
1

Inter-Process Communication (IPC):
Network Programming using TCP Java Sockets

Dr. Minxian Xu

Associate Professor
Research Center for Cloud Computing
Shenzhen Institute of Advanced Technology, CAS
http://www.minxianxu.info/dcp

云中谁寄锦书来，雁字回时，月满西楼。
——（宋）李清照

1. Provide a definition of a Distributed System

Review

2

1. Provide a definition of a Distributed System

 A system in which hardware or software

components located at networked computers

communicate and coordinate their actions only by

passing message [Coulouris]

 A collection of independent computers that

appears to its users as a single coherent system

[Tanenbaum]

3

Review

2. Briefly explain the difference between a computer network

and a distributed system.

4

Review

2. Briefly explain the difference between a computer network

and a distributed system.

A Computer Network: Is a collection of spatially separated,

interconnected computers that exchange messages based on

specific protocols. Computers are addressed by IP

addresses.

A Distributed System: Multiple computers on the network

working together as a system. The spatial separation of

computers and communication aspects are hidden from

users.

5

Review

3. List three reasons for using a distributed system.

6

Review

3. List three reasons for using a distributed system.

 Economy (cost effective)

 Reliability (fault tolerance)

 Availability (high uptime)

 Scalability (extendible)

 Functional Separation (Modularity)

The main motivation to build and use distributed systems is

Resource Sharing

 Hardware Resources (Disks, printers, scanners etc.)

 Software Resources (Files, databases etc)

 Other (Processing power, memory, bandwidth)
7

Review

4. Briefly explain four consequences when using distributed

systems, i.e. issues that arise that are not present otherwise.

8

Review

4. Briefly explain four consequences when using distributed

systems, i.e. issues that arise that are not present otherwise.

Concurrency

Heterogeneity

No Global Clock

 Independent Failures

9

Review

10

Agenda

 Introduction

 Networking Basics

 Understanding Ports and Sockets

 Java Sockets

 Implementing a Server

 Implementing a Client

 Sample Examples

 Conclusions

11

Introduction

 Internet and WWW have emerged as global

ubiquitous media for communication and are

changing the way we conduct science,

engineering, and commerce

 They are also changing the way we learn, live,

enjoy, communicate, interact, engage, work,

etc. It appears like the modern life activities are

getting completely drive by the Internet

 Professor at MIT

 Invented:
 URI that would serve to allow any object

 HTTP that allows for the exchange, retrieval,

or transfer of an object over the Internet

 Web browser that that retrieves and renders

resources on the World Wide Web

 HTML that allows web browsers to translate

documents or other resources

12

Turing Award 2016

Tim Berners-Lee

Citation: “For inventing the World Wide Web, the first web browser, and

the fundamental protocols and algorithms allowing the Web to scale.”

13

Internet Applications Serving Local and

Remote Users

Internet

Server

PC client

Local Area Network

PDA

14

Increasing Demand for Internet

Applications

 To take advantage of opportunities presented by
the Internet, businesses are continuously seeking
new and innovative ways and means for offering
their services via the Internet.

 This created a huge demand for software
designers with skills to create new Internet-enabled
applications or migrate existing/legacy applications
to the Internet platform.

 Object-oriented Java technologies—Sockets,
threads, RMI, clustering, Web services—have
emerged as leading solutions for creating portable,
efficient, and maintainable large and complex
Internet applications.

15

a client, a server, and network

Elements of Client-Server

Computing/Communication

 Processes follow protocols that define a set of rules that must be observed by participants:
 How the data exchange is encoded?

 How events (sending, receiving) are synchronized (ordered) so that participants can send and receive data in a
coordinated manner?

 In face-to-face communication, humans beings follow unspoken protocols based on eye contact,
body language, gesture.

network

client

server

16

Networking Basics

 Physical/Link Layer
 Functionalities for transmission of

signals representing a stream of
data from one computer to
another

 Internet/Network Layer
 IP (Internet Protocols) – a packet

of data to be addressed to a
remote computer and delivered

 Transport Layer
 Functionalities for delivering data

packets to a specific process on
a remote computer

 TCP (Transmission Control
Protocol)

 UDP (User Datagram Protocol)

 Programming Interface:
 Sockets

 Applications Layer
 Message exchange between

standard or user applications:
 HTTP, FTP, Telnet, WeChat,…

 TCP/IP Stack

Application

(http,ftp,telnet,…)

Transport

(TCP, UDP,..)

