynamic Loading

 A more advanced RMI application
 Math Server

 RPC and Summary

42

Security Manager

 Java’s security framework

 java.security.-

 Permissions, Principle, Domain etc.

 Security manager, for access control (file, socket, class load,

remote code etc)

 $JAVA_HOME/jre/lib/security/java.policy

 Use security manager in RMI

 RMI recommends to install a security manager, or RMI may not

work properly while encountering security constraints.

 A security manager ensures that the operations performed by

downloaded code go through a set of security checks.

 Eg. Connect and accept ports for RMI socket and allowing code

downloading

43

Security Manager (cont.)

 Two ways to declare security manager

 Use System property java.security.manager
java –Djava.security.manager HelloWorldImpl

 Explicit declare in the source code
public static void main(String[]args){

//check current security manager

if(System.getSecurityManager()==null){

System.setSecurityManager(new SecurityManager ());

}

…

//lookup remote object and invoke methods.

}

 Use customized policy file instead of java.policy

 Usage
java -Djava.security.manager -Djava.security.policy=local.policy HelloWorldImpl

44

/C//Documents and Settings/java/eclipse/workspaces/RMITutorial/local.policy

File: “local.policy” contents

Specific permissions:

grant {

permission java.net.SocketPermission "*:1024-65535","connect,accept";

permission java.io.FilePermission "/home/globus/RMITutorial/-", "read";

};

Grant all permissions:

grant {

permission java.security.AllPermission;

};

45

Exceptions

 The only exception that could be thrown out is
RemoteException

 All RMI remote methods have to throw this exception

 The embedded exceptions could be:
 java.net.UnknownHostException or

java.net.ConnectException: if the client can’t connect to the
server using the given hostname. Server may not be
running at the moment

 java.rmi.UnmarshalException: if some classes not found.
This may because the codebase has not been properly set

 Java.security.AccessControlException: if the security policy
file java.policy has not been properly configured

46

Passing objects

 Restrictions on exchanging objects
 Implementing java.io.serializable

 All the fields in a serializable object must be also
serializable

 Primitives are serializable

 System related features (e.g. Thread, File) are non-
serializable

 How about the socket programming issues?
 Where are sockets and corresponding input, output

streams?

 How to handle object passing?

 Who does all the magic?

47

Differences between RMI and Socket

RMI Socket

Remote Method Invocation is basically an API which allows an

object to invoke a method on an object running in a different

machine’s JVM.

Sockets are nothing but two-sided communication

links between two programs (client and server) in a

network.

RMI is remote method invocation which means methods are

invoked remotely or accessing remote sites in client-server

communication.

Sockets are like gateways which provide access

points for programs through some specific port

numbers.

RMI is built on top of sockets. without sockets, RMI wouldn’t

exist.

In this, we have to manage which sockets and

protocols the application will use. Even though we

can format messages travelling between client and

server-side.

RMI is object-oriented Whereas it is not.

RMI handles the formatting of messages between client and

server.

Here we specify TCP or UDP type, we have to

handle all the formatting of messages travelling

between client and server.

RMI is a Java-specific technology.
Socket-based Communication is independent of

programming languages.

RMI is for high-level java to java distributed computing. Sockets are for low-level network communication.

48

RMI Dynamic Class Loading

 Ability to download bytecode (classes) from
Remote JVM

 New types can be introduced into a remote
virtual machine without informing the client

 Extend the behavior of an application dynamically

 Removes the need to deploy stubs manually

 Explicit set property to support dynamic class
load

 Specify system property java.rmi.server.codebase
to tell the program where to download classes

49

Outline

 Introduction to Distributed Objects

 Remote Method Invocation (RMI) Architecture

 RMI Programming and a Sample Example:
 Server-Side RMI programming

 Client-Side RMI programming

 Advanced RMI Concepts
 Security Policies

 Exceptions

 Dynamic Loading

 A more advanced RMI application
 Math Server

 RPC and Summary

50

A Simple Math Server in RMI

MathServer

(multiple operations)

User
Math Service

51

Java RMI Example

 Specify the Remote Interface

public interface IRemoteMath extends Remote {

double add(double i, double j) throws RemoteException;

double subtract(double i, double j) throws RemoteException;

