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reliable resource utilization forecasting is critical to achieving efficient resource scheduling in data centers
thods in cloud computing provide unidimensional output. However, the unidimensional output canno
etween multiple dimensions, which results in limited information and inaccurate prediction results. In th
-EAMC, a framework that can predict the resource utilization of physical machines in multiple dime
nsists of two parts: a noise reduction algorithm and a neural network. We propose a noise reductio
ct data features more precisely and improve the robustness of our prediction algorithm. Then, we estab
rediction network named EAMC for accurate predictions in multi-steps. Finally, to comprehensively
rmance, we propose a novel evaluation standard CMES for model evaluation. Experimental results s
improvement of 2% to 17% compared with other popular approaches.

loud data center, Neural network, Noise reduction, Physical machine resource utilization, Time series fo
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accelerated development of information technol-
years, the construction of cloud data centers is

fore. Data Center (DC) is an important infrastruc-
rn society. According to the statistics [1], about
ork traffic is related to DCs. In 2019, the ener-
on of DCs was about 200TWh, which accounts
of global electricity consumption, and demand

ces is rising exponentially [2]. The high energy
of DCs has become a concern to cloud service
governments.
loaded hosts in DCs will bring a colossal electric-
egatively affect the cloud computing environment
e many methods to optimize the resource utiliza-
Virtual machine (VM) consolidation is one of the
ied to migrate VMs into a lesser number of active
hines (PMs). As a result, the PMs which have no
turned into a sleep state to save energy [4]. For
lidation algorithm, a key objective is to locate the
’s source machines and target machines. Many
reshold as the decision variables in their consol-
thm [5, 6]. They determine the source machines

ing author.
esses: wardenjohn@foxmail.com (Yongde Zhang),
u.cn (Fagui Liu), cswhise@mail.scut.edu.cn (Bin
cut.edu.cn (Weiwei Lin),
ng111@mail.scut.edu.cn (Guoxiang Zhong),

and target machines by comparing the resource
the current moment with the given threshold. Ho
methods are difficult to obtain accurate prediction
the same time, other studies use machine learnin
dict the VM state in the next scheduling interval a
which VM needs to be migrated. Many prediction
single output are proposed in cloud computing, w
s their predictions tend to be unidimensional. Un
al prediction algorithms will restrict our understan
the host works. Because a physical machine is a
component in one system works together and wil
other. In unidimensional forecasting, the model ca
the historical laws of the dimension, but cannot l
tual influences between various dimensions. For
utilization of hardware like CPU and memory wi
other. Using a model to predict them separately
the internal relationship between the key compone

Further, the consolidation algorithms can make
tive scheduling decisions based on more predict
tion. And thereby, multi-step forecasting shows
ty. So, adopting a multidimensional prediction m
scenario is necessary. In this paper, we propose a
multi-output (MIMO) prediction model with a mul
strategy to provide more information for the consol
rithm in advance.

As mentioned in [8], the workload of a PM
many random factors, both internal and external.
dom factors that we call noise will cause some
.cn (Minxian Xu), lik@newpaltz.edu (Keqin Li)
fluctuations in a server, harming our analysis. For external fac-
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ple, the temperature and humidity around the tar-
On the racks of the data center, if the surround-
the target server are under a high load condition,

pation of these high load machines will increase.
erm ambient temperature fluctuations will affec-
ic components’ performance of the target server.
formance drops, the utilization of a component for
becomes larger. Also, the fluctuation of outside
ill cause an inaccurate influence on our acquisi-

. The external temperature fluctuations are one of
rces of external factors on the server. For internal
machine’s task arrives with abnormal fluctuations,
data of a recent time will not reflect the machine’s
ich will prevent our model from catching the fun-
s. However, the existence of these noises in the
is short-term, random, and hard to capture. The
reduction methods will bring about excessive s-

er this scenario so that the original features in the
estroyed. Therefore, we need a noise reduction
an handle this short-term and random noise but

racteristics of the data as much as possible.
e to the previous possible problems, we propose a
rce utilization data denoising method and extract
cteristics in advance. Considering that the noise

to the server is generally short-term and small in
o not affect the subject’s data characteristics, we

plete Ensemble Empirical Mode Decomposition
e Noise (CEEMDAN) method to divide the orig-
multiple Intrinsic Mode Functions (IMFs). Then
utation Entropy (PE) to calculate the noise con-
IMF. We only smooth the IMFs with a loud noise.
build the data with the processed IMFs. This ap-
eatly reduce the loss of essential features caused
l smoothing of the original data, and at the same
move the noise due to minor effects.
obtain the processed data, we need a model that
e inherent laws of the data. In cloud computing,
ral Network (ANN) is widely used to predict re-
tion in a system. ANN has the characteristics of

excellent nonlinear fitting ability. This kind of
ell dig out the patterns hidden in the historical in-
r example, when predicting the workload of DCs,
based on ANN achieve good results in predicting
of servers.
ess, these studies largely fail to address the issues
d earlier because they ignored the interaction of

Based on such research background, this paper
studying the ANN-based prediction model. El-
etwork (ENN) is a classical network in solving
blems and is used widely. The structure of ENN
n many Recurrent Neural Networks (RNNs) like
erm Memory (LSTM) and Gated Recurrent Unit
makes it faster in training and less computing re-
owever, as a kind of recurrent neural network, the

tructure of its context layer has a great limitation
rm dependence. To go further, the self-feedback

ble to adjust its preference to the data of historical
and current information according to the changes
and requirements. Therefore, this paper proposes
diction model based on ENN, which integrates a
neural network into a recurrent neural network to
long-term dependence and improve the precision i

This paper aims to build a multi-step forecastin
multi-input-multi-output (MIMO) based on the h
collected in cloud data centers. Therefore, we prop
Attention-MLP-Context with CEEMDAN-PE-Wa
EAMC) model for PM resource utilization forec
main contributions of this paper are as follows:

1. We propose a CPW-EAMC model with MIM
step prediction. In the scenario with multi
output, it is tedious and resource-consumi
model separately for each dimension of da
more, this model gathers multi-dimensional
one model and it can preserve the hidden rel
tween the dimensions.

2. We propose a noise reduction method CPW
utilization data. With this denoising meth
can be smoothed and its information can
as much as possible so that we can focus on
essential characteristics and rules of the data

3. To overcome the insufficient memory ability
propose a novel network EAMC. With atten
nism, this network enhances feature extract
the current moment and the Multilayer Perce
component strengthens long-term dependen

4. We present a comprehensive evaluation me
that can avoid the defect of evaluating the
of a model through a single metric. Simu
can be carried out when there is no unity am
cators.

The rest of the paper is organized as follows
introduces the related work on noise reduction an
forecasting technology. Section 3 presents our C
model in detail. Section 4 presents our new evalua
in this paper. Section 5 evaluates our model and d
our experiment result. Finally, we conclude our wo
our future research directions in Section 6.

2. RELATED WORK

As mentioned above, the data collected from th
contains influences that cause our analysis to b
Such influence that brings us negative effects in
is called noise. The multidimensional PM resour
data collected from the cloud server belongs to a c
series. It is necessary for us to reduce the noise of
utilization data before analyzing it.

