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A B S T R A C T

Edge-Cloud Datacenters (ECDCs) have been massively exploited by the owners of technology and industrial
centers to satisfy the user demand. At the same time, the amount of energy used by these data centers is
considerable. To address this challenge, Virtual Machine (VM) placement of the ECDCs plays an important role;
therefore, assigning VM properly to physical machines (PM) can significantly decrease the amount of energy
consumption. The applied assigning technique simultaneously must consider additional objectives involving
traffic and power usage of the network elements, which makes it a challenging problem. This paper proposes a
multi-objective VM placement approach in edge-cloud data centers, which uses Seagull optimization to optimize
power and network traffic together. In this strategy, the network traffic among PMs is reduced by concentrating
the communications of VMs on the same PMs to reduce the amount of transferred data through the network and
reduce the PMs’ power consumption by consolidating VMs to fewer PMs, which consumes less energy. We
evaluate with simulations in CloudSim and test two different network topologies, VL2 (Virtual Layer 2) and three-
tier, to validate that the proposed approach can effectively reduce traffic and power consumption in ECDCs. The
experimental results show that our proposed method can decrease energy consumption by 5.5% while simulta-
neously reducing network traffic by 70% and the power consumption of the network components by 80%.
1. Introduction

Nowadays, services of Cloud computing have become prevalent and
adapted widely across various industries and fulfill numerous Internet
services [1]. Edge-computing technology [2] seems to be an appealing
alternative, particularly for hosting compute workloads as near as possible
to the data sources and end-users [3,4]. As indicated in Fig. 1, the edge can
be considered as the improved version of cloud computing. These im-
provements in comparison with cloud computing are as follows [3].

– Relieving pressure of backbone network. Since the nodes of edge
computing are able to conduct huge computations without main data
center assistance, The transferred data on the backbone network re-
duces dramatically.

– Improved quality of service (QoS). As the amount of transferred data is
less than cloud computing. Therefore, the QoS would be more effi-
cient, and the service time is increased.
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– Collaborative assistance. Robust cloud backup can give a high level of
processing power and large storage when the edge is unable to afford it.

In 2017, data centers used 416.2 billion kilowatt-hours of power, or
about 2% of the world's total electricity usage [5]. As a result of the rapid
increase in thedatacenters power consumptionwithout losing thequalityof
service of the data centers became a hot research topic [6,7]. The same
essential technology behind cloud computing and edge computing concept
is based on resource virtualization, which abstracts hardware resources
from software to support numerous task on the same PMs [8,9]. Edge
computing, on the other hand, differs significantly from cloud computing in
anumberof key respects, includingmobility-assisted services' knowledge of
their physical location, devices' being resource-constrainedanddiverse, and
the devices' being widely dispersed [10,11]. Heavyweight virtualization
(directly running a virtualmachine (VM)monitormaynot be suitable for all
use cases due to these differences [12,13]. Examples of Internet of Things
(IoT) applications that might benefit from edge computing [14]. This re-
striction necessitates the use of lightweight virtualization [15].
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Fig. 1. Paradigm of Edge-Cloud Computing.
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Two major sources of energy consumption come from the servers and
network communications, which can be directed influenced by location
of placed VMs on the hosts [16]. In this work, we proposed an algorithm
to optimize the placement of VMs to reduce the energy consumption and
network traffics. We modeled the scheduling problem as a
multi-objective optimization problem and use seagull based approach to
solve it. The results have validated that our proposed approach can
outperform the baselines in energy consumption and network traffics
significantly under different network topologies.

The rest of the article is as follows. Section 2 overviews and compares
the related work in network-aware and energy-aware VM placement.
Section 3 presents the Seagull optimization based algorithm for VM
placement reduce network traffics and energy consumption. In sections 4
and 5, the VM placement method and evaluation of proposed scheme are
described respectively. Section 6 concludes the paper and highlights the
future directions.

2. Related works

In this section, we present a summary of the previous investigations in
the context of VM placement in Edge cloud data centers. The virtual
machine placement in cloud data centers is considered to be NP-Hard
[17], so numerous approaches and methods have been investigated to
address this problem. These plans in this section are categorized based on
their aim as follow.