Internet/Network

(IP,..)

Physical/Link

(device driver,..)

17

Networking Basics

 TCP (Transmission Control

Protocol) is a connection-

oriented communication

protocol that provides a

reliable flow of data between

two computers.

 Analogy: Speaking on

Phone

 Example applications:
 HTTP, FTP, Telnet

 WeChat uses TCP for call

signalling, and both UDP and TCP

for transporting media traffic.

 TCP/IP Stack

Application

(http,ftp,telnet,…)

Transport

(TCP, UDP,..)

Internet/Network

(IP,..)

Physical/Link

(device driver,..)

18

Networking Basics

 UDP (User Datagram
Protocol) is a connectionless
communication protocol that
sends independent packets of
data, called datagrams, from
one computer to another with
no guarantees about arrival or
order of arrival

 Similar to sending multiple
emails/letters to friends, each
containing part of a message.

 Example applications:

 Clock server

 Ping

 Live streaming (event/sports
broadcasting)

 TCP/IP Stack

Application

(http,ftp,telnet,…)

Transport

(TCP, UDP,..)

Network

(IP,..)

Link

(device driver,..)

19

TCP Vs UDP Communication

A B

A B

…

…

 Connection-Oriented Communication

 Connectionless Communication

20

Understanding Ports

 The TCP and UDP

protocols use ports to

map incoming data to

a particular process

running on a

computer.

server

P

o

r

t

Client
TCP

TCP or UDP

port port port port

app app app app

port# dataData

Packet

21

Understanding Ports

 Port is represented by a positive (16-bit) integer
value (0~65535)

 Some ports have been reserved to support
common/well known services:
 ftp 21/tcp

 telnet 23/tcp

 smtp 25/tcp

 http 80/tcp

 login 513/tcp
 https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

 User-level processes/services generally use
port number value >= 1024

22

Sockets

 Sockets provide an interface for programming networks
at the transport layer

 Network communication using Sockets is very much
similar to performing file I/O
 In fact, socket handle is treated like file handle.

 The streams used in file I/O operation are also applicable to
socket-based I/O

 Socket-based communication is programming language
independent.
 That means, a socket program written in Java language can

also communicate to a program written in Java or non-Java
socket program

23

Socket Communication

 A server (program) runs on a specific

computer and has a socket that is bound

to a specific port. The server waits and

listens to the socket for a client to make a

connection request.

server Client
Connection request

p
o

rt

24

Socket Communication

 If everything goes well, the server accepts the
connection. Upon acceptance, the server gets a new
socket bounds to a different port. It needs a new socket
(consequently a different port number) so that it can
continue to listen to the original socket for connection
requests while serving the connected client.

server

Client

Connection

p
o

rt

port p
o

rt

Multi-Client vs Server

 Be like John Snow facing troops

 OR Captain Jack Sparrow’s running from savages

25

Game of Thrones Pirates of the Caribbean

26

Sockets and Java Socket Classes

 A socket is an endpoint of a two-way
communication link between two
programs running on the network.

 A socket is bound to a port number so
that the TCP layer can identify the
application that data destined to be sent.

 Java’s .net package provides two
classes:

 Socket – for implementing a client

 ServerSocket – for implementing a server

27

Java Sockets

ServerSocket(1234)

Socket(“210.75.252.104”, 1234)

Output/write stream

Input/read stream

It can be host_name like “https://www.siat.ac.cn/

Client

Server

28

Implementing a Server
1. Open the Server Socket:

ServerSocket server;

DataOutputStream os;

DataInputStream is;

server = new ServerSocket(PORT);

2. Wait for the Client Request:

Socket client = server.accept();

3. Create I/O streams for communicating to the client

is = new DataInputStream(client.getInputStream());

os = new DataOutputStream(client.getOutputStream());

4. Perform communication with client

Receive from client: String line = is.readLine();

Send to client: os.writeBytes("Hello\n");

5. Close sockets: client.close();

For multithreaded server:

while(true) {

i. wait for client requests (step 2 above)

ii. create a thread with “client” socket as parameter (the thread creates streams (as in step
(3) and does communication as stated in (4). Remove thread once service is provided.

