Journal Pre-proof o

FIGICIS:
A multi-output prediction model for physical machine resource usage in S Rt T

cloud data centers

Yongde Zhang, Fagui Liu, Bin Wang, Weiwei Lin, Guoxiang Zhong, S
Minxian Xu, Keqin Li

PII: S0167-739X(22)00010-3

DOI: https://doi.org/10.1016/j.future.2022.01.002
Reference: FUTURE 6366

To appear in: Future Generation Computer Systems

Received date: 3 October 2021
Revised date: 29 November 2021
Accepted date: 4 January 2022

Please cite this article as: Y. Zhang, F. Liu, B. Wang et al., A multi-output prediction model for
physical machine resource usage in cloud data centers, Future Generation Computer Systems
(2022), doi: https://doi.org/10.1016/j.future.2022.01.002.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2022.01.002
https://doi.org/10.1016/j.future.2022.01.002

A Multi-output Prediction Model for Physical Machine Resource Usage in Cloud Data
Centers

Yongde Zhang?, Fagui Liu®*, Bin Wang®*, Weiwei Lin?, Guoxiang Zhong?, Minxian Xu®, Keqin Li®¢

“School of Computer Science and Engineering, South China University of Technology, GD 510006, China
bShenzhen Institutes of Advanced Technology Chinese Academy of Sciences, Shenzhen, GD 518000, China
¢College of Information Science and Engineering and Changsha National Supercomputing Center, Hunan University, Hunan 410082, China
4Department of Computer Science, State University of New York, New Paltz, NY 12561 USA

Abstract

Accurate and reliable resource utilization forecasting is critical to achieving efficient resource scheduling in data centers. Traditional
prediction methods in cloud computing provide unidimensional output. However, the unidimensional output cannot capture the
relationship between multiple dimensions, which results in limited information and inaccurate prediction results. In this paper, we
propose CPW-EAMC, a framework that can predict the resource utilization of physical machines in multiple dimensions. This
framework consists of two parts: a noise reduction algorithm and a neural network. We propose a noise reduction algorithm
CPW to extract data features more precisely and improve the robustness of our prediction algorithm. Then, we establish a multi-
dimensional prediction network named EAMC for accurate predictions in multi-steps. Finally, to comprehensively evaluate the
model’s performance, we propose a novel evaluation standard CMES for model evaluation. Experimental results show that our
model has an improvement of 2% to 17% compared with other popular approaches.

Keywords: Cloud data center, Neural network, Noise reduction, Physical machine resource utilization, Time series forecasting

1. Introduction

With the accelerated development of information technol-
ogy in recent years, the construction of cloud data centers is
faster than before. Data Center (DC) is an important infrastruc-
ture of modern society. According to the statistics [1], about
97% of network traffic is related to DCs. In 2019, the ener-
gy consumption of DCs was about 200TWh, which accounts
for about 1% of global electricity consumption, and demand
for data services is rising exponentially [2]. The high energy
consumption of DCs has become a concern to cloud service
providers and governments.

The underloaded hosts in DCs will bring a colossal electric-
ity cost and negatively affect the cloud computing environment
[3]. There are many methods to optimize the resource utiliza-
tion of hosts. Virtual machine (VM) consolidation is one of the
schemes applied to migrate VMs into a lesser number of active
physical machines (PMs). As a result, the PMs which have no
VMs can be turned into a sleep state to save energy [4]. For
the VM consolidation algorithm, a key objective is to locate the
consolidation’s source machines and target machines. Many
studies use threshold as the decision variables in their consol-
idation algorithm [5, 6]. They determine the source machines

*Corresponding author.

Email addresses: wardenjohn@foxmail.com (Yongde Zhang),
fgliu@scut.edu.cn (Fagui Liu), cswhise@mail.scut.edu.cn (Bin
Wang), linww@scut .edu.cn (Weiwei Lin),
cszhongguoxiangl11@mail.scut.edu.cn (Guoxiang Zhong),
mx.xu@siat.ac.cn (Minxian Xu), 1ik@newpaltz.edu (Keqin Li)

Preprint submitted to Future Generation Computer Systems

and target machines by comparing the resource utilization at
the current moment with the given threshold. However, such
methods are difficult to obtain accurate prediction results. At
the same time, other studies use machine learning [7] to pre-
dict the VM state in the next scheduling interval and determine
which VM needs to be migrated. Many prediction models with
single output are proposed in cloud computing, which mean-
s their predictions tend to be unidimensional. Unidimension-
al prediction algorithms will restrict our understanding of how
the host works. Because a physical machine is a system, each
component in one system works together and will affect each
other. In unidimensional forecasting, the model can only learn
the historical laws of the dimension, but cannot learn the mu-
tual influences between various dimensions. For example, the
utilization of hardware like CPU and memory will affect each
other. Using a model to predict them separately cannot catch
the internal relationship between the key components.