2.1. Noise Reduction Algorithm
Traditional noise reduction algorithms incl
is limited in the context layer, making it inflexi- Transform (FT), Wavelet Transform (WT), Singular Spectrum
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A), and Empirical Mode Decomposition (EMD).
et al. proposed EMD in 1998 [9], studies such as
pirical Mode Decomposition (EEMD) [10] and

have been proposed as improvements of EMD.
[11] proposed a method that combined EEMD

-SVD-LWT to reduce the noise of the radar sig-
, the Gaussian white noise added in the decompo-
is not eliminated after finite averaging in EEMD,

o residual noise. Therefore, Torres et al. proposed
[12] which can solve the residual noise problem

decomposition result more thorough. With the
DAN, we can decompose a nonlinear and non-

e series signal into multiple Intrinsic Mode Func-
and a margin R. Cao et al. built a forecast model
eries data based on LSTM [13] in which the se-
e preprocessed respectively by the IMFs obtained

MDAN decomposition. Except for EMD and its
s also a widely used method. WT is the variant
overcomes the limitations of FT in unstable sig-
studies combine WT with other algorithms and
ble results. For example, Bento et al. combined
lgorithm in short-term forecasting for power sys-
Qiao et al. used a hybrid model based on WT to

nalyze U.S. electricity prices [15]. What’s more,
proposed a noise reduction algorithm combining
PE, and wavelet transform for underwater acous-
oising. They divided IMFs from CEEMDAN into
oise-dominant IMFs, and real IMFs. Then, they

se IMFs according to mutual information and ob-
ise-dominant IMFs among the remaining IMFs.
Fs are distinguished as noise IMFs, they will be
ever, this method is not suitable in our scenario.
our scenario is random, hard to capture, or even
lter out some of the IMFs, their information will
is also meaningful to us. Compared with FT, the

of WT will be better in the context of sudden rise
h makes WT is more suitable in our scenes that
our server is generally short-term.

e research has demonstrated that WT is an effec-
ate algorithm. However, WT performs noise re-
ssing on the entire signal, and it will also smooth
s of the signal, resulting in a lack of important in-
herefore, our CPW divides the original signal in-
b-signals and performs noise reduction for those
nt noise. It allows us to preserve as much impor-
on as possible while obtaining good noise reduc-
nce.

ies Forecasting Technology
ing the denoised series successfully, we can con-
k to predict and extract the features of the denoised
an divide time series forecasting techniques into
d non-parametric methods[17]. However, a para-
d is unfriendly to many researchers as it requires

be proficient in the computational mathematic-
iness field. Furthermore, the parametric method

time series. In non-parametric methods, machine l
exemplary method. As an essential part of mach
ANNs have gained much attention from scientist
an excellent non-linear fitting ability, and it can ex
from data through training. For example, the refer
es MLP in exchange rate prediction. As a feed-fo
network, MLP lacks the ability of memory and c
ent explosion or gradient disappearance. As a re
feed-forward neural network has disadvantages wh
long-term forecasting problem.

Recurrent Neural Network (RNN) can overcom
vantages of feed-forward neural network [19]. RN
used in time series prediction and natural languag
due to its memory ability of historical data in its ne
ture. For example, Hu et al. [20] used particle
mization (PSO) and gradient descent (GD) for agg
combined LSTM for trend following while Yang
used LSTM with feature enhancement for traffic
tion. Moreover, LSTM can deal with non-unifor
reference [22] processed non-uniformly sampled
STM. Although LSTM is powerful, standard LSTM
ly capture all the different effects on target series in
time series prediction tasks. Therefore, Hu et al. [2
LSTM network for multivariate time series predi
and more studies have been trying to combine the
with an attention mechanism in recent years. For e
et al. [24] used LSTM with attention mechanism
consumption forecasting. However, LSTM consum
sources during training and testing. So, a networ
GRU is proposed. GRU can achieve similar perfo
STM but requires fewer resources. Niu et al. [2
GRU based on attention mechanism and used it in
forecasting. Although GRU needs fewer resources
both of them still face the problem of large resour
tion and long training time. A network called E
Network (ENN) can be trained faster than those a
er parameters in its structure. Research like [26
ENN’s ability to feature extraction and the refere
shown that ENN could do well in series process
stance, Zhang et al.[28] improve ENN with piecew
gradient for time series prediction. Also, ENN is
the energy consumption problem of data centers. W
built a power consumption model of cloud server
ENN. And a modified ENN is used for atrial fibril
s classification in [26]. ENN has been proved by m
and experiments to have outstanding performance
prediction.

However, ENN’s memory ability is constra
single-layer neuron of its context layer, leading to
diction performance and accuracy. To learn the
resource usage utilization and predict it, we need
as much historical information as possible to obta
rules. The resource utilization of the server is aff

user’s rules and the logic of the scheduling algori
fore, we need long-term dependence of the netwo
the contextual correlation of utilization. Our mod
itations when facing a complex and changeable in this paper uses a component to surmount the shortcoming of
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tructure. In addition, we enhance its ability to fit
ignificant changes with an attention mechanism.

mensional Forecasting Technology

diction of time series, many models have unidi-
tput even though their input is multi-dimensional.
nergy consumption of one PM is closely related
ardware components. It is necessary to build a
odel with multi-dimensional output of PMs. Bao
ed multi-step Support Vector Machine (SVM) in
ediction. However, they must apply a MIMO strat-
r model, or their model would degenerate into H
dels (H is the dimension of input data). Some re-
ce the significance of the MIMO model to the real
et al. [31] developed a deep multi-output LSTM
k (DM-LSTM) for air quality forecasting. In the

ost of the problems are caused by multiple factors.
time series forecasting problems, it is necessary

at they are affected by multi-dimensional factors.
lt, it is significant to study the time series forecast-

ith multiple dimensions in cloud computing.

Usage Prediction in Cloud Computing

evelopment of forecasting technology, more and
hers apply forecasting techniques to cloud com-
, it uses Extreme Learning Machine for CPU uti-
ction of each PM. However, a simple network for
nnot satisfy the accuracy. Therefore, Sima et al.

a Wavelet-GMDH-ELM model for workload pre-
ntains CPU, storage, and network resources. The

e model is used for data analysis and noise reduc-
e rest is for workload prediction. This model uses
oise reduction to improve the prediction accuracy.
e the forecasting accuracy, Kim et al. [33] pro-

nce-to-Sequence-LSTM (Seq2Seq-LSTM) based
framework called Sequence-to-Sequence in time

ion for energy consumption prediction. Moreover,
[34] use LSTM-Encoder-Decoder for host load
me series forecasting technology is a hot and po-
in cloud computing. Therefore, we obtain a pre-

work with good robustness and high accuracy by
improved noise reduction method with a novel

, in this paper, we propose a CPW-EAMC frame-
ss the data in the cloud cluster in the early stage

ccurate multi-step multi-dimensional forecasts for
tilization of physical machines.

osed Method

on

data center, the submitted tasks mainly include
e tasks, memory-intensive tasks, and disk I/O-
s. When analyzing the performance of PMs, the

scheduling algorithm in a DC has a greater impa
source utilization of one single PM. Different sched
gies will execute different scheduling schemes fo
ted tasks, resulting in workload differences betwee
dicting the resource utilization of PMs can provide
mation to the scheduling algorithm for effective
decisions, which can make the workload of a PM
addition, within our knowledge, most research ha
implicit mutual relationship between hardware. W
we can capture the hidden relationship between har
model instead of observing them individually.