2.1. Network-aware virtual machine placement

Darrous et al. [18] developed a VM management system capable of
reducing the time required to assign VMs over a heterogeneous network.
The proposed method follows two complementary strategies to achieve
this goal. Firstly, it enjoys the deduplication of similar data to reduce
communication traffic. Secondly, the strategy forwards data communi-
cation to the links with high bandwidth, which minimizes the provi-
sioning time. The suggested method compared with existing methods,
namely Interplanetary File System (IPFS), BitTorrent, and OpenStack
Swift, and the results indicate that the performance of their approach is
considerably better than the overmentioned methods. Abdel-Basset et al.
[19] developed a virtual machine placement issue defined as a bin
packing problem with the goal of reducing traffic communication.
Moreover, they developed a Whale optimization algorithm (WOA) using
the L�evy flight technique in Cloudsim simulator [20]. The proposed
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approach is compared with the first fit, Particle Swarm Optimization
(PSO), best fit, intelligent tuned harmony search, genetic algorithm, and
using 25 random datasets. Results demonstrate that in large-scale prob-
lems, the proposed method performs more efficiently. However, this line
of research only focuses on the optimization of network communications.

2.2. Power-aware virtual machine placement

Abohamama et al. [21] developed a hybrid Virtual Machine Placement
(VMP) method based on evolutionary algorithms and optimized resource
utilization by using a best-fit allocation technique; moreover, they lowered
data center energy usage by reducing the number of enabled servers.
Additionally, this research demonstrates that the suggested VMP algorithm
achieves a balanced use of active servers’ available resources.
Ghobaei-Arani et al. [22] presented a method considering electrical con-
sumption also Service Level Agreement Violation (SLAV). This approach
enjoys the Bidirectional Forwarding Detection (BFD) algorithm, which ap-
plies automata correlation, theory, prediction algorithms, coefficient and
predicts the incoming load VMs of the next future to assign VMs to PMs
effectively to reduce service level agreement violation (SLAV) and energy
consumption. Alharbi et al. [23] proposed a dynamic VM placement in
cloud data centers over a period of time, using a constrained combinatorial
optimization model. In this model, they developed the Ant Colony Opti-
mization algorithm and used the information of PMs and VMs characteris-
tics tominimize the energy consumption of PMs. Comparedwith two other
Ant Colony System (ACS) approaches and the First Fit Decreasing (FFD)
algorithm, their model functions more efficiently in small, medium, and
large test scales. Shaw et al. [24] presented a novel strategy known as pre-
dictive anti-correlated VM placement algorithm (PACPA) that can improve
power efficiency and enhance the capability to reach considerable im-
provements in the quality of the provided services. They also comparedML
methodologies, and after comparison their accuracy, and based on their
performance, Artificial Neural Networks (ANN) methodology is chosen to
predict the demanding resources, including CPU and RAM; consequently, it
improves scheduling time ofmigrations and overall placement strategy and
aims to consolidate VMs to the same PM. However, this category of work
does not consider the energy consumption due to varied traffics.

2.3. Multi-objective virtual machine placement

To reduce the load on the data center's physical equipment and network
infrastructure, earlier we proposed [25] an adaptation of the Artificial Bee



Table 2
Variable description.
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Colony (ABC) algorithm that takes into account the interactions between
virtual machines. The suggested strategy for VM placement is evaluated by
simulating the VL2 (Virtual Layer 2) and three-tier network architecture in
the CloudSim toolkit and demonstrating the resulting decrease in network
traffic and power consumption by the Edge-Cloud Datacenter (ECDC).
Adyson et al. [26] explored the multi-objective optimization problem of
deploying IoT applications and balancing the load on an edge computing
system. The suggested genetic algorithm takes inspiration from the NSGAII
andBRKGA1 in order to provide solutions that are both realistic and close to
the Pareto optimal solution. They want to improve the model so that it can
take into account application migration, user mobility, and other dynamic
changes at the network level, and the formulation is intended to consider a
wide range of application aspects such as the response time demand for
time-critical applications.