Further, the consolidation algorithms can make more effec-
tive scheduling decisions based on more prediction informa-
tion. And thereby, multi-step forecasting shows its superiori-
ty. So, adopting a multidimensional prediction model in this
scenario is necessary. In this paper, we propose a multi-input-
multi-output (MIMO) prediction model with a multi-step-ahead
strategy to provide more information for the consolidation algo-
rithm in advance.

As mentioned in [8], the workload of a PM depends on
many random factors, both internal and external. These ran-
dom factors that we call noise will cause some performance
fluctuations in a server, harming our analysis. For external fac-

January 5, 2022

tors, for example, the temperature and humidity around the tar-
get machine. On the racks of the data center, if the surround-
ing servers of the target server are under a high load condition,
the heat dissipation of these high load machines will increase.
These short-term ambient temperature fluctuations will affec-
t the electronic components’ performance of the target server.
When the performance drops, the utilization of a component for
the same task becomes larger. Also, the fluctuation of outside
temperature will cause an inaccurate influence on our acquisi-
tion hardware. The external temperature fluctuations are one of
the noise sources of external factors on the server. For internal
factors, if the machine’s task arrives with abnormal fluctuations,
the utilization data of a recent time will not reflect the machine’s
actual use, which will prevent our model from catching the fun-
damental rules. However, the existence of these noises in the
original data is short-term, random, and hard to capture. The
existing noise reduction methods will bring about excessive s-
moothing under this scenario so that the original features in the
data will be destroyed. Therefore, we need a noise reduction
method that can handle this short-term and random noise but
retain the characteristics of the data as much as possible.

In response to the previous possible problems, we propose a
new PM resource utilization data denoising method and extract
the data characteristics in advance. Considering that the noise
introduced into the server is generally short-term and small in
amplitude. To not affect the subject’s data characteristics, we
adopt the Complete Ensemble Empirical Mode Decomposition
with Adaptive Noise (CEEMDAN) method to divide the orig-
inal data into multiple Intrinsic Mode Functions (IMFs). Then
we use Permutation Entropy (PE) to calculate the noise con-
tained in each IMF. We only smooth the IMFs with a loud noise.
At last, we rebuild the data with the processed IMFs. This ap-
proach can greatly reduce the loss of essential features caused
by the overall smoothing of the original data, and at the same
time, it can remove the noise due to minor effects.

After we obtain the processed data, we need a model that
can capture the inherent laws of the data. In cloud computing,
Artificial Neural Network (ANN) is widely used to predict re-
source utilization in a system. ANN has the characteristics of
flexibility and excellent nonlinear fitting ability. This kind of
method can well dig out the patterns hidden in the historical in-
formation. For example, when predicting the workload of DCs,
many studies based on ANN achieve good results in predicting
the workload of servers.

Nevertheless, these studies largely fail to address the issues
we mentioned earlier because they ignored the interaction of
other factors. Based on such research background, this paper
is devoted to studying the ANN-based prediction model. El-
man Neural Network (ENN) is a classical network in solving
prediction problems and is used widely. The structure of ENN
is simpler than many Recurrent Neural Networks (RNNs) like
Long Short-Term Memory (LSTM) and Gated Recurrent Unit
(GRU), which makes it faster in training and less computing re-
source cost. However, as a kind of recurrent neural network, the
single-layer structure of its context layer has a great limitation
on its long-term dependence. To go further, the self-feedback
coefficient « is limited in the context layer, making it inflexi-

ble to adjust its preference to the data of historical information
and current information according to the changes of scenario
and requirements. Therefore, this paper proposes a novel pre-
diction model based on ENN, which integrates a feed-forward
neural network into a recurrent neural network to optimize the
long-term dependence and improve the precision in prediction.