}

52

Java RMI Example

 Implement the Servant Class

public class RemoteMathServant extends UnicastRemoteObject implements IRemoteMath {

public double add (double i, double j) throws RemoteException {

return (i+j);

}

public double subtract (double i, double j) throws RemoteException {

return (i-j);

}

}

53

Java RMI Example

 Implement the server

public class MathServer {

public static void main(String args[]){

System.setSecurityManager(new RMISecurityManager());

try{

IRemoteMath remoteMath = new RemoteMathServant();

Registry registry = LocateRegistry.getRegistry();

registry.bind("Compute", remoteMath);

System.out.println("Math server ready");

}catch(Exception e) {

e.printStackTrace();

}

}

}

54

Java RMI Example

 Implement the client program

public class MathClient {

public static void main(String[] args) {

try {

if(System.getSecurityManager() == null)

System.setSecurityManager(new RMISecurityManager());

LocateRegistry.getRegistry("localhost");

IRemoteMath remoteMath = (IRemoteMath) registry.lookup("Compute");

System.out.println("1.7 + 2.8 = ” + math.add(1.7, 2.8));

System.out.println("6.7 - 2.3 = ” + math.subtract(6.7, 2.3));

}

catch(Exception e) {

System.out.println(e);

}

}

}

55

Java RMI Example

 Running the Server and Client

 Compile Client and Server classes

 Develop a security policy file

 grant { permission java.security.AllPermission "", ""; };

 Start RMI registry

 rmiregistry &

 Start server

 java -Djava.security.policy=policyfile MathServer

 Start client

 java -Djava.security.policy=policyfile MathClient

56

Outline

 Introduction to Distributed Objects

 Remote Method Invocation (RMI) Architecture

 RMI Programming and a Sample Example:
 Server-Side RMI programming

 Client-Side RMI programming

 Advanced RMI Concepts
 Security Policies

 Exceptions

 Dynamic Loading

 A more advanced RMI application
 Math Server

 RPC and Summary

57

Remote Procedure Call (RPC) – used

in C

 RPCs enable clients to execute procedures in

server processes based on a defined service

interface.

client

Request

Reply

CommunicationCommunication

modulemodule dispatcher

service

client stub server stub
procedure procedure

client process server process

procedureprogram

58

Remote Procedure Call (RPC)

 Communication Module

 Implements the desired design choices in terms of retransmission of requests,

dealing with duplicates and retransmission of results

 Client Stub Procedure

 Behaves like a local procedure to the client. Marshals the procedure identifiers

and arguments which is handed to the communication module

 Unmarshalls the results in the reply

 Dispatcher

 Selects the server stub based on the procedure identifier and forwards the

request to the server stub

 Server stub procedure

 Unmarshalls the arguments in the request message and forwards it to the service

procedure

 Marshalls the arguments in the result message and returns it to the client

59

Summary: RMI Programming

 RMI greatly simplifies creation of distributed
applications (e.g., compare RMI code with socket-
based apps)

 Server Side
 Define interface that extend java.rmi.Remote

 Servant class both implements the interface and extends
java.rmi.server.UnicastRemoteObject

 Register the remote object into RMI registry

 Ensure both rmiregistry and the server is running

 Client Side
 No restriction on client implementation, both thin and rich

client can be used. (Console, Swing, or Web client such as
servlet and JSP)

60

Binding and Activation

 Binder

 mapping from textual names to remote references

 used by clients as a look-up service (cf Java RMIregistry)

 Activation
 objects active (available for running) and passive

(= implementation of methods + marshalled state

 activation = create new instance of class + initialise from stored state

 Activator

 records location of passive objects

 starts server processes and activates objects within them

61

Classes Supporting Java RMI

62

The Methods of the Naming Class

 void rebind (String name, Remote obj)
 This method is used by a server to register the identifier of a remote object

by name

 void bind (String name, Remote obj)
 This method can alternatively be used by a server to register a remote

object by name, but if the name is already bound to a remote object

reference an exception is thrown.

 void unbind (String name, Remote obj)
 This method removes a binding.

 Remote lookup (String name)
 This method is used by clients to look up a remote object by name. A

remote object reference is returned.

 String [] list()
 This method returns an array of Strings containing the names bound in the

registry.

63