2.4. Critical analysis

Table 1 shows the summary of related works. Our approach advances
the relevant area by considering the traffic and energy together and
utilizes seagull optimization algorithm (SOA) to find the optimized de-
cisions for VM placement. SOA gives better performance compared to
other popular meta-heuristic optimization approaches because SOA is
very effective in solving large-scale constrained problems such as
resource scheduling in Cloud/Edge Computing [27]. Further, SOA has
less computational complexity and it achieves global minima very
quickly because of its better exploration and exploitation ability [28].
Fig. 2. Migration and attack

Table 1
Comparison of related works.

Study Traffic Energy MOA Algorithm Type EE

[19] ✓ WOA Cloudsim
[5] ✓ PABF algorithm Cloudsim
[6] ✓ Ant Colony System

(ACS)
Cloudsim

[24] ✓ PACPA Cloudsim
[25] ✓ ABC algorithm Cloudsim
Proposed (this
work)

✓ ✓ ✓ Seagull optimization
algorithm

CloudSim

Abbreviations- MOA: Multi-objective Optimization Approach, EE: Experimental
Environment.

1 NSGA-II is Nondominated Sorting Genetic Algorithm II and BRKGA is Biased
Random Key Genetic Algorithm.
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3. Seagull VM placement optimization algorithm

Seagulls, also scientifically known as Laridae, are spread worldwide.
There are several seagull species, each with its own distinct qualities
[29]. Seagulls, being sociable birds, naturally take a strategic approach to
finding and attacking their haunt. The seagulls' migratory and assault
strategy is the most fascinating aspect of their activity (Fig. 2). Seasonal
migration is defined as an organism's movement from one habitat to
another in quest of the best available food supply.

– At the beginning of their migration journey, seagulls obtain different
positions to avoid collisions.

– During the Migration journey, seagulls move toward the route of the
fittest seagull.

The list of variables used in this research work is described in Table 2.
The following mathematical models of migration and hunting are dis-
cussed as follows: during the migration procedure, the algorithm imitates
the behavior of the seagull's relocation. In this step, three conditions
should be considered: Avoiding collisions: To avoid collisions (Fig. 3),
parameter A is defined to justify the new position of the seagull.
models of the seagull.

Variable Definition

α Applied Coefficient for F1
β Applied Coefficient for F2
π Applied Coefficient for F3
Pi Power usage of ith PM
n Size of PMs
Costij The cost of data transmission between PMi and PMj

Psi energy consumption of i-th switch
Bsi binary decision element
lj energy expenditure of i-th link
Blj binary decision element

If Blj ¼ 0, link is inactive
If Blj ¼ 1, link is active

ns Size of switches
nl Size of links
F The cost function for each Seagull



Fig. 3. Avoiding collision among seagulls.
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Cs
�! ¼ A� ps!ðxÞ; (1)
where Cs
!

shows the next search agent position without collision with
other seagulls. ps

!ðxÞ is the recent position of the search agent. In this
expression, x represents the current index of the iteration, and A repre-
sents the search agent's mobility pattern within the search region, which
is defined as:

A ¼ fC � ðx� ðfC=Maxiteration Þ Þ
x ¼ 0; 1; 2;…;Maxiteration ;

(2)

where fC is an element which justifies the frequency of applied
element A, which gradually decreased fC to 0.

Moving Toward best neighbor's path: In order to find the healthiest
neighbor, search agents must first avoid collisions:

Ms
�! ¼ B� ð pbs�!ðxÞ � ps!ðxÞÞ; (3)

where Ms
�!

is the contemporary position of search agent ps!, which
moves toward the fittest search agent. B is a random element that keeps
the equilibrium of exploitation and exploration. B is computed as follow:

B ¼ 2� A2 � rd; (4)

where rd is a random element in the range of [0, 1]. Eventually, as
shown in Fig. 4, the search agent is able to revise its assessment of its own
relative ranking among the best search agents.

Ds
�! ¼

��� Cs
�!þ Ms

�!��� (5)
Fig. 4. Required VM-to-VM data transfer.
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where Ds
�!

indicates that region between the best-fitting search agent and
the other agents.