This paper aims to build a multi-step forecasting model with
multi-input-multi-output (MIMO) based on the historical data
collected in cloud data centers. Therefore, we propose an ENN-
Attention-MLP-Context with CEEMDAN-PE-Wavelet (CPW-
EAMC) model for PM resource utilization forecasting. The
main contributions of this paper are as follows:

1. We propose a CPW-EAMC model with MIMO for multi-
step prediction. In the scenario with multi-dimensional
output, it is tedious and resource-consuming to train a
model separately for each dimension of data. Further-
more, this model gathers multi-dimensional outputs into
one model and it can preserve the hidden relationship be-
tween the dimensions.

2. We propose a noise reduction method CPW for resource
utilization data. With this denoising method, the data
can be smoothed and its information can be preserved
as much as possible so that we can focus on learning the
essential characteristics and rules of the data.

3. To overcome the insufficient memory ability of ENN, we
propose a novel network EAMC. With attention mecha-
nism, this network enhances feature extraction ability of
the current moment and the Multilayer Perceptron (MLP)
component strengthens long-term dependency of ENN.

4. We present a comprehensive evaluation metric in space
that can avoid the defect of evaluating the performance
of a model through a single metric. Simultaneously, it
can be carried out when there is no unity among the indi-
cators.

The rest of the paper is organized as follows. Section 2
introduces the related work on noise reduction and time series
forecasting technology. Section 3 presents our CPW-EAMC
model in detail. Section 4 presents our new evaluation method
in this paper. Section 5 evaluates our model and demonstrates
our experiment result. Finally, we conclude our work and show
our future research directions in Section 6.

2. RELATED WORK

As mentioned above, the data collected from the real world
contains influences that cause our analysis to be inaccurate.
Such influence that brings us negative effects in our analysis
is called noise. The multidimensional PM resource utilization
data collected from the cloud server belongs to a complex time
series. It is necessary for us to reduce the noise of PM resource
utilization data before analyzing it.

2.1. Noise Reduction Algorithm

Traditional noise reduction algorithms include Fourier
Transform (FT), Wavelet Transform (WT), Singular Spectrum

Analysis (SSA), and Empirical Mode Decomposition (EMD).
After Huang et al. proposed EMD in 1998 [9], studies such as
Ensemble Empirical Mode Decomposition (EEMD) [10] and
CEEMDAN have been proposed as improvements of EMD.
Cheng et al. [11] proposed a method that combined EEMD
called EEMD-SVD-LWT to reduce the noise of the radar sig-
nal. However, the Gaussian white noise added in the decompo-
sition process is not eliminated after finite averaging in EEMD,
which leads to residual noise. Therefore, Torres et al. proposed
CEEMDAN [12] which can solve the residual noise problem
and make the decomposition result more thorough. With the
help of CEEMDAN, we can decompose a nonlinear and non-
stationary time series signal into multiple Intrinsic Mode Func-
tions (IMFs) and a margin R. Cao et al. built a forecast model
of financial series data based on LSTM [13] in which the se-
ries data can be preprocessed respectively by the IMFs obtained
through CEEMDAN decomposition. Except for EMD and its
variant, WT is also a widely used method. WT is the variant
of FT which overcomes the limitations of FT in unstable sig-
nals. Recent studies combine WT with other algorithms and
achieve desirable results. For example, Bento et al. combined
WT and bat algorithm in short-term forecasting for power sys-
tems [14] and Qiao et al. used a hybrid model based on WT to
predict and analyze U.S. electricity prices [15]. What’s more,
Li et al. [16] proposed a noise reduction algorithm combining
CEEMDAN, PE, and wavelet transform for underwater acous-
tic signal denoising. They divided IMFs from CEEMDAN into
noise IMFs, noise-dominant IMFs, and real IMFs. Then, they
identified noise IMFs according to mutual information and ob-
tained the noise-dominant IMFs among the remaining IMFs.
Once the IMFs are distinguished as noise IMFs, they will be
filtered. However, this method is not suitable in our scenario.
The noise in our scenario is random, hard to capture, or even
slight. If we filter out some of the IMFs, their information will
be lost, which is also meaningful to us. Compared with FT, the
performance of WT will be better in the context of sudden rise
and fall, which makes WT is more suitable in our scenes that
fluctuation of our server is generally short-term.

