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1. Provide a definition of a Distributed System
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1. Provide a definition of a Distributed System

 A system in which hardware or software 

components located at networked computers 

communicate and coordinate their actions only by 

passing message [Coulouris]

 A collection of independent computers that 

appears to its users as a single coherent system 

[Tanenbaum]
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2. Briefly explain the difference between a computer network 

and a distributed system.
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2. Briefly explain the difference between a computer network 

and a distributed system.

A Computer Network: Is a collection of spatially separated,

interconnected computers that exchange messages based on

specific protocols. Computers are addressed by IP

addresses.

A Distributed System: Multiple computers on the network

working together as a system. The spatial separation of

computers and communication aspects are hidden from

users.
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3. List three reasons for using a distributed system.
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3. List three reasons for using a distributed system.

 Economy (cost effective)

 Reliability (fault tolerance)

 Availability (high uptime)

 Scalability (extendible)

 Functional Separation (Modularity)

The main motivation to build and use distributed systems is 

Resource Sharing

 Hardware Resources (Disks, printers, scanners etc.)

 Software Resources (Files, databases etc)

 Other (Processing power, memory, bandwidth)
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4. Briefly explain four consequences when using distributed 

systems, i.e. issues that arise that are not present otherwise.
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4. Briefly explain four consequences when using distributed 

systems, i.e. issues that arise that are not present otherwise.

Concurrency

Heterogeneity

No Global Clock

 Independent Failures
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Introduction

 Internet and WWW have emerged as global 

ubiquitous media for communication and are 

changing the way we conduct science, 

engineering, and commerce

 They are also changing the way we learn, live, 

enjoy, communicate, interact, engage, work, 

etc. It appears like the modern life activities are 

getting completely drive by the Internet



 Professor at MIT

 Invented:
 URI that would serve to allow any object

 HTTP that allows for the exchange, retrieval, 

or transfer of an object over the Internet

 Web browser that that retrieves and renders 

resources on the World Wide Web

 HTML that allows web browsers to translate 

documents or other resources

12

Turing Award 2016

Tim Berners-Lee

Citation: “For inventing the World Wide Web, the first web browser, and 

the fundamental protocols and algorithms allowing the Web to scale.”
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Internet Applications Serving Local and 

Remote Users

Internet 

Server

PC client

Local Area Network

PDA
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Increasing Demand for Internet 

Applications

 To take advantage of opportunities presented by 
the Internet, businesses are continuously seeking 
new and innovative ways and means for offering 
their services via the Internet.

 This created a huge demand for software
designers with skills to create new Internet-enabled
applications or migrate existing/legacy applications
to the Internet platform.

 Object-oriented Java technologies—Sockets,
threads, RMI, clustering, Web services—have
emerged as leading solutions for creating portable,
efficient, and maintainable large and complex
Internet applications.



15

a client, a server, and network

Elements of Client-Server 

Computing/Communication

 Processes follow protocols that define a set of rules that must be observed by participants:
 How the data exchange is encoded?

 How events (sending, receiving) are synchronized (ordered) so that participants can send and receive data in a 
coordinated manner?

 In face-to-face communication, humans beings follow unspoken protocols based on eye contact, 
body language, gesture.

network

client

server
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Networking Basics

 Physical/Link Layer
 Functionalities for transmission of 

signals representing a stream of 
data from one computer to 
another

 Internet/Network Layer
 IP (Internet Protocols) – a packet 

of data to be addressed to a 
remote computer and delivered

 Transport Layer
 Functionalities for delivering data 

packets to a specific process on 
a remote computer

 TCP (Transmission Control 
Protocol)

 UDP (User Datagram Protocol)

 Programming Interface:
 Sockets

 Applications Layer
 Message exchange between 

standard or user applications:
 HTTP, FTP, Telnet, WeChat,…

 TCP/IP Stack

Application

(http,ftp,telnet,…)

Transport

(TCP, UDP,..)

Internet/Network

(IP,..)

Physical/Link

(device driver,..)
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Networking Basics

 TCP (Transmission Control 

Protocol) is a connection-

oriented communication 

protocol that provides a 

reliable flow of data between 

two computers.