In this scenario, we found that the prediction
ENN has a good performance with a short training
ever, ENN has a critical shortcoming in this scenar
stable. Therefore, it would be encouraging if we co
ENN to make its prediction more stable.

For accurate prediction and stable performance
CPW-EAMC. With the help of the noise reducti
CPW, we can enhance the robustness of models a
the generalization ability and the fitting ability of t

3.2. CEEMDAN-PE-Wavelet (CPW)

CEEMDAN is an algorithm that decomposes
signal into multiple IMFs. CEEMDAN is an im
rithm of EMD. CEEMDAN adds adaptive white n
stage of its decomposition, which can eliminate m
and reduce the reconstruction error to the minimum

PE is an indicator used to measure the compl
series[35]. PE is to add a sorting step when calcula
plexity between reconstructed subsequences. Supp
obtained a time series of length L +1, T s = {tsi|i =

where tsi is the value at moment i. We need to reco
and calculate the permutation entropy of the origi
T s. The greater permutation entropy, the more
time series.

The resource utilization of physical machines
termined by the submitted tasks. However, the tim
are submitted by users and the type of tasks are com
dom. It is one of the main reasons for the unstable
ical machine resources. FT is a classical method i
processing. Nonetheless, FT has obvious defects
non-stationary time series. Luckily, as an improv
WT overcomes the limitations of FT in unstable se
ing. Therefore, WT is suitable for tackling the pro
paper.

We propose a noise reduction algorithm called
PE-Wavelet (CPW), which can be shown in Fig.1
rithm decomposes the original time series through
into several IMFs and a margin R. The margin R
al amount generated after the decomposition of IM
regard each IMF as new time-series data. For the m
series data we newly obtained, we calculate per
tropy for each IMF. We need to define a threshold
tation entropy. We calculate the permutation entr
IMF decomposed from the original signal and sor
on the descending order of permutation entropy. W
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e subsequence for denoising through this method
disadvantage of reducing the signal containing
rmation while weakening the noise.

Figure 1: Process of CEEMDAN-PE-Wavelet

the IMFs in which permutation entropy is higher
n threshold tk and group them into a set IMF′

=
{
IMF′1, IMF′2, · · · , IMF′k

}
. Then, we denoise

IMF′, i ∈ [1, k], i ∈ N and get the collection of
Fs, IMF′′ =

{
IMF′′1 , IMF′′2 , · · · , IMF′′k

}
. Finally,

l the IMFs and the margin R we have including
ose permutation entropy is lower than the given
the denoised signal. This algorithm is described
. The WT () function in line 16 in Algorithm1 is
ansform function. Since each dimension has its

ristics, we execute the CPW algorithm separately
nsion.

ention-MLP-Context (EAMC)

wn in Fig.2, the traditional ENN uses a layer of
context layer. The orange lines in Fig.2 show the
from the hidden layer to the context layer. α is a
coefficient, which is to merge the previous con-

h the state at that moment. The context layer’s
ion is to act like the recurrent component of RNN
formation recording. However, only one layer of
rains ENN’s ability to memorize history informa-

cation of attention mechanisms in the field of ar-
ence is relatively extensive. The attention mech-
imitates human beings’ behavior to focus on cer-

t areas when observing the image. There are many
attention mechanism. Soft attention and hard at-

pical representatives. The attention mechanism
the value in a vector or a matrix more weight to
. The value of the hard attention is in {0, 1}, while

oft attention is in a range of [0, 1]. The main prob-
rd attention mechanism is that its value is either
l cause a large amount of information loss if the
mechanism is applied to continuous data. How-

ntion can avoid this problem, for it can maintain
of data while highlighting the key areas in the

ta by adjusting the weight in the range of [0,1].

Algorithm 1 CEEMDAN-PE-Wavelet.
Input:

The signal to be denoised,signal
The embedding dim of the permutation entrop
The delay time of the permutatuon entropy, dt
The permutatuon entropy threshold of the IM
denoise, thpe

The threshold used in wavelet transform, thwa

Output: The signal denoised by the algorithm, si
1: Initialize PEs with blank list, PEsort with blan
2: IMFs← CEEMDAN(signal)
3: for each IMF in IMFs do:
4: PE← permutation entropy(each IMF, em
5: PEsort ← {PE, each IMF}
6: end for
7: PEsort ← sort(PEsort)
8: for each PE in PEsort do
9: if each PE >thpe then:

10: IMF ← PE sort[each PE]
11: PEsort[each PE]← WT (IMF, thwa)
12: else
13: IMFs← all IMF by sorted order from
14: end if
15: end for
16: signal

′ ← ∑
IMFs

17: return signal
′

As we mentioned before, MLP is widely used
eas, including time series forecasting. The referen
example of time series forecasting with MLP. We c
MLP has its ability in feature extraction. The ML
Fig.3) involves an input layer, an output layer, and
hidden layer between the input layer and the outp
The information in MLP is transmitted forward th
of neurons. The dimensions of input and output da
the number of neurons in the input and output laye

Figure 2: Structure of ENN

With this helpful tool, we proposed a new netw
ENN called ENN-Attention-MLP-Context (as sho
to enhance the memory ability of ENN. First, we

to replace the context layer of ENN. Using MLP to expand the
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can improve time dependence enhancement, mak-
ed time range larger. Nevertheless, by combining
traction capabilities of MLP, it can extract the fea-
torical data and store the features inside the subnet
expansion is conducive to enhance the long-term
f ENN and the capability to fit time series with
n features.

Figure 3: Structure of MLP

mple at time t, X(t) = {x(t), y(t)}, x(t) ∈ Rm, y(t) ∈
e that the weight between input layer and output
The weight between attention layer and MLP is
as three layers of neurons. The weight between
nd MLP is Whm, the weight between output layer

yer is Woh, and Wmh is the weight between merge
den layer while Wmm is the weight between the
P and the merge layer. In input layer, the di-

input data and the number of neurons in hidden
n inconsistent. We need to map the input data to
ension as the hidden layer. Among the weight-
, Whi ∈ Rm×i,Wms ∈ Rn×n,Whm ∈ Rn×n,Woh ∈
Rm×h,Wmm ∈ Rn×m. We define the self-feedback
tween the output of MLP and the input from input
e number of hidden layers is H. The relationship
can be expressed as follows:

ure 4: Structure of ENN-Attention-MLP-Context

Input Layer:

xi(t) = lin(x(t)), xi(t) ∈ Rn

Merge Layer:

m(t) = (1 − α) ·Whi(t) · xi(t) + α ·Wmm(t) ·

Hidden Layer:
h(t) = m(t) ·Wmh(t)

Inside Attention Layer:

xatt in(t) = [xi(t), S tatet−1]

xatt out(t) = W s−o(t) · xatt in(t),W s−o ∈ R(n+

Output Layer:
neto(t) = Woh(t)h(t)

ŷ(t) = g (neto(t))

We can get the calculation expression of the
context module through the description of MLP:

MLPin(t) = W smxatt−out(t)

net h j(t) = w j−1 net h j−1(t) + b, 1 ≤ j ≤
h j = f

(
net h j(t)

)

xm(t) = MLPout(t) = WhmhH(t)

xi(t) in (1) is the linear mapping result of input
the linear mapping function. xm(t) in (2) is the ou
and α is the self-feedback coefficient. Through ad
can adjust the ratio of historical information to t
of the input information at the current moment.
decide whether the network will be more affecte
information or historical information so that our
adapt flexibly according to the changes in our sce
in (4) is the state from hidden layer of the last mom
xatt out(t) in (5) is the output of Attention Layer. ŷ(t
prediction result of the network. In (8), MLPin(t) i
MLP at time t and net h j(t) in (9) is the state of hi
MLP where 1 ≤ j ≤ H, j ∈ N. h j in (10) is the
hidden layer and f (∆) is activation function. In
the activation function in MLP is ReLU while t
function in output layer is sigmoid. MLPout(t) in (
the output of MLP at time t. hH (t) in (11) is the
last layer of hidden layer.