The above research has demonstrated that WT is an effec-
tive and animate algorithm. However, WT performs noise re-
duction processing on the entire signal, and it will also smooth
essential parts of the signal, resulting in a lack of important in-
formation. Therefore, our CPW divides the original signal in-
to multiple sub-signals and performs noise reduction for those
with significant noise. It allows us to preserve as much impor-
tant information as possible while obtaining good noise reduc-
tion performance.

2.2. Time Series Forecasting Technology

After getting the denoised series successfully, we can con-
tinue our work to predict and extract the features of the denoised
series. We can divide time series forecasting techniques into
parametric and non-parametric methods[17]. However, a para-
metric method is unfriendly to many researchers as it requires
researchers to be proficient in the computational mathematic-
s of their business field. Furthermore, the parametric method
shows its limitations when facing a complex and changeable

time series. In non-parametric methods, machine learning is an
exemplary method. As an essential part of machine learning,
ANNSs have gained much attention from scientists. ANN has
an excellent non-linear fitting ability, and it can extract features
from data through training. For example, the reference [18] us-
es MLP in exchange rate prediction. As a feed-forward neural
network, MLP lacks the ability of memory and causes gradi-
ent explosion or gradient disappearance. As a result, a plain
feed-forward neural network has disadvantages when solving a
long-term forecasting problem.

Recurrent Neural Network (RNN) can overcome the disad-
vantages of feed-forward neural network [19]. RNN is widely
used in time series prediction and natural language processing
due to its memory ability of historical data in its network struc-
ture. For example, Hu et al. [20] used particle swarm opti-
mization (PSO) and gradient descent (GD) for aggregation and
combined LSTM for trend following while Yang et al. [21]
used LSTM with feature enhancement for traffic flow predic-
tion. Moreover, LSTM can deal with non-uniform data. The
reference [22] processed non-uniformly sampled data with L-
STM. Although LSTM is powerful, standard LSTM cannot ful-
ly capture all the different effects on target series in multivariate
time series prediction tasks. Therefore, Hu et al. [23] used TG-
LSTM network for multivariate time series prediction. More
and more studies have been trying to combine their algorithm
with an attention mechanism in recent years. For example, Lin
et al. [24] used LSTM with attention mechanism in electricity
consumption forecasting. However, LSTM consumes many re-
sources during training and testing. So, a network unit called
GRU is proposed. GRU can achieve similar performance as L-
STM but requires fewer resources. Niu et al. [25] improved
GRU based on attention mechanism and used it in wind power
forecasting. Although GRU needs fewer resources than LSTM,
both of them still face the problem of large resource consump-
tion and long training time. A network called Elman Neural
Network (ENN) can be trained faster than those as it has few-
er parameters in its structure. Research like [26] has shown
ENN’s ability to feature extraction and the reference [27] had
shown that ENN could do well in series processing. For in-
stance, Zhang et al.[28] improve ENN with piecewise weighted
gradient for time series prediction. Also, ENN is used to solve
the energy consumption problem of data centers. Wu et al. [29]
built a power consumption model of cloud servers with native
ENN. And a modified ENN is used for atrial fibrillation signal-
s classification in [26]. ENN has been proved by many studies
and experiments to have outstanding performance in time series
prediction.

However, ENN’s memory ability is constrained by the
single-layer neuron of its context layer, leading to unstable pre-
diction performance and accuracy. To learn the rules of PM
resource usage utilization and predict it, we need to combine
as much historical information as possible to obtain historical
rules. The resource utilization of the server is affected by the
user’s rules and the logic of the scheduling algorithm. There-
fore, we need long-term dependence of the network to capture
the contextual correlation of utilization. Our model presented
in this paper uses a component to surmount the shortcoming of

the original structure. In addition, we enhance its ability to fit
periods with significant changes with an attention mechanism.

2.3. Multi-dimensional Forecasting Technology

In the prediction of time series, many models have unidi-
mensional output even though their input is multi-dimensional.
The overall energy consumption of one PM is closely related
to different hardware components. It is necessary to build a
forecasting model with multi-dimensional output of PMs. Bao
et al. [30] used multi-step Support Vector Machine (SVM) in
time series prediction. However, they must apply a MIMO strat-
egy with their model, or their model would degenerate into H
dispersed models (H is the dimension of input data). Some re-
searchers notice the significance of the MIMO model to the real
world. Zhou et al. [31] developed a deep multi-output LSTM
neural network (DM-LSTM) for air quality forecasting. In the
real world, most of the problems are caused by multiple factors.
When solving time series forecasting problems, it is necessary
to consider that they are affected by multi-dimensional factors.
And as aresult, it is significant to study the time series forecast-
ing problem with multiple dimensions in cloud computing.