}

29

Implementing a Client

1. Create a Socket Object:
client = new Socket(server, port_id);

2. Create I/O streams for communicating with the server.

is = new DataInputStream(client.getInputStream());

os = new DataOutputStream(client.getOutputStream());

3. Perform I/O or communication with the server:
 Receive data from the server:

String line = is.readLine();

 Send data to the server:

os.writeBytes("Hello\n");

4. Close the socket when done:
client.close();

30

A simple server (simplified code)

// SimpleServer.java: a simple server program

import java.net.*;

import java.io.*;

public class SimpleServer {

public static void main(String args[]) throws IOException {

// Register service on port 1234

ServerSocket s = new ServerSocket(1234);

Socket s1=s.accept(); // Wait and accept a connection

// Get a communication stream associated with the socket

OutputStream s1out = s1.getOutputStream();

DataOutputStream dos = new DataOutputStream (s1out);

// Send a string!

dos.writeUTF("Hi there");

// Close the connection, but not the server socket

dos.close();

s1out.close();

s1.close();

}

}

31

A simple client (simplified code)

// SimpleClient.java: a simple client program

import java.net.*;

import java.io.*;

public class SimpleClient {

public static void main(String args[]) throws IOException {

// Open your connection to a server, at port 1234

Socket s1 = new Socket(“www.siat.ac.cn",1234);

// Get an input file handle from the socket and read the input

InputStream s1In = s1.getInputStream();

DataInputStream dis = new DataInputStream(s1In);

String st = new String (dis.readUTF());

System.out.println(st);

// When done, just close the connection and exit

dis.close();

s1In.close();

s1.close();

}

}

32

Run

 Run Server on a host at SIAT
 [mx@siat] java SimpleServer &

 Run Client on any machine (including SIAT):
 [mx@siat] java SimpleClient

Hi there

 If you run client when server is not up:
 [mx@siat] sockets [1:147] java SimpleClient

Exception in thread "main" java.net.ConnectException: Connection refused

at java.net.PlainSocketImpl.socketConnect(Native Method)

at java.net.PlainSocketImpl.doConnect(PlainSocketImpl.java:320)

at java.net.PlainSocketImpl.connectToAddress(PlainSocketImpl.java:133)

at java.net.PlainSocketImpl.connect(PlainSocketImpl.java:120)

at java.net.Socket.<init>(Socket.java:273)

at java.net.Socket.<init>(Socket.java:100)

at SimpleClient.main(SimpleClient.java:6)

33

Socket Exceptions

try {

Socket client = new Socket(host, port);
handleConnection(client);

}

catch(UnknownHostException uhe) {
System.out.println("Unknown host: " + host);
uhe.printStackTrace();

}

catch(IOException ioe) {

System.out.println("IOException: " + ioe);
ioe.printStackTrace();

}

34

ServerSocket & Exceptions

 public ServerSocket(int port) throws IOException
 Creates a server socket on a specified port

 A port of 0 creates a socket on any free port. You can use
getLocalPort() to identify the (assigned) port on which this
socket is listening

 The maximum queue length for incoming connection
indications (a request to connect) is set to 50. If a connection
indication arrives when the queue is full, the connection is
refused

 Throws:
 IOException - if an I/O error occurs when opening the socket

 SecurityException - if a security manager exists and its
checkListen method doesn't allow the operation

http://java.sun.com/products/jdk/1.2/docs/api/java/io/IOException.html
http://java.sun.com/products/jdk/1.2/docs/api/java/net/ServerSocket.html#getLocalPort%28%29
http://java.sun.com/products/jdk/1.2/docs/api/java/io/IOException.html
http://java.sun.com/products/jdk/1.2/docs/api/java/lang/SecurityException.html

35

Server in Loop: Always up

// SimpleServerLoop.java: a simple server program that runs forever in a single thead

import java.net.*;

import java.io.*;

public class SimpleServerLoop {

public static void main(String args[]) throws IOException {

// Register service on port 1234

ServerSocket s = new ServerSocket(1234);

while(true)

{

Socket s1=s.accept(); // Wait and accept a connection

// Get a communication stream associated with the socket

OutputStream s1out = s1.getOutputStream();