Unlike traditional ENN, we merge the input a
moment through the attention mechanism and the
context layer. This method can increase the impa
rent data on historical information. During netw
we use MSELoss (12) as the loss function.

loss (ŷi, yi) = (ŷi − yi)2

To prevent serious overfitting and enhance th

of our network, we use L2 regularization on the loss function.
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function we need to optimize can be expressed
he following formula:

(ŷ(t) − y(t))>(ŷ(t) − y(t)) +
C
2

W>(t)W(t) (13)

mula, ŷ(t) is the predicted value of our network
e true value of the predicted value at that mo-
is the weight of the entire network at time t.
s,Whm,Woh,W s−i,W s−o

}T
. C is the regularization

n Strategy
le divides the prediction strategy into the training
diction phase. In the training phase, our prima-
to learn the trends from historical data. In order
network to fit the historical data during training

e the data in label as teacher signal to guide the
e model. Therefore, we use the actual value as a
aining strategy in Fig.5(a).
unlike the training phase, the prediction phase

he accuracy of the model prediction. Therefore,
method of cyclic prediction. Our prediction for
is based on the previous moment’s prediction re-
more in line with the actual forecasting process.
e use in prediction phase is shown in Fig.5(b).

, the output of ŷ(t) consists of q dimensions(as
.4). These dimensions are the predicted values of
e indicator we want to predict. Then, we obtain

prediction according to the step size we want in
strategy for obtaining multi-step forecasts is as

5.

(a) Strategy of Training

(b) Strategy of Testing

Figure 5: Strategy of Training and Testing

Evaluate Metric

only used evaluation criteria in the research of
recasting are MAE, RMSE, and MAPE. The mod-
in this paper is a multi-output model; as a result,
djust the original calculation methods of MAE,
APE to a certain extent. This article uses the s-

raging the output data when calculating the multi-

error is expressed as (14), (15), (16).

MAE(X, h) =

∑dim
j=1

1
m

∑m
i=1

∣∣∣̂y ji − y ji

∣∣∣
dim

RMSE(X, h) =

√√∑dim
j=1

∑m
i=1

1
m

(
ŷ ji − y ji

dim

MAPE =

∑dim
j=1

1
m

∑n
i=1

∣∣∣∣ ŷ ji−y ji

y ji

∣∣∣∣
dim

The dim in (14), (15), (16) is the dimension o
and ŷ ji is the ith prediction output of jth dimensi
true value of ith datapoint of jth dimension and m
of data. MAE, RMSE, and MAPE are indicators fo
accuracy of models. In many cases, the evaluatio
the model rarely have a consistent optimal situatio
how to comprehensively evaluate multiple evaluati
a problem worthy of study. For example, in our thre
RMSE is greatly affected by outliers. If encounte
ta points with large deviations, the calculation res
will be large, even if the overall fitting effect is g
tively simple way to solve this problem is to com
calculate these three criteria by adding a summa
which is shown in (17). We need to set three weig
γ. However, this calculation method (17) has the m
that is, how to set an appropriate weight. The result
weights will make the final calculation result have
deviation. So, it is too subjective for the research
weight subjectively to prefer a certain criterion per

S = α · MAE + β · RMS E + γ · MAPE

In order to solve the problem that these thre
standards in the comparison model are difficul
sistent and optimal, we propose a cartesian coor
multi-standard performance measurement evaluat
(CMES), a comprehensive evaluation standard ba
area.

We regard MAE, RMSE, and MAPE as the thre
cartesian coordinate system. The area we calculat
area of space tetrahedron, as shown in Fig.6.

In this paper, we use three criteria as the thre
spatial rectangular coordinate system. Here, we r
sume that MAE is a′, RMSE is b′, and MAPE is
can use (18) calculate the length of the hypotenuse

l1 =
√

a′2 + b′2, l2 =
√

b′2 + c′2, l3 =
√

a′2 +

After calculating the lengths of these three hyp
can caculate base area of tetrahedron with (19) and

p =
l1 + l2 + l3

2

CMES =
√

p (p − l1) (p − l2) (p − l3)

utput. The formula for calculating our adjusted
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ase area of different space tetrahedrons with different colors.

te the feasibility of this method as a mapping of
andards. We will prove that the base area of the
positively correlated with the length of three axes.
he base area of the tetrahedron, we only focus on
n OABC in the space, as shown in Fig.7. Here, we
A = a, OB = b, OC = c. It is clear that a, b, c ≥ 0

from point A, with O as the origin, draw a per-
ne to BC at point E. Then, AE ⊥ BC and
E . Since A, B, and C are on the three axes of space
oordinate system respectively, AO ⊥ ∆BOC. As

BC. Because AE ∩ AO = A, we can know that
. Therefore, OE ⊥ BC.

A

B

C

O

E

A

B

C

O

E

t from point A and draw a perpendicular line to BC at point E.
BC.

, we can get OE = b·c√
b2+c2

, because S 4BOC =

·OC
2 = b·c

2 . With AE =
√

AO2 + OE2 =

e can get S 4ABC = BC·AE
2 =

√
b2+c2·

√
b2 ·c2

b2+c2 +a2

2 .
ulate the partial derivative of S 4ABC to a. We can
. Without loss of generality, if we use the above
a vertical line starting from the vertices B and C,
et the result that ∂S 4ABC

∂b > 0, ∂S 4ABC
∂c > 0. The re-

derivative shows that the area of S 4ABC increases
y with a, b, and c. Therefore, the larger calcula-
S 4ABC , the greater overall error; the larger area of

er performance of the model. Our calculation of
nsive evaluation of the error can be described in

RMSE

MAPEMAE

RMSE

MAPEMAE

Figure 8: Result of proposed evaluated method. MAE, RMSE
three axes in the cartesian coordinate system. The bottom ar
tetrahedron is the comprehensive evaluation.

If the value of a certain criterion is much lar
other two criteria, we can also use the square root
dimension to maintain the balance of the compreh
By mapping the three axes to space, the linear rel
tween area and axis in-plane described in [17] can
while treating the three criteria equally.

To enable the three evaluations to be better in
hope that the various dimensions in the expressio
be too direct. By calculating the base area of the
we use Eq.(18) to increase the correlation betwee
dimensions. Through this approach, we have el
simple correlation between the three dimensions
calculation methods.

5. EXPERIMENTAL RESULTS

In this section, we will examine our model’s
with the data collected in an actual cloud enviro
conducted experiments on our noise reduction al
our overall prediction model. In addition, ablation
prove that our improvements to the model are effec
essary. To verify the usability and robustness of o
der different architectures, we selected a dataset co
our cluster based on ARM architecture for the exp
specific description of each dataset is described in
A and B.