2.4. Resource Usage Prediction in Cloud Computing

With the development of forecasting technology, more and
more researchers apply forecasting techniques to cloud com-
puting. In [5], it uses Extreme Learning Machine for CPU uti-
lization prediction of each PM. However, a simple network for
forecasting cannot satisfy the accuracy. Therefore, Sima et al.
[32] propose a Wavelet-GMDH-ELM model for workload pre-
diction that contains CPU, storage, and network resources. The
Wavelet of the model is used for data analysis and noise reduc-
tion, while the rest is for workload prediction. This model uses
Wavelet for noise reduction to improve the prediction accuracy.

To improve the forecasting accuracy, Kim et al. [33] pro-
pose a Sequence-to-Sequence-LSTM (Seq2Seq-LSTM) based
on the robust framework called Sequence-to-Sequence in time
series prediction for energy consumption prediction. Moreover,
Hoang et al. [34] use LSTM-Encoder-Decoder for host load
prediction. Time series forecasting technology is a hot and po-
tential method in cloud computing. Therefore, we obtain a pre-
diction framework with good robustness and high accuracy by
combining an improved noise reduction method with a novel
network.

Therefore, in this paper, we propose a CPW-EAMC frame-
work to process the data in the cloud cluster in the early stage
and provide accurate multi-step multi-dimensional forecasts for
the resource utilization of physical machines.

3. The Proposed Method

3.1. Motivation

In a cloud data center, the submitted tasks mainly include
CPU-intensive tasks, memory-intensive tasks, and disk I/O-
intensive tasks. When analyzing the performance of PMs, the

scheduling algorithm in a DC has a greater impact on the re-
source utilization of one single PM. Different scheduling strate-
gies will execute different scheduling schemes for the submit-
ted tasks, resulting in workload differences between PMs. Pre-
dicting the resource utilization of PMs can provide more infor-
mation to the scheduling algorithm for effective and accurate
decisions, which can make the workload of a PM rational. In
addition, within our knowledge, most research has ignored the
implicit mutual relationship between hardware. With MIMO,
we can capture the hidden relationship between hardware in one
model instead of observing them individually.

In this scenario, we found that the prediction accuracy of
ENN has a good performance with a short training time. How-
ever, ENN has a critical shortcoming in this scenario that is un-
stable. Therefore, it would be encouraging if we could improve
ENN to make its prediction more stable.

For accurate prediction and stable performance, we propose
CPW-EAMC. With the help of the noise reduction algorithm
CPW, we can enhance the robustness of models and optimize
the generalization ability and the fitting ability of the model.

3.2. CEEMDAN-PE-Wavelet (CPW)

CEEMDAN is an algorithm that decomposes a complete
signal into multiple IMFs. CEEMDAN is an improved algo-
rithm of EMD. CEEMDAN adds adaptive white noise to each
stage of its decomposition, which can eliminate model aliasing
and reduce the reconstruction error to the minimum.

PE is an indicator used to measure the complexity of time
series[35]. PE is to add a sorting step when calculating the com-
plexity between reconstructed subsequences. Suppose we have
obtained a time series of length L+ 1, T's = {ts;]i = 0, 1,2, ..., L}
where ts; is the value at moment i. We need to reconstruct, sort,
and calculate the permutation entropy of the original sequence
Ts. The greater permutation entropy, the more complex the
time series.

The resource utilization of physical machines is mainly de-
termined by the submitted tasks. However, the time when tasks
are submitted by users and the type of tasks are completely ran-
dom. It is one of the main reasons for the unstable use of phys-
ical machine resources. FT is a classical method in time series
processing. Nonetheless, FT has obvious defects in managing
non-stationary time series. Luckily, as an improvement of FT,
WT overcomes the limitations of FT in unstable series process-
ing. Therefore, WT is suitable for tackling the problems in this
paper.