3.1. Attack (Exploitation)

In the exploitation phase, the background and experience of the
search agents are exploited. Seagulls are able to alter the angle of attack
and speed constantly. They preserve their altitude by employing their
wings and weight. As indicated in Fig. 2, seagulls attack the prey through
a spiral movement in the air. The three dimensions of this behavior are
calculated by applying the following equations:

x
0 ¼ r � cosðkÞ;
y
0 ¼ r � cosðkÞ;
z
0 ¼ r � cosðkÞ;
r ¼ u� ekv;

(6)

in which r equals the radius of spiral turn, k is a random element lay in
[0 < k < 2π], u and v are consonant elements to characterize the spiral
form, also e is the natural base logarithm. The following equation com-
putes the search agent's updated location:

Ps
!ðxÞ ¼

�
Ds
�!� x

0 � y
0 � z

0
�
þ Pbs

�!ðxÞ: (7)

In this equation, Ps
!ðxÞ retains the best available option and keeps

track of where other search bots currently stand.

4. Proposed VM placement method

Here, we devised a multi-objective VM placement approach with the
goals of reducing the number of active PMs, connections, and switches to
cut network traffic and power consumption. On the other hand, it tries to
aggregate interacting VMs on the same PMs aim to reduce the amount of
transferred data. Also, resources limitations such as CPU, storage, and the
RAM of the PMs are considered in this plan. To achieve mentioned ob-
jectives, the cost function should contain three components, PM and
network elements power consumption, network traffic data as proposed
in Equation (8):

F ¼ αF1 þ βF2 þ πF3: (8)

In this equation, alpha (α), beta (β) and gamma (π) are coefficients
that are used to keep the equilibrium among objectives. Also, F1 equals
the amount of power consumption of PMs. F2 is the value of Network
elements power consumption, and F3 stands for the network traffic of the
data center.

4.1. Power consumption

To determine the overall energy consumption of the physical ma-
chine, our VM Placement strategy uses Equation (9):

F1 ¼
Xn

i¼1

pi: (9)

In Equation (9), F1 specified the sum of energy usage of the PMs, pi
equals the electricity usage of the ith physical machine, n equals the
number of available physical machines in the datacenter. In Ref. [30],
Gao et al. proposed an equation to calculate the amount of power con-
sumption of PMs. Here, we see that the PMs’ electric energy consumption
and CPU use are directly proportional to one another. Power consump-
tion is represented by Equation (10):

Pi ¼
(�

Pmax
i � Pidle

i

�� Uc
i þ Pidle

i Ui
c > 0

0 otherwise
: (10)

In this calculation, Pmax
i denotes the highest possible power usage of



Fig. 6. Data communication map between all of the PMs.

S. Nabavi et al. Internet of Things and Cyber-Physical Systems 3 (2023) 28–36
the ith physical machine when it is fully used, Pidle
i denotes the ith physical

machine's idle power usage, and Uc
i is the ith physical machine's CPU

usage. Notably, the CPU frequency in sleep mode is around half that of
the highest possible power usage. However, by hosting certain VMs on a
physical computer, the physical system's CPU rate is increased in
response to the VMs' CPU requirements. Equation (11) is used to deter-
mine the usage of each physical machine:

Uc
i ¼

Pm
j¼0ðXj � RjÞ

Ai
: (11)

In this equation, m denotes the count of virtual machines installed on
the PMi, Ai denotes the exist CPU on the PMi, Rjis the CPU requested by
the VMj, and Xj denotes a binary value generated [1] using Equation (12):

Xj ¼
�
1 if VMj is assigned to the PMi
0 if VMj is not assigned to the PMi

: (12)

4.2. Network data transmission

Due to the fact that virtual machines may perform interactive pro-
grams such as workflows, they constantly need to communicate with one
another. As seen in Fig. 4, an upper triangular matrix is used to specify
the quantity of data sent between VMs. Dij denotes the quantity of data
that should be exchanged among the VMi and VMj in this matrix. The sum
of all the entries in the matrix in Fig. 5 reflects the total quantity of data
that must be transmitted across all VMs. Additionally, another higher
triangular matrix is constructed in this system to represent the connec-
tion capacity between distinct physical machines. Data transfer across
VMs is restricted by the available bandwidth among physical machines,
dictated by the network architecture and switches utilized.