5.1. Dataset A: Alibaba Cluster Trace
In this part, we will introduce our experime

Alibaba Cluster Trace1. The Alibaba Cluster Tr
is published by Alibaba Group [38]. This progr
cluster-trace-v2017 and cluster-trace-v2018. Our
t uses cluster-trace-v2018 dataset whose samplin
10s. However, the sampling interval of cluster-tr
300s in 12 hours. As a result, cluster-trace-v2017
data to train a model since it only contains 145 da
one PM.

Multiple data tables are provided in the datase
seven dimensions of data in the table that provi
machine performance data includes CPU utilizat
1https://github.com/alibaba/clusterdata
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en gpsb(normalized memory bandwidth), net in
incoming network traffic), net out (normalized
ork traffic), and disk I/O ([0, 100], abnormal val-
or 101). Each PM has its csv document in this
h is named by its machine ID to record its re-
tion. However, in the raw data, the amount of
in mem gps and mkpi is relatively large, resulting
ce for using these two dimensions. Therefore, the
e used in this experiment were CPU utilization,
ation, net in, net out, and disk I/O.

B: ARM-based Cloud Computing Cluster

M-based Cloud Computing Cluster, we collect P-
tilization from our cloud computing cluster. Our
e up of five servers based on ARM architecture.
configuration of these five servers is the same.

as 2 Kunpeng 920 CPUs and each CPU contains
d the memory of a server is 256G. The operating
tOS7. We use Openstack as a management plat-

cluster. We use stress-ng to add load to the clus-
we added includes CPU-intensive tasks, memory-
s, disk I/O-intensive tasks, and net-intensive tasks.
interval is 5s. We used the collected 10,000 da-

experiments. What we collected in the cluster is
lization of CPU. The CPU utilization we collected

two dimensions: cpu user and cpu system. Our
n software does not directly collect the utilization
ther than the CPU. In addition, the IO operation
stress-ng will often become an operation on the
r the influences of the operating system, which
e inaccurate utilization of memory and disk I/O.

e data we mainly use in our experiment is the di-
PU.

processing Strategy

et used for time series forecasting is often a con-
series with a large amount of data. It is irrational

our network with the entire dataset. Therefore,
vide our data into several groups. Our strategy for
ta is shown in Fig.9.

⋮

Validating Data Testing DataTraining Data

Cloud Cluster Physical Machine Usage Time Series 

Input Data Predict Data

Figure 9: Data Consolidation Strategy

the entire dataset into a training set, a validation

test the model’s performance, while the validation
evaluate the performance during a stage of trainin
ing set is used to train the model. Fig.9 shows our
of the data more intuitively. The proportion of trai
idation set, and test set in our experiment is about
In the training set, we set the size of the time windo
this parameter is widely used in many studies. Af
the label of predicted data according to the predic
starting point of the next group will move back ste
s.

5.4. Denoise Algorithm Experiment

To illustrate the superiority of the noise reducti
used in this article, we evaluated the noise reduct
m under the Alibaba Cluster Trace dataset. We u
RMSE to evaluate our noise reduction algorithm.
nal to noise ratio, which is described in (21). SN
measure the ratio of useful components to noise in
ries before and after noise reduction. The larger SN
effect.

SNR = 10 log10
Psignal

Pnoise

= 10 log10

∑n
i=1 x2(i)

∑n
i=1 (x′(i) − x(i))2

We need to process each dimension separate
plementing CPW on PM resource utilization since
feature. As a result, we adopt the calculate metho
as shown in (22). RMSE is used to measure the
ifference between the calculated sequence and the
quence. The lower RMSE, the better performanc
is large, the calculated sequence is quite different
riginal sequence, and much information will be los
maller RMSE shows it closer to the original sequen
information in the original sequence will be kept.

RMSE(X, h) =

√√
1
m

m∑

i=1

(
h
(
x(i) − y(i)))

All the experiments were carried out on a serve
Core(TM) i7-5930K CPU @ 3.50GHz, 62G me
GTX TiTan X 12G. The experiment environmen
source machine learning library Scikit-learn and d
framework Pytorch with CUDA 10.0. When using
Cluster Trace dataset, we have found that the chan
and net out are tiny. As we can see in Fig.10(a) an
the net in and net out have very small fluctuation
given period. They did not even change in some s
This phenomenon will cause infinite value when c
NR using (21).

To solve this problem and evaluate our noise
gorithm, we directly used the dimension of CPU
the experiment. We randomly select the resource
10 physical machines for the experiment each tim
the average value of 10 the experiments, which is
the Average column in Table 1 and Table 2. Fo
set in chronological order. The test set is used to t analysis, due to space limitations, we take Machine334 and
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e reduction method compairsion result of Alibaba Cluster

Method Machine:334 Machine:2020 Average
SNR RMSE SNR RMSE SNR RMSE

23.1011 2.9780 17.0307 5.6484 20.0103 4.1187
22.3431 3.2496 16.7163 5.8567 19.4022 4.3781

WT 29.7308 1.3882 26.1666 1.9730 27.4777 1.6746
-SSA 27.5247 1.7896 19.6264 4.1893 23.9053 2.6916

Wavelet 33.7634 0.8726 27.7386 1.6464 30.3495 1.2405

(which are randomly selected from our exper-
es due to our limit space) in Dataset A as ex-

randomly selected the physical machine ID 334,
iled comparison. We compare our noise reduction
th WT, SSA, CEEMDAN-WT, and a variant of
alled CEEMDAN-PE-SSA. CEEMDAN-WT us-
N to decompose the original signal. Then, it us-
ansform to denoise each IMF from CEEMDAN.

T can be considered as ablation of CEEMDAN-
In CEEMDAN-PE-SSA, we use SSA to smooth
ead of Wavelet Transform.
ss, we selected the parameters of noise reduc-

during the experiment. When using SSA, we
actor RP ∈ {4, 5, 6, 7, 8}, time window TW ∈
}. The only one parameter we need to select
ansform and CEEMDAN-WT is wavelet thresh-
4, 0.05, 0.06, 0.07, 0.1}. The parameters we need
CEEMDAN-PE-SSA are embedded dimensions

e DT , refactor RP, time window TW and the
ermutation entropy PT where ED ∈ {6, 7, 8, 9},

8, 9}, RP ∈ {6, 7, 8, 9}, TW ∈ {30, 35, 40, 45},
, 0.6, 0.7}.

meter we need to select in CPW is ED,DT ,
T ∈ {0.7, 0.8, 0.9} and wavelet threshold T ∈
06}. In our experiment, the wavelet base is db8.
ge of ED and DT is the same as CEEMDAN-PE-
parison result is shown in Table 1.

le 1, we can see that our noise reduction method
best result in both SNR and RMSE among the
on algorithm. The average SNR of CPW is
ch is the highest. In contrast, the average RMSE
405, which is lower than other comparison algo-

paper. And there is a negative correlation between

(a) net in of machine 159

(b) net out of machine 159

Table 2: noise reduction method compairsion result of AR

Noise Reduction Method Machine 1 Machine 2
SNR RMSE SNR RMSE

SSA 21.3618 1.2355 7.1316 10.5429
Wavelet 17.5213 1.9225 19.4762 2.5453

CEEMDAN-WT 28.4691 0.5400 28.3489 0.9164
CEEMDAN-PE-SSA 25.8029 0.7341 25.6593 1.2490

CEEMDAN-PE-Wavelet 30.7767 0.4176 33.6641 0.4970

SNR and RMSE. Typically, the algorithm with big
have a smaller RMSE at the same time. CEEMDA
second place among the comparison method. Also
l from Fig.11 that our noise reduction algorithm
the information in the original data as much as po
smoothing the original data.