We propose a noise reduction algorithm called CEEMDAN-
PE-Wavelet (CPW), which can be shown in Fig.1. This algo-
rithm decomposes the original time series through CEEMDAN
into several IMFs and a margin R. The margin R is the residu-
al amount generated after the decomposition of IMFs. We can
regard each IMF as new time-series data. For the multiple time
series data we newly obtained, we calculate permutation en-
tropy for each IMF. We need to define a threshold ¢k of permu-
tation entropy. We calculate the permutation entropy for each
IMF decomposed from the original signal and sort IMFs based
on the descending order of permutation entropy. We can aim at

the high noise subsequence for denoising through this method
and avoid the disadvantage of reducing the signal containing
important information while weakening the noise.

PE

IMF,’

IMF5'
.
CEEMDAN :
: IMF,

IMF,' | |wavelet
z transform

B

signal’

i,

b®) E

Figure 1: Process of CEEMDAN-PE-Wavelet

We select the IMFs in which permutation entropy is higher
than the given threshold tk and group them into a set IMF’
where IMF’ = {IMF;,IMF;,--- ,IMF,: . Then, we denoise
each IMF! € IMF',i € [1,k],i € N and get the collection of

processed IMFs, IMF"" = {\IMF"',IMF},--- ,IMF,'{’}. Finally,
we add up all the IMFs and the margin R we have including
the IMFs whose permutation entropy is lower than the given
tk to rebuild the denoised signal. This algorithm is described
as Algorithml. The WT() function in line 16 in Algorithm]1 is
the wavelet transform function. Since each dimension has its
own characteristics, we execute the CPW algorithm separately
on each dimension.

3.3. ENN-Attention-MLP-Context (EAMC)

As is shown in Fig.2, the traditional ENN uses a layer of
neurons as a context layer. The orange lines in Fig.2 show the
trace of state from the hidden layer to the context layer. a is a
self-feedback coefficient, which is to merge the previous con-
text state with the state at that moment. The context layer’s
primary function is to act like the recurrent component of RNN
for history information recording. However, only one layer of
neurons constrains ENN’s ability to memorize history informa-
tion.

The application of attention mechanisms in the field of ar-
tificial intelligence is relatively extensive. The attention mech-
anism mainly imitates human beings’ behavior to focus on cer-
tain important areas when observing the image. There are many
changes in the attention mechanism. Soft attention and hard at-
tention are typical representatives. The attention mechanism
mainly gives the value in a vector or a matrix more weight to
the focus area. The value of the hard attention is in {0, 1}, while
the value of soft attention is in a range of [0, 1]. The main prob-
lem of the hard attention mechanism is that its value is either
0 or 1. It will cause a large amount of information loss if the
hard attention mechanism is applied to continuous data. How-
ever, soft attention can avoid this problem, for it can maintain
the continuity of data while highlighting the key areas in the
continuous data by adjusting the weight in the range of [0,1].

Algorithm 1 CEEMDAN-PE-Wavelet.
Input:
The signal to be denoised,signal
The embedding dim of the permutation entropy, em
The delay time of the permutatuon entropy, dt
The permutatuon entropy threshold of the IMF need to be
denoise, thp,
The threshold used in wavelet transform, th,,,
Output: The signal denoised by the algorithm, signal
1: Initialize PEs with blank list, PE,,, with blank dictionary
2: IMFs «— CEEMDAN (signal)
3: for each_IMF in IMF s do:
4: PE « permutation_entropy(each_IMF, em, dt)
5: PE,,,; < {PE, each_ IMF}
6
7
8
9

: end for

. PEgor < sort(PEgor)

: for each_PE in PE,,,; do
if each_PE >th,, then:

10: IMF < PE _sortleach_PE]

11: PE,,.[each_PE] «— WT(IMF,th,,)

12: else

13: IMF s < all IMF by sorted order from PEj,,
14: end if

15: end for

16: signal « Y IMFs
17: return signal

As we mentioned before, MLP is widely used in many ar-
eas, including time series forecasting. The reference [36] is an
example of time series forecasting with MLP. We can know that
MLP has its ability in feature extraction. The MLP (shown in
Fig.3) involves an input layer, an output layer, and at least one
hidden layer between the input layer and the output layer [37].
The information in MLP is transmitted forward through layers
of neurons. The dimensions of input and output data determine
the number of neurons in the input and output layer of the MLP.

y1() y2(6)

Yn-1(8) yn()

Output layer

QQ Q0 Qe
o |
. l ce o e

Hidden layer

Input layer

Context layer

Figure 2: Structure of ENN

With this helpful tool, we proposed a new network based on
ENN called ENN-Attention-MLP-Context (as shown in Fig.4)
to enhance the memory ability of ENN. First, we use an MLP
to replace the context layer of ENN. Using MLP to expand the

context layer can improve time dependence enhancement, mak-
ing the affected time range larger. Nevertheless, by combining
the feature extraction capabilities of MLP, it can extract the fea-
tures from historical data and store the features inside the subnet
of MLP. This expansion is conducive to enhance the long-term
dependence of ENN and the capability to fit time series with

internal hidden features.