 Analogy: Speaking on 

Phone

 Example applications:
 HTTP, FTP, Telnet

 WeChat uses TCP for call 

signalling, and both UDP and TCP

for transporting media traffic.

 TCP/IP Stack

Application

(http,ftp,telnet,…)

Transport

(TCP, UDP,..)

Internet/Network

(IP,..)

Physical/Link

(device driver,..)
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Networking Basics

 UDP (User Datagram
Protocol) is a connectionless
communication protocol that
sends independent packets of
data, called datagrams, from
one computer to another with
no guarantees about arrival or
order of arrival

 Similar to sending multiple 
emails/letters to friends, each 
containing part of a message.

 Example applications:

 Clock server

 Ping

 Live streaming (event/sports 
broadcasting)

 TCP/IP Stack

Application

(http,ftp,telnet,…)

Transport

(TCP, UDP,..)

Network

(IP,..)

Link

(device driver,..)
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TCP Vs UDP Communication

A B

A B

…

…

 Connection-Oriented Communication

 Connectionless Communication
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Understanding Ports

 The TCP and UDP 

protocols use ports to 

map incoming data to 

a particular process

running on a 

computer.

server

P

o

r

t

Client
TCP

TCP or UDP

port port port port

app app app app

port# dataData

Packet
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Understanding Ports

 Port is represented by a positive (16-bit) integer 
value (0~65535)

 Some ports have been reserved to support 
common/well known services:
 ftp    21/tcp

 telnet 23/tcp

 smtp 25/tcp

 http 80/tcp

 login 513/tcp
 https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

 User-level processes/services generally use 
port number value >= 1024
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Sockets

 Sockets provide an interface for programming networks 
at the transport layer

 Network communication using Sockets is very much 
similar to performing file I/O
 In fact, socket handle is treated like file handle.

 The streams used in file I/O operation are also applicable to 
socket-based I/O

 Socket-based communication is programming language 
independent.
 That means, a socket program written in Java language can 

also communicate to a program written in Java or non-Java 
socket program
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Socket Communication

 A server (program) runs on a specific 

computer and has a socket that is bound 

to a specific port. The server waits and 

listens to the socket for a client to make a 

connection request.

server Client
Connection request

p
o

rt
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Socket Communication

 If everything goes well, the server accepts the 
connection. Upon acceptance, the server gets a new 
socket bounds to a different port. It needs a new socket 
(consequently a different port number) so that it can 
continue to listen to the original socket for connection 
requests while serving the connected client.

server

Client

Connection

p
o

rt

port p
o

rt



Multi-Client vs Server

 Be like John Snow facing troops

 OR Captain Jack Sparrow’s running from savages

25

Game of Thrones Pirates of the Caribbean
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Sockets and Java Socket Classes

 A socket is an endpoint of a two-way 
communication link between two 
programs running on the network. 

 A socket is bound to a port number so 
that the TCP layer can identify the 
application that data destined to be sent.

 Java’s .net package provides two 
classes:

 Socket – for implementing a client

 ServerSocket – for implementing a server



27

Java Sockets

ServerSocket(1234)

Socket(“210.75.252.104”, 1234)

Output/write stream

Input/read stream

It can be host_name like “https://www.siat.ac.cn/

Client

Server
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Implementing a Server
1. Open the Server Socket:

ServerSocket server;  

DataOutputStream os;

DataInputStream is;

server = new ServerSocket( PORT );

2. Wait for the Client Request:

Socket client = server.accept();

3. Create I/O streams for communicating to the client

is = new DataInputStream( client.getInputStream() );

os = new DataOutputStream( client.getOutputStream() );

4. Perform communication with client

Receive from client: String line = is.readLine(); 

Send to client: os.writeBytes("Hello\n");

5. Close sockets:    client.close();

For multithreaded server:

while(true) {

i. wait for client requests (step 2 above)

ii. create a thread with “client” socket as parameter (the thread creates streams (as in step           
(3) and does communication as stated  in (4). Remove thread once service is provided.