The available bandwidth between the physical equipment is shown in
Fig. 5. In Fig. 5: Cit is the connection capacity between the ith physical
machine (PMi) and the jth physical machine (PMj) in megabits per sec-
ond, as shown in this matrix. After virtual machines are installed on PMs,
PMs interchange data among each other. Fig. 6 shows that the amount of
information that must be sent between the PMs and the VMs is repre-
sented by the matrix X. This matrix clearly demonstrates that Xij repre-
sents the quantity of data that will be exchanged among the ith physical
machine (PMi) and the jth physical machine (PMj), expressed in megabits
per second. Equation (13) is applied to compute the overall network cost
when a solution for VM placement has been found:

F2 ¼
Xn�1

i¼0

Xn�1

j¼iþ1

Costij; (13)

where F2 is the total network traffic cost, and n is the number of
physical computers in the data center, Costij denotes the cost of data
transmission among thePMi and the PMj, which may be calculated using
the following equation:
Fig. 5. N/w Connectivity among PMs.
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Cost ¼
>< Xij

Cij
i 6¼ j

: (14)
ij

8
>: 0 i ¼ j

To recap, Xij equals the quantity of data transferred between the PMi
and PMj, and Cij is their network connection capacity (as previously
stated).

4.3. Consumption of network power

The suggested VM placement scheme's third purpose is to save energy
by reducing the power consumption of network components. The overall
power usage of the network switches or F3 is computed using Equation
(15) in this VM placement strategy:

F3 ¼
Xns
i

Psi � Bsi þ
Xnl
j

plj � Blj; (15)

where ns denotes the number of switches in this equation. Psi is the
energy usage of the ith switch in the network, whereas Bsi is a binary
number indicating whether the ith switch is on or off. Additionally, nl is
the sum of number of links in the switches, while plj is a binary value
indicating whether or not the jth link is active. Thus, plj is 1 while the jth
switch is active; otherwise, it is zero. Due to additional power is provided
to each enabled switch connection, the second portion of this equation
verifies the topology of all activated links.

4.4. Proposed VM placement algorithm

In this scheme, we define a determined number of agents to find an
optimum solution. In Fig. 7, a sample solution for the problem, repre-
senting which VM is assigned to the PM. For instance, in this sample
solution, VM (1) and VM (3) are assigned to PM (a) to PM(c),
respectively.

To address VM placement problem, we employed a discrete version of
seagull algorithm which is proposed by Dhiman et al. [31]. Algorithm 1
shows the pseudocode of multi-objective Seagull optimization algorithm
in VMP. In this version of seagull algorithm, first we initialize the posi-
tion of the agents randomly and the feasibility of each solutions because
of the resource constraints, if the proposed solution exceeds the resource
limitation, it will be replaced with a possible one, also the corresponding
objective of each agent is calculated. In the next step to imitate the attack
and migration behavior of seagulls, we employed the crossover and
mutation strategies which is proposed in NSGA-II algorithm.
Fig. 7. A sample solution to VMP.
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Algorithm 1
Multi-objective Seagull algorithm in VMP Pseudocode.

Input: Initializing the agent Population
Output: Best-found solution by the algorithm
1: Initialize the agents
2: Compute cost function of each agent
3: while y < max iteration do
4: for each search agent do
5: Apply mutation and crossover on the solutions as migration and seagull

behavior
6: end for
7: Compute the costs involved with using all search agents.
8: Find the most effective solutions by employing the most recent search agents.
9: Hold fast to the most effective solution.
10: end while
11: return Best-found solution by the algorithm

In this step, the outcome solution is checked with the aim of resource
constraints and the cost of each solution is calculated using Equation (8).
In each iteration the cost of each agent is compared with the best ever
found solution and if a solution with lower cost value recognized, the best
solution will be replaced by the new efficient one. Consequently, the best
solution of the all iterations is returned as the optimum solution.