Figure 3: Structure of MLP

O
Q)

— Y1

For the sample at time ¢, X(t) = {x(t), y(t)}, x(t) € R™, y(¢) €
RY. We assume that the weight between input layer and output
layer is W". The weight between attention layer and MLP is
W™ MLP has three layers of neurons. The weight between
hidden layer and MLP is W, the weight between output layer
and hidden layer is W, and W™" is the weight between merge
layer and hidden layer while W™ is the weight between the
output of MLP and the merge layer. In input layer, the di-
mensions of input data and the number of neurons in hidden
layer are often inconsistent. We need to map the input data to
the same dimension as the hidden layer. Among the weight-
s listed above, Whi e Rmxi Wms ¢ Rmxn yhm ¢ Roxn yyoh ¢
R Wmh ¢ Rmxh yymm ¢ R<m - We define the self-feedback
coefficient between the output of MLP and the input from input
layer as a. The number of hidden layers is H. The relationship
of each layer can be expressed as follows:

FO1 - IO,

Output layer State,
t

Hidden layer

[
] |]

[Merge layer

whi

Input layer)

x()1 " x(Om

Wsm
Soft Attention State; 4

Figure 4: Structure of ENN-Attention-MLP-Context

Input Layer:
xi(1) = lin(x(2)), x;(t) € R" (1)

Merge Layer:
m@®) = (1—a) W@ - 0 +a- W) - x,(0 ()

Hidden Layer:
h(t) = m(t) - W™ (1) 3)

Inside Attention Layer:
Xa_in(?) = [Xi(2), State,] “

xaft,nut(t) = WLU(I) : xatt,in(t)a WLO € R(m—n)xn (5)

Output Layer:
net’(r) = W(t)h(1) (©6)

() = g (net’ (1)) @)

We can get the calculation expression of the MLP in the
context module through the description of MLP:

MLP, (1) = W Xant_our(1) ®)
neth;(r) = wj_ynethj_ (1) +b,1 <j < H ©)
hj = f (neth;()) (10)

Xn(t) = MLPoy(1) = W hyy (1) (11)

x;(¢) in (1) is the linear mapping result of input and lin(A) is
the linear mapping function. x,,(¢) in (2) is the output of MLP
and «a is the self-feedback coefficient. Through adjusting @, we
can adjust the ratio of historical information to the influence
of the input information at the current moment. And we can
decide whether the network will be more affected by current
information or historical information so that our network can
adapt flexibly according to the changes in our scene. State,_;
in (4) is the state from hidden layer of the last moment # — 1 and
Xarrour(2) 0 (5) is the output of Attention Layer. y(t) in (7) is the
prediction result of the network. In (8), MLP;,(t) is the input of
MLP at time ¢ and net/;(¢) in (9) is the state of hidden layer in
MLP where 1 < j < H,j € N. hjin (10) is the output of jth
hidden layer and f(A) is activation function. In our network,
the activation function in MLP is ReLU while the activation
function in output layer is sigmoid. MLP,,(¢) in (11) refers to
the output of MLP at time ¢. hy (¢) in (11) is the output of the
last layer of hidden layer.

Unlike traditional ENN, we merge the input at the current
moment through the attention mechanism and the state of the
context layer. This method can increase the impact of the cur-
rent data on historical information. During network training,
we use MSELoss (12) as the loss function.

loss (i yi) = (i — yi)* (12)

To prevent serious overfitting and enhance the robustness
of our network, we use L2 regularization on the loss function.

The objective function we need to optimize can be expressed
according to the following formula:

1 C
E@®) =200 - YO GO - y0) + B} wWiow - (13)

In the formula, $(¢) is the predicted value of our network
and y(¢) is the true value of the predicted value at that mo-
ment. W(¢) is the weight of the entire network at time ¢.

. : T . ..
W e {W’”, wms Whm yoh ws-i W“’} . C is the regularization
coeflicient.