Table 2 shows the experiment results of Datase
1 is the controller of our cluster while Machine 2
members. We use the CPU usage data of these fiv
experiments and record the average value of 10
which is recorded in Average column in Table 2.

From the result of Table 1 and Table 2, we ca
CPW achieves the best performance while CEE
ranked second. The performance of SSA in Datas
worse than that in Dataset A. Fig.12 shows the co
sult among the five noise reduction methods of M
dataset B. We can see from Fig.12 that CPW sa
at the tip better than the others. It shows that C
and reduces noise while retaining the original infor
than other comparable models.

5.5. Model Evaluation Results
When evaluating the performance of the mod

pare it with the state-of-art models in time series
The Seq2Seq framework has recently been more
fective in natural language processing and time s
tion. In the comparative experiment, we used Seq
[39]. This model uses an attention mechanism bet
coder and the decoder. We also used GRU [40] a
GRU for comparison. We used GRU to replace t
Seq2Seq-LSTM for Seq2Seq-GRU network to test
framework’s performance in this scenario.

In addition to comparing the framework of se
cessing, we also need to compare the models of
output. DM-LSTM [31] is Deep Multi-output L
network. In order to illustrate the effectiveness of o
algorithm, we combine Wavelet Transform with D
WT-DM-LSTM.

In the previous part, we selected the param
denoise methods. In this experiment, we selec
performing parameter combination to experiment.
ter combination we selected in CPW is ED = 6,D
0.9,T = 0.05. We first used the networks on the
machine for the grid search. After the searching w
ed, the best-performing parameter combination wa
setting parameter for our experiment. From the gr
Figure 10: Network usage of Machine 159 sult, we set the self-feedback coefficient α as 0.65, the number



Journal Pre-proof

of hidden lay
ers is 16. In G
hidden layers
16. In WT-D
wavelet base
the experimen

In our exp
0.05, batch si
larization coe
physical mac
from the first
selected ten p
erage results
results of Ma
and 4. The r
between the
value in 3 ste
Fig.13. The h
output of eve
multi-output.

In Table
MAPE. There
of RMSE to
these three in
EAMC, the o
better, while
334 and 2020
M based netw
achieved the
explosion mig

Tabel 5 an
dataset B. W
of the models
age results of
records the av
CMES of EN
the result that
formance of E

in Table 5 at
or in step 12.
r advantages

AC ranked
ance of ENN
r advantages
MC still per-
results show
the model’s
to our fore-

on method in
be passed on
iction steps,

ovement, we
e named the
) EMC: Re-
-EAMC; (2)
duct our ab-
oth datasets.
o record the
ults of abla-
13 while Ta-
334 and Ma-
ge results in
ablation ex-
ataset B. All
s: as the pre-
decreases.
iment results
e and robust.

decrease at
nd improves
del. The at-

he historical
Jo
ur

na
l P

re
-p

ro
of

Figure 11: Denoise result compairsion of machine 2020 in Dataset A. Each color represent one noise reduction mathod.

ers is 3, and the number of neurons in hidden lay-
RU, TG-LSTM, and DM-LSTM, the number of
is 3. The number of neurons in hidden layers is

M-LSTM, the wavelet threshold is 0.05, and the
is db8. For Seq2Seq-LSTM and Seq2Seq-GRU,
t setting is the same as above.
eriments, the epoch is 500, the learning rate η is
ze is 128, and the dropout rate is 0.5. The regu-
fficient C in our experiments is 1e-5. Since each
hine recorded a lot of data, we extracted the data
8000 time points for experiments. We randomly
hysical machines each time and recorded the av-
of CMES after ten experiments in Table 11. The
chine334 and Machine2020 are shown in Table 3
esource utilization forecasting result comparison
forecasted value of CPW-EAMC and the actual
ps ahead prediction of Machine2020 is shown in
orizontal axis is the time axis. We can observe the
ry dimension at each moment since our model is

3 and 4, RMSE is much larger than MAE and
fore, as mentioned above, we use the square root
calculate CMES for maintaining the balance of
dexes. From the tables, except for the CPW-
verall performance of ENN in the experiment is
its performance is not stable enough. In Machine
, WT-DM-LSTM performed the best in the LST-
ork in most cases. At step 6 of Table 3, GRU

worst performance, which showed that gradient
ht happen in this experiment.
d Table 6 are experiment results of tow server in

e use the same strategy to get the average value
’ performance as in the previous part. The aver-
dataset A are shown in Table 11 while Table 12

erage results of dataset B. In Table 11, the average
N in step 3 is much higher than other models as
ENN performs unstable. Due to the unstable per-

large. CPW-EAMC achieves the best performance
each step. The result of ENN has a substantial err
In Table 6, however, the result of ENN has fewe
over our model in step 12, which makes CPW-EM
second. This phenomenon shows that the perform
in this scenario is volatile. Although ENN has fewe
over our model in step 12 at Machine 2, CPW-EA
forms the best average results. The experiment
that as the number of prediction steps increases,
prediction error expands accordingly. It is related
casting strategy. Since we use the circular predicti
our prediction, the previous prediction error will
to the next prediction. Therefore, the shorter pred
the lower error is reflected by the model.

5.6. Ablation Experiment

To show the effectiveness of our model impr
conduct ablation experiments on CPW-EAMC. W
improved model gradually removed as follows: (1
move CPW and attention mechanism from CPW
EAMC: Remove CPW from CPW-EAMC. We con
lation experiments on the physical machines in b
As mentioned above, we use the same strategy t
average performance of models. The average res
tion experiments in Dataset A are shown in Table
ble 7 and 8 record the detailed result of Machine
chine2020 in Dataset A. Table 14 shows the avera
Dataset B while Tabel 9 and 10 show the detailed
periment results of machine 1 and machine 2 in D
tables show a similar trend in ablation experiment
diction steps increase, the performance of models

We can also conclude from the ablation exper
that the improved method of our model is adequat
We can see that as our model improves, deviation
each step. The CPW algorithm smoothes the data a
the robustness and generalization ability of the mo
tention mechanism can fuse the information of t
NN in the ten experiments, the average value is state and the current moment to the MLP. While retaining the
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Network 2
APE CMES

Seq2Seq-LSTM 1187 2.6612
TG-LSTM 1272 13.7267
DM-LSTM 0865 1.7109

WT-DM-LSTM 0682 1.3714
GRU 0785 1.5240

Seq2Seq-GRU 1054 2.2117
ENN 0736 1.2862

CPW-EAMC 0621 1.1036

Network 2
APE CMES

Seq2Seq-LSTM .1425 2.1256
TG-LSTM .1268 1.8029
DM-LSTM .0977 1.4758

WT-DM-LSTM .0845 1.0650
GRU .0815 1.0557

Seq2Seq-GRU .0888 1.2377
ENN .0905 1.3044

CPW-EAMC .0835 0.9921

Network APE CMES
Seq2Seq-LSTM .2466 1.8692

TG-LSTM .2468 1.7829
DM-LSTM .2434 1.7817

WT-DM-LSTM .2397 1.8219
GRU .2432 1.7775

Seq2Seq-GRU .3800 2.400
ENN .4823 24.2579

CPW-EAMC .2429 1.7511

Figure 12: Den re is cpu user.
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Table 3: Machine 334 compairsion result of dataset A
Machine id:334

step:3 step:6 step:9 step:1
MAE RMSE MAPE CMES MAE RMSE MAPE CMES MAE RMSE MAPE CMES MAE RMSE M