DataOutputStream dos = new DataOutputStream (s1out);

// Send a string!

dos.writeUTF("Hi there");

// Close the connection, but not the server socket

dos.close();

s1out.close();

s1.close();

}

}

}

36

Java API for UDP Programming

 Java API provides datagram

communication by means of two classes

 DatagramPacket

 DatagramSocket

 | Msg | length | Host | serverPort |

37

UDP Client: Sends a Message and

Gets reply
import java.net.*;

import java.io.*;

public class UDPClient

{

public static void main(String args[]){

// args give message contents and server hostname

// "Usage: java UDPClient <message> <Host name> <Port number>"

DatagramSocket aSocket = null;

try {

aSocket = new DatagramSocket();

byte [] m = args[0].getBytes();

InetAddress aHost = InetAddress.getByName(args[1]);

int serverPort = 6789; // Or Integer.valueOf(args[2]).intValue() if use <Port number> args[2]

DatagramPacket request = new DatagramPacket(m, args[0].length(), aHost, serverPort);

aSocket.send(request);

byte[] buffer = new byte[1000];

DatagramPacket reply = new DatagramPacket(buffer, buffer.length);

aSocket.receive(reply);

System.out.println("Reply: " + new String(reply.getData()));

}

catch (SocketException e){System.out.println("Socket: " + e.getMessage());}

catch (IOException e){System.out.println("IO: " + e.getMessage());}

finally

{

if(aSocket != null) aSocket.close();

}

}

}

38

UDP Sever: repeatedly received a

request and sends it back to the client

import java.net.*;

import java.io.*;

public class UDPServer{

public static void main(String args[]){

DatagramSocket aSocket = null;

try{

aSocket = new DatagramSocket(6789); // fixed port number

byte[] buffer = new byte[1000];

while(true){

DatagramPacket request = new DatagramPacket(buffer, buffer.length);

aSocket.receive(request);

DatagramPacket reply = new DatagramPacket(request.getData(),

request.getLength(), request.getAddress(), request.getPort());

aSocket.send(reply);

}

}catch (SocketException e){System.out.println("Socket: " + e.getMessage());}

catch (IOException e) {System.out.println("IO: " + e.getMessage());}

finally {if(aSocket != null) aSocket.close();}

}

}

39

Multithreaded Server: For Serving

Multiple Clients Concurrently

Client Process 1

Client Process 2
Server Process

Server threads

40

Summary

 Programming client/server applications in Java

is fun and challenging

 Programming socket programming in Java is

much easier than doing it in other languages

such as C

 TCP for Connection-oriented communication,

more reliable, flow control

 UDP for connection-less communication

 Keywords:

 Clients, servers, TCP/IP, port number, sockets, Java

sockets

41

References

 Chapter 13: Socket Programming

 R. Buyya, S. Selvi, X. Chu, “Object Oriented

Programming with Java: Essentials and

Applications”, McGraw Hill, New Delhi, India,

2009.

 Sample chapters at book website:

http://www.buyya.com/java/

Exploring an Interactive Client/Server
Client:

1. Create a socket specifying the server address and port

2. Read data from user inputs using the Scanner class

3. Write data using the stream associated with the socket

Server:

1. Create a listening socket bound to a server port

2. Wait for clients to request a connection (Listening socket maintains a

queue of incoming connection requests)

3. Server accepts a connection and creates a new stream socket for the

server to communicate with the client. A pair of sockets in client and

server are connected by a pair of streams, one in each direction. A

socket has an input stream and an output stream.

Demo

 Golgi: Performance-Aware, Resource-Efficient Function Scheduling for

Serverless Computing

 Lifting the Fog of Uncertainties: Dynamic Resource Orchestration for the

Containerized Cloud

 μConAdapter: Reinforcement Learning-based Fast Concurrency

Adaptation for Microservices in Cloud

 Is Machine Learning Necessary for Cloud Resource Usage Forecasting?

 LatenSeer: Causal Modeling of End-to-End Latency Distributions by

Harnessing Distributed Tracing

 Gödel: Unified Large-Scale Resource Management and Scheduling at

ByteDance

 Carbon Containers: A System-level Facility for Managing Application-level

Carbon Emissions

Paper Review (Assignment 2)