5. Performance evaluation

To investigate the developed virtual machine placement method,
comprehensive simulations are performed using Matlab. In this simula-
tion, all aspects of the Edge data centers, including network architecture,
available and consumed resources, are considered to simulate the real
edge computing environment. To test our plan, we compared our
approach with VM allocation policy simple and CPU greedy, which are
adapted from Cloudsim simulator [20]. Our strategy considers the power
usage of network switches while making placement selections. To
consider this element, the network topology should be specified. As it can
be seen in Fig. 8, in our scenario, the data centers are assumed to employ
Three-Tier and VL2 topologies, and the electricity consumption of the
switches is calculated in both cases. Table 3 illustrates the number of
components in each network topology in our simulation.
Fig. 8. VL2 server power consumption.

Table 3
Network elements.

Topology VL2 Three-Tier

PM 16 16
Switch(1 Gigabit) 4 6
Switch(10 Gigabit) 8 12
Link (1 Gigabit) 16 16
Link (10 Gigabit) 16 32
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The following scenarios evaluate the energy consumption of network
components.

– A single gigabit switch consumes 30 Watts.
– A ten gigabit switch consumes 200 Watts.
– A single gigabit link consumes 0.4 Watts.
– A ten gigabit link consumes 6 Watts.

This section offers simulation results for the data center's network
using VL2 and three-tiered topologies. Our suggested VM placement
approach is compared to both the Greedy VM placement algorithms and
VM Allocation Policy in these simulations. The simulated scenarios used
in these evaluations assess the following primary factors.

– Power consumption of physical machines.
– Power usage of network switches.
– Total active connections in network switches.
– # of active switches in the data center network.
– % rate of CPU.

16 physical machines were examined in each of these simulations as
part of the data center's network. Additionally, PMs in both in these
scenarios are heterogeneous; therefore, two distinct types of physical
machines are specified, eight of which own the following specifications.

– CPU: 117160 MIPS.
– Pmax: 129 Watts.
– Pidle: Pmax/2 Watts.

The remaining eight physical machines are defined as follows.

– CPU: 97125 MIPS.
– Pmax: 210 Watts.
– Pidle: 129 Watts.

Additionally, each simulation is performed for 16 VMs, 32 VMs, 48
VMs, and 64 VMs, and in every scenario, two distinctive kinds of virtual
machines are considered.

– CPU speed of 10000 MIPS.
– CPU speed of 8000 MIPS.

The second VM category relates to an edge device, while the first VM
type refers to a cloud node. In our approach, we proposed three different
methods based on the optimization objectives as indicated in Table 4.

Each approach focuses on different goals depending on the value of
each coefficient: the power-aware approach focuses on the power usage
of the PMs, the traffic time aware method aims to reduce the amount of
data transmission time, and finally, the adjusted version uses a balanced
coefficient to keep the goals in balance. Figs. 8 and 9 compare the power
usage (wattage) of physical equipment in the middle of the data. As
previously stated, each PM's energy consumption is directly related to its
CPU load, which grows as additional VMs are added to the network. So,
as can be seen in these charts, the power consumption of real computers
rises as the number of virtual machines grows. This illustration shows
how the proposed system, by utilising different values for the cost
function's coefficients, has the potential to significantly cut the energy
consumption of the physical machines during the simulation. Our
Table 4
Coefficients description.

Name Of Approach Coefficients

Server power aware α ¼ 1, β ¼ 0, π ¼ 0
Traffic time aware α ¼ 0, β ¼ 0, π ¼ 1
Adjusted α ¼ 0.001, β ¼ 0.005, π ¼ 1
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method results in a 5.5% percent reduction in server power usage. In
each case, the entire time when network switches are enabled is shown in
Figs. 10 and 11. Network switches, as mentioned in the previous sections,
offer a way for VMs on different physical machines to communicate with
one other. The outcomes of these simulations are provided for 16 VMs, 32
VMs, 48 VMs, and 64 VMs, and in most situations, our technique delivers
better results and requires less time to apply network changes. In the
instance of 16 VMs, our technique lowered the overall activation time of
network components by 5 and 3 s, respectively, when compared to VM
allocation simple and CPU greedy for VL2 and three-tier. In our
approach, this value in 32 and 48 takes 70% less time. Finally, our
method saves more than 48 s for 64 virtual machines.