0.3665 4.4888 0.0705 1.3707 0.0644 4.9697 0.0891 1.8323 0.6214 4.8121 0.0966 1.9033 0.6692 7.1888 0.
2.6612 3.8585 0.0654 1.1628 0.4937 3.7940 0.0755 1.4142 0.4913 4.9156 0.0909 1.7093 0.5323 8.7686 0.
0.2426 3.6757 0.0548 0.9560 0.4170 4.8930 0.0905 1.5664 0.3159 5.2529 0.0777 1.4315 0.4309 5.3986 0.
0.5141 7.7906 0.1126 2.4643 0.3057 3.3748 0.0610 1.0103 0.3733 3.4795 0.0639 1.1455 0.3564 4.5833 0.
0.2899 2.8745 0.0532 0.8718 0.6340 8.8743 0.1407 3.0300 0.3691 5.1454 0.0785 1.5240 0.3691 5.1454 0.
0.3490 4.6142 0.0738 1.3656 0.4320 5.8444 0.0958 1.8199 0.6137 5.3636 0.1044 2.0489 0.6262 5.8674 0.
0.1892 2.5882 0.0414 0.6478 0.2262 3.2813 0.0557 0.8496 0.4073 4.0204 0.0744 1.3350 0.3291 4.4288 0.
0.1698 2.5048 0.0382 0.5981 0.2446 2.8058 0.0512 0.7851 0.3205 3.6590 0.0605 1.0984 0.3256 3.6408 0.

Table 4: Machine 2020 compairsion result of dataset A

Machine id:2020
step:3 step:6 step:9 step:1

MAE RMSE MAPE CMES MAE RMSE MAPE CMES MAE RMSE MAPE CMES MAE RMSE M
0.4674 2.9268 0.0849 1.1371 0.5237 3.6320 0.0960 1.4156 0.4873 3.7720 0.1040 1.4042 0.5167 6.2930 0
0.4286 3.3383 0.0879 1.1982 0.4996 2.8574 0.0855 1.1568 0.5030 3.0452 0.0903 1.2172 0.5962 4.5812 0
0.4830 3.0068 0.0886 1.1805 0.5274 2.9321 0.0898 1.2135 0.5169 3.0644 0.0891 1.2402 0.5278 3.8217 0
0.5300 2.6102 0.0868 1.1169 0.4926 3.0561 0.0909 1.2073 0.5406 3.2300 0.0942 1.3203 0.4063 2.9547 0
0.1590 2.1023 0.0449 0.5112 0.4464 4.2782 0.1026 1.4727 0.5754 4.6986 0.1169 1.8007 0.3589 3.1837 0
0.4765 3.3034 0.0938 1.2570 0.4932 3.1321 0.0897 1.2299 0.4786 3.5113 0.0939 1.3176 0.4617 3.3108 0
0.2376 2.2015 0.0538 0.6475 0.1989 3.0471 0.0700 0.7637 0.3241 3.5274 0.0870 1.0842 0.4624 3.5510 0
0.1318 2.2080 0.0439 0.4847 0.2325 2.4518 0.0579 0.6949 0.2794 2.6526 0.0651 0.8094 0.3068 3.2497 0

Table 5: Machine 1 compairsion result of dataset B
step:3 step:6 step:9 step:12

MAE RMSE MAPE CMES MAE RMSE MAPE CMES MAE RMSE MAPE CMES MAE RMSE M
0.6634 2.4558 0.1907 1.3539 0.9084 3.1559 0.2456 1.7782 0.9441 3.1852 0.2411 1.8052 1.0170 3.2541 0
0.6918 2.4906 0.1937 1.3831 0.9828 3.2624 0.2411 1.8551 0.8518 3.2364 0.2298 1.7768 0.9270 3.1450 0
0.7363 2.5619 0.1796 1.4301 0.9422 3.1641 0.2444 1.7969 0.9824 3.2512 0.2417 1.8505 0.9219 3.1512 0
0.6661 2.3855 0.1906 1.3267 0.9094 3.1328 0.2503 1.7711 0.9108 3.1501 0.2575 1.7821 0.9288 3.2445 0
0.8154 2.6306 0.2170 1.5064 0.9027 2.9327 0.2196 1.6733 1.1015 3.3276 0.2478 1.9376 0.9213 3.1419 0
0.7487 2.4344 0.1817 1.4270 0.7985 3.0564 0.2140 1.6717 1.0691 3.7245 0.2456 2.0883 1.2263 4.1183 0
0.6653 2.4344 0.1817 1.3437 0.8430 2.9689 0.2220 1.6612 0.9314 3.1396 0.2599 1.7883 11.1818 31.0233 2
0.6734 2.3758 0.1813 1.3237 0.8584 2.9369 0.2287 1.6578 0.8905 3.1384 0.2412 1.7607 0.9066 3.0949 0

oise result compairsion of machine 1 in Dataset B. Each color represent one noise reduction mathod. The data shown in this pictu
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Network 2
APE CMES

Seq2Seq-LSTM .3073 2.3247
TG-LSTM .3079 2.4622
DM-LSTM .3501 2.6739

WT-DM-LSTM .3133 2.3857
GRU .2946 2.6628

Seq2Seq-GRU .3229 2.5231
ENN .2642 2.1610

CPW-EAMC .2943 2.2922

Network 2
APE CMES

EMC .0756 1.3569
EAMC .0710 1.1706

CPW-EAMC .0621 1.1036

Network 2
APE CMES

EMC .0923 1.3751
EAMC .0790 1.0071

CPW-EAMC .0835 0.9921

Network 2
APE CMES

EMC .2410 1.8182
EAMC .2304 1.8270

CPW-EAMC .2429 1.7511

Network 2
APE CMES

EMC .3286 2.4408
EAMC .2923 2.3334

CPW-EAMC .2943 2.2922
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Table 6: Machine 2 compairsion result of dataset B
step:3 step:6 step:9 step:1

MAE RMSE MAPE CMES MAE RMSE MAPE CMES MAE RMSE MAPE CMES MAE RMSE M
1.5757 3.2349 0.2795 2.0779 1.9216 3.7200 0.3207 2.4311 1.6231 3.3135 0.2894 2.1339 1.7932 3.5895 0
1.2013 2.5614 0.2033 1.6177 1.3986 3.0414 0.2465 1.9191 1.6679 3.3514 0.2954 2.1679 1.9045 3.8065 0
1.2499 2.5821 0.2134 1.6452 1.3995 2.9864 0.2420 1.8920 1.6219 3.3369 0.2726 2.1380 2.1025 4.0834 0
1.1874 2.5544 0.2042 1.6101 1.4363 2.9889 0.2433 1.9052 1.7566 3.5115 0.2988 2.2726 1.8504 3.6757 0
1.1121 2.3992 0.1899 1.5095 1.4659 3.0237 0.2412 1.9302 1.6380 3.5115 0.2988 2.2726 2.0170 4.1658 0
1.3115 2.6435 0.2201 1.6951 1.7230 3.3661 0.2896 2.1887 2.1028 4.2748 0.3360 2.7591 1.9145 3.9130 0
1.1097 2.4062 0.1982 1.5139 1.4672 3.2279 0.2632 2.0344 1.5772 3.3908 0.2742 2.1504 1.6014 3.4050 0
1.0659 2.3306 0.1894 1.4622 1.3603 2.9276 0.2399 1.8512 1.5550 3.3568 0.2675 2.1247 1.7037 3.5900 0