3.4. Prediction Strategy

This article divides the prediction strategy into the training
phase and prediction phase. In the training phase, our prima-
ry purpose is to learn the trends from historical data. In order
to enable the network to fit the historical data during training
better, we use the data in label as teacher signal to guide the
training of the model. Therefore, we use the actual value as a
label in our training strategy in Fig.5(a).

However, unlike the training phase, the prediction phase
mainly tests the accuracy of the model prediction. Therefore,
we adopt the method of cyclic prediction. Our prediction for
a time period is based on the previous moment’s prediction re-
sult, which is more in line with the actual forecasting process.
The strategy we use in prediction phase is shown in Fig.5(b).

At time t, the output of (¢) consists of q dimensions(as
shown in Fig.4). These dimensions are the predicted values of
each hardware indicator we want to predict. Then, we obtain
our multi-step prediction according to the step size we want in
advance. The strategy for obtaining multi-step forecasts is as
shown in Fig.5.

State,

(b) Strategy of Testing

Figure 5: Strategy of Training and Testing

4. Improved Evaluate Metric

The commonly used evaluation criteria in the research of
time series forecasting are MAE, RMSE, and MAPE. The mod-
el established in this paper is a multi-output model; as a result,
we need to adjust the original calculation methods of MAE,
RMSE, and MAPE to a certain extent. This article uses the s-
trategy of averaging the output data when calculating the multi-
dimensional output. The formula for calculating our adjusted

error is expressed as (14), (15), (16).

dim 1 m v

MAE(X, h) = Ziet o 2tk i = vl (14)
’ dim
dim x~m 1 (= 2
RMSE(X. h) = J ol Ziel m ()’ji _yji) (15)
’ dim
dim 1 s P;‘i—yﬁ’
MAPE = — " =2 (16)
dim

The dim in (14), (15), (16) is the dimension of output data
and yj; is the ith prediction output of jth dimension. yj; is the
true value of ith datapoint of jth dimension and m is the length
of data. MAE, RMSE, and MAPE are indicators for judging the
accuracy of models. In many cases, the evaluation criteria of
the model rarely have a consistent optimal situation. Therefore,
how to comprehensively evaluate multiple evaluation criteria is
a problem worthy of study. For example, in our three indicators,
RMSE is greatly affected by outliers. If encounters a few da-
ta points with large deviations, the calculation result of RMSE
will be large, even if the overall fitting effect is good. A rela-
tively simple way to solve this problem is to comprehensively
calculate these three criteria by adding a summation method
which is shown in (17). We need to set three weights a, 5, and
v. However, this calculation method (17) has the main problem,
that is, how to set an appropriate weight. The results of different
weights will make the final calculation result have an increased
deviation. So, it is too subjective for the researcher to set this
weight subjectively to prefer a certain criterion perceptually.

S =a-MAE +B-RMSE +vy- MAPE an

In order to solve the problem that these three evaluation
standards in the comparison model are difficult to be con-
sistent and optimal, we propose a cartesian coordinate based
multi-standard performance measurement evaluation standard
(CMES), a comprehensive evaluation standard based on space
area.

We regard MAE, RMSE, and MAPE as the three axes in the
cartesian coordinate system. The area we calculate is the base
area of space tetrahedron, as shown in Fig.6.

In this paper, we use three criteria as the three axes in the
spatial rectangular coordinate system. Here, we randomly as-
sume that MAE is a’, RMSE is »’, and MAPE is ¢’. Then we
can use (18) calculate the length of the hypotenuse:

li = Va2 + b2 1, = Vb2 + 2,13 = Va2 + ¢? (18)

After calculating the lengths of these three hypotenuses, we
can caculate base area of tetrahedron with (19) and (20):

_ll+lz+l3

> 19)

CMES = \p(p—1)) (p— L) (p - 1) (20)

Figure 6: The base area of different space tetrahedrons with different colors.

To illustrate the feasibility of this method as a mapping of
three error standards. We will prove that the base area of the
tetrahedron is positively correlated with the length of three axes.
For we need the base area of the tetrahedron, we only focus on
the tetrahedron OABC in the space, as shown in Fig.7. Here, we
assume that OA = a, OB = b, OC = c. Itisclear thata,b,c > 0

We start from point A, with O as the origin, draw a per-
pendicular line to BC at point E. Then, AE 