Figs. 12 and 13 evaluate the relative power requirements of various
Fig. 10. VL2 network time usage.

Fig. 11. Three-tier network time usage.

Fig. 9. Three-tier server power consumption.
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network nodes across four different virtual machine (VM) loads on the 16
physical machines (PMs). The proposed method is tested in four separate
cases with different values for the cost function's coefficients, similar to
the prior simulation findings. As was previously indicated, the afore-
mentioned coefficients modify the effect of network traffic and the en-
ergy used by PMs and network switches. As this diagram shows, using our
solution will drastically reduce the energy consumption of every network
switch. These simulations are run in four scenarios in which 16 VMs, 32
VMs, 48 VMs, and 64 VMs are examined for placement on the ECDC's
sixteen physical computers. The quantity of energy used by the network
is proportional to the number of virtual machines. In both Figs. 12 and
13, the energy usage of 16 and 32 VMs is lowered by about 90%. In the
Fig. 12. VL2 network power consumption.

Fig. 13. Three-tier network power consumption.

Fig. 14. VL2 active switches.



Fig. 17. Three-tier active links.
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instances of 48 and 64 virtual machines, our suggested solution uses 80%
less energy than the standard VM allocation algorithm and the CPU
Greedy algorithm. Figs. 14 and 15 show how many 10-gigabit and 1-
gigabit switches are operational in each case for the examined ap-
proaches, respectively. It is important to mention that the number of
active switches is related to the quantity of data transferred between
physical computers and the VM placement process, not to the number of
employed VMs. The proposed solution results from the simulation are
displayed in these graphs for four unique scenarios where alternative
values for the cost function coefficients are utilized. As seen in these
figures, the suggested seagull optimization VM placement algorithm
outperforms the other two VM placement techniques in the majority of
circumstances.

Figs. 16 and 17 show the number of active connections in 10 gigabit
and 1 gigabit switches of the network in four scenarios with varying
amounts of virtual machines. As a result of these facts, it can be stated
that as the number of virtual machines and their transferred data rises,
the number of active connections in network switches increases pro-
portionately. As seen in these numbers, our system is far more effective in
reducing the total active connections than the other two scheme. The
reason that our approach can achieve good performance results from the
large solution space that seagull based approach can search, and the
proposed approach can balance the trade-offs between traffic and energy
consumption via optimized VM placement decisions.

6. Conclusions and future scope

Cloud data centers are comprised of a variety of energy-intensive
technologies, including physical servers and switch devices. However,
Fig. 15. Three-tier active switches.

Fig. 16. VL2 active links.
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the power usage of these devices raises the ongoing data centers' ex-
penses and may possibly pose major difficulties due to excessive heat. In
this paper, we proposed an algorithm to optimize the placement of VMs
to reduce the energy consumption and network traffics. We modeled the
scheduling problem as a multi-objective optimization problem and use
seagull based approach to solve it. Our solution not only saves power for
physical equipment and network parts, but it also reduces network traffic
through concentrating interacting VMs on the same PMs. This minimizes
the power usage of switches and their connections while boosting the
data center's output. Finally, the suggested Seagull VM placement
approach was compared to the Greedy VM placement and baseline VM
placement algorithms in the Three-Tier and VL2 network topologies. By
implementing this strategy, we can cut down on network traffic by 70%
and electricity usage by 80% without compromising on any other QoS
metrics. Both network topologies were found to reduce the amount of
time switches are activated and the amount of power they consume
thanks to our system's simulation results.

Even though the proposed technique addressed a variety of objectives
with efficient performance, it is still open of being enhanced. Containers
will eventually replace virtualization technology, which is now utilized
in our method. Application virtualization is made possible by the light-
weight container technology [32,33]. Containerization can increase CPU
speed and energy efficiency. Using AI, fog nodes may learn about their
surrounding workloads and change on the fly to improve quality of ser-
vice. It also decreases the need for electricity and the overall price of the
supporting infrastructure. As a last step, this strategy may be applied via
serverless computing or function as a service to increase scalability and
decrease cost due to the lack of requirement for server configuration
during application deployment. A serverless computing architecture
makes it possible for applications to scale with little effort.
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