Table 7: Ablation experiment result of Machine 334 in Dataset A
Machine id:334

step:3 step:6 step:9 step:1
MAE RMSE MAPE CMES MAE RMSE MAPE CMES MAE RMSE MAPE CMES MAE RMSE M

0.2047 2.9008 0.0455 0.7343 0.2943 3.0779 0.0547 0.9243 0.3559 3.7174 0.0644 1.1736 0.4081 4.1035 0
0.1943 2.6577 0.0406 0.6690 0.2568 2.7965 0.0489 0.8022 0.3573 3.5425 0.0642 1.1349 0.3321 3.8784 0
0.1698 2.5048 0.0382 0.5981 0.2446 2.8058 0.0512 0.7851 0.3205 3.6590 0.0605 1.0984 0.3256 3.6408 0

Table 8: Ablation experiment result of Machine 2020 in dataset A
Machine id:2020

step:3 step:6 step:9 step:1
MAE RMSE MAPE CMES MAE RMSE MAPE CMES MAE RMSE MAPE CMES MAE RMSE M

0.2294 2.2526 0.0535 0.6471 0.3361 2.6255 0.0712 0.8835 0.3644 2.7963 0.0801 0.9666 0.4557 3.8529 0
0.1682 2.2658 0.0472 0.5561 0.2369 2.5199 0.0625 0.7174 0.2911 2.6158 0.0655 0.8180 0.3033 3.3507 0
0.1318 2.2080 0.0439 0.4847 0.2325 2.4518 0.0579 0.6949 0.2794 2.6526 0.0651 0.8094 0.3068 3.2497 0

Table 9: Ablation experiment result of Machine 1 in dataset B
step:3 step:6 step:9 step:1

MAE RMSE MAPE CMES MAE RMSE MAPE CMES MAE RMSE MAPE CMES MAE RMSE M
0.6998 2.3980 0.1802 1.3453 0.8444 3.1005 0.2608 1.7316 0.9354 3.1259 0.2378 1.7753 0.9144 3.2511 0
0.7025 2.4640 0.1763 1.3728 0.8988 2.9611 0.2291 1.6866 0.8946 3.1238 0.2496 1.7601 0.9684 3.2202 0
0.6734 2.3758 0.1813 1.3237 0.8584 2.9369 0.2287 1.6578 0.8905 3.1384 0.2412 1.7607 0.9066 3.0949 0

Table 10: Ablation experiment result of Machine 2 in dataset B
step:3 step:6 step:9 step:1

MAE RMSE MAPE CMES MAE RMSE MAPE CMES MAE RMSE MAPE CMES MAE RMSE M
1.0864 2.3534 0.1921 1.4801 1.4295 3.0412 0.2527 1.9309 1.6216 3.4556 0.2642 2.1914 1.8115 3.7999 0
1.0701 2.3388 0.1894 1.4674 1.3849 2.9880 0.2445 1.8890 1.5902 3.4424 0.2747 2.1790 1.7319 3.6603 0
1.0659 2.3306 2.3304 1.4622 1.3603 2.9276 0.2399 1.8512 1.5550 3.3568 0.2675 2.1247 1.7037 3.5900 0
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Figure 13: Three steps ahead forecasting results of machine 2020 with CPW-EAMC at each dimension
lation experiment compairsion result of machine 2020 in three steps ahead prediction. To highlight the details, we only selected 300 data points.
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age CMES compairsion results of 10 machines in dataset A
ork step:3 step:6 step:9 step:12
-LSTM 2.3053 2.6857 2.9305 3.2955
TM 1.6918 2.0323 2.4364 2.9645

STM 1.1779 1.7956 2.7897 2.4955
LSTM 1.8078 2.0876 2.7006 2.6229
U 1.2681 2.2486 2.4695 2.6453
-GRU 2.2645 2.9746 2.8019 2.8996
N 10.2754 1.6484 3.8027 2.2610
AMC 1.0053 1.3908 1.7403 1.9354

rage CMES compairsion results of 5 machines in dataset B
ork step:3 step:6 step:9 step:12
-LSTM 1.7181 2.0476 2.0523 2.2003
TM 1.6021 1.9903 2.0638 2.1391

STM 1.5407 1.9374 2.1048 2.1516
-LSTM 1.5845 1.9468 2.0614 2.1341
U 1.6705 1.9398 2.0934 2.1702
-GRU 1.7501 1.9639 2.1893 2.2617
N 1.4790 2.3334 2.0672 6.6017
AMC 1.4769 1.8436 2.0411 2.1052

ge CMES compairsion results of 10 machines in ablation ex-
et A

ork step:3 step:6 step:9 step:12
C 1.2772 2.6281 2.1727 2.2610
C 1.1837 1.6428 2.0440 1.9798

AMC 1.0053 1.3908 1.7403 1.9354

e CMES compairsion results of 5 machines in ablation exper-
B
ork step:3 step:6 step:9 step:12
C 1.4990 1.9242 2.0724 2.1505
C 1.4902 1.8570 2.0623 2.1220

AMC 1.4769 1.8436 2.0411 2.1052

historical information under long-term dependenc
of the current input at the same time is enhanced,
proving the model’s fitting ability to the data.

5.7. Discussion

In this part, we will discuss the cost of models
With the help of the tool named Thop2[41], we ca
floating-point operations ( f lops), and the number o
(params) in each model. Flops and params ca
calculate the amount of computation of a neural
discuss the cost of models concisely, we use an
of Dataset B for experiments. Table 15 records f l
and training time of the models compared in this p

As shown in Table 15, the f lops and params o
is the least while its training time is the longest
consuming operation in TG-LSTM leads to this p
With the gradual improvement of the model from
ENN to EAMC, the computational cost increase
less, our model is still competitive in terms of ov
pared to other models.

In this scenario, we conducted experiments o
other prediction networks. We found that the predi
cy of ENN has an acceptable performance with a s
time. However, the performance of ENN is not st
which is caused by the single-layer neurons of the
er. With the use of MLP, this network can rememb
features in long-time dependency. Therefore, the
have a more stable and more accurate prediction.
setting a self-feedback coefficient α can effectively
tion on the recent period, enhancing the impact o
and improving the ability to fit sudden changes.

Table 15: Cost of models with input of Dataset B
f lops params trainin

Seq2SeqGRU 187416576 52012 33
GRU 860209152 16290 47

Seq2Seq-LSTM 302776320 66988 37
TG-LSTM 360448 258 69
DM-LSTM 57212928 21666 13

ENN 2998272 1314 15
EMC 10862592 4482 22

EAMC 21512192 8738 28

6. Conclusion and Future Work

We can extract the trend from historical data
the future value of PM resources utilization thro
ries forecasting technology. The resource utilizat
ing of physical machines can provide the scheduli
with future information for scheduling decisions
the scheduling algorithm can make a more efficien
decision base on multi-dimensional predictive info

2Thop:Pytorch-Opcounter. https://pypi.org/project/thop/
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