}
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Implementing a Client

1. Create a Socket Object:
client = new Socket( server, port_id );

2. Create I/O streams for communicating with the server.

is = new DataInputStream(client.getInputStream() );

os = new DataOutputStream( client.getOutputStream() );

3. Perform I/O or communication with the server:
 Receive data from the server: 

String line = is.readLine(); 

 Send data to the server: 

os.writeBytes("Hello\n");

4. Close the socket when done:    
client.close();
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A simple server (simplified code) 

// SimpleServer.java: a simple server program

import java.net.*;

import java.io.*;

public class SimpleServer {

public static void main(String args[]) throws IOException {

// Register service on port 1234

ServerSocket s = new ServerSocket(1234);

Socket s1=s.accept(); // Wait and accept a connection

// Get a communication stream associated with the socket

OutputStream s1out = s1.getOutputStream();

DataOutputStream dos = new DataOutputStream (s1out);

// Send a string!

dos.writeUTF("Hi there");

// Close the connection, but not the server socket

dos.close();

s1out.close();

s1.close();

}

}
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A simple client (simplified code) 

// SimpleClient.java: a simple client program

import java.net.*;

import java.io.*;

public class SimpleClient {

public static void main(String args[]) throws IOException {

// Open your connection to a server, at port 1234

Socket s1 = new Socket(“www.siat.ac.cn",1234);

// Get an input file handle from the socket and read the input

InputStream s1In = s1.getInputStream();

DataInputStream dis = new DataInputStream(s1In);

String st = new String (dis.readUTF());

System.out.println(st);

// When done, just close the connection and exit

dis.close();

s1In.close();

s1.close();

}

}
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Run

 Run Server on a host at SIAT
 [mx@siat] java SimpleServer &

 Run Client on any machine (including SIAT):
 [mx@siat] java SimpleClient

Hi there

 If you run client when server is not up:
 [mx@siat] sockets [1:147] java SimpleClient

Exception in thread "main" java.net.ConnectException: Connection refused

at java.net.PlainSocketImpl.socketConnect(Native Method)

at java.net.PlainSocketImpl.doConnect(PlainSocketImpl.java:320)

at java.net.PlainSocketImpl.connectToAddress(PlainSocketImpl.java:133)

at java.net.PlainSocketImpl.connect(PlainSocketImpl.java:120)

at java.net.Socket.<init>(Socket.java:273)

at java.net.Socket.<init>(Socket.java:100)

at SimpleClient.main(SimpleClient.java:6)
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Socket Exceptions

try { 

Socket client = new Socket(host, port); 
handleConnection(client); 

} 

catch(UnknownHostException uhe) { 
System.out.println("Unknown host: " + host); 
uhe.printStackTrace(); 

} 

catch(IOException ioe) { 

System.out.println("IOException: " + ioe); 
ioe.printStackTrace(); 

} 
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ServerSocket & Exceptions

 public ServerSocket(int port) throws IOException
 Creates a server socket on a specified port

 A port of 0 creates a socket on any free port. You can use 
getLocalPort() to identify the (assigned) port on which this 
socket is listening

 The maximum queue length for incoming connection 
indications (a request to connect) is set to 50. If a connection 
indication arrives when the queue is full, the connection is 
refused

 Throws:
 IOException - if an I/O error occurs when opening the socket

 SecurityException - if a security manager exists and its 
checkListen method doesn't allow the operation

http://java.sun.com/products/jdk/1.2/docs/api/java/io/IOException.html
http://java.sun.com/products/jdk/1.2/docs/api/java/net/ServerSocket.html#getLocalPort%28%29
http://java.sun.com/products/jdk/1.2/docs/api/java/io/IOException.html
http://java.sun.com/products/jdk/1.2/docs/api/java/lang/SecurityException.html
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Server in Loop: Always up

// SimpleServerLoop.java: a simple server program that runs forever in a single thead

import java.net.*;

import java.io.*;

public class SimpleServerLoop {

public static void main(String args[]) throws IOException {

// Register service on port 1234

ServerSocket s = new ServerSocket(1234);

while(true)

{

Socket s1=s.accept(); // Wait and accept a connection

// Get a communication stream associated with the socket

OutputStream s1out = s1.getOutputStream();

DataOutputStream dos = new DataOutputStream (s1out);

// Send a string!

dos.writeUTF("Hi there");

// Close the connection, but not the server socket

dos.close();

s1out.close();

s1.close();

}

}

}
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Java API for UDP Programming

 Java API provides datagram 

communication by means of two classes

 DatagramPacket

 DatagramSocket

 | Msg | length | Host | serverPort |
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UDP Client: Sends a Message and 

Gets reply
import java.net.*;

import java.io.*;

public class UDPClient

{

public static void main(String args[]){

// args give message contents and server hostname

// "Usage: java UDPClient <message> <Host name> <Port number>"

DatagramSocket aSocket = null;

try {

aSocket = new DatagramSocket();

byte [] m = args[0].getBytes();

InetAddress aHost = InetAddress.getByName(args[1]);

int serverPort = 6789;  // Or Integer.valueOf(args[2]).intValue() if use <Port number> args[2]

DatagramPacket request = new DatagramPacket(m,  args[0].length(), aHost, serverPort);

aSocket.send(request);

byte[] buffer = new byte[1000];

DatagramPacket reply = new DatagramPacket(buffer, buffer.length);

aSocket.receive(reply);

System.out.println("Reply: " + new String(reply.getData()));

}

catch (SocketException e){System.out.println("Socket: " + e.getMessage());}

catch (IOException e){System.out.println("IO: " + e.getMessage());}

finally

{

if(aSocket != null) aSocket.close();

}

}

}
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UDP Sever: repeatedly received a 

request and sends it back to the client

import java.net.*;

import java.io.*;

public class UDPServer{

public static void main(String args[]){

DatagramSocket aSocket = null;

try{

aSocket = new DatagramSocket(6789); // fixed port number

byte[] buffer = new byte[1000];

while(true){

DatagramPacket request = new DatagramPacket(buffer, buffer.length);

aSocket.receive(request);

DatagramPacket reply = new DatagramPacket(request.getData(),

request.getLength(), request.getAddress(), request.getPort());

aSocket.send(reply);

}

}catch (SocketException e){System.out.println("Socket: " + e.getMessage());}

catch (IOException e) {System.out.println("IO: " + e.getMessage());}

finally {if(aSocket != null) aSocket.close();}

}

}
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Multithreaded Server: For Serving 

Multiple Clients Concurrently

Client Process 1

Client Process 2
Server Process

Server threads
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Summary

 Programming client/server applications in Java 

is fun and challenging

 Programming socket programming in Java is 

much easier than doing it in other languages 

such as C

 TCP for Connection-oriented communication, 

more reliable, flow control

 UDP for connection-less communication

 Keywords:

 Clients, servers, TCP/IP, port number, sockets, Java 

sockets
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Exploring an Interactive Client/Server
Client:

1. Create a socket specifying the server address and port

2. Read data from user inputs using the Scanner class

3. Write data using the stream associated with the socket

Server:

1. Create a listening socket bound to a server port

2. Wait for clients to request a connection (Listening socket maintains a 

queue of incoming connection requests)

3. Server accepts a connection and creates a new stream socket for the 

server to communicate with the client. A pair of sockets in client and 

server are connected by a pair of streams, one in each direction. A 

socket has an input stream and an output stream.

Demo



 Golgi: Performance-Aware, Resource-Efficient Function Scheduling for

Serverless Computing

 Lifting the Fog of Uncertainties: Dynamic Resource Orchestration for the

Containerized Cloud

 μConAdapter: Reinforcement Learning-based Fast Concurrency

Adaptation for Microservices in Cloud

 Is Machine Learning Necessary for Cloud Resource Usage Forecasting?

 LatenSeer: Causal Modeling of End-to-End Latency Distributions by

Harnessing Distributed Tracing

 Gödel: Unified Large-Scale Resource Management and Scheduling at

ByteDance

 Carbon Containers: A System-level Facility for Managing Application-level

Carbon Emissions

Paper Review (Assignment 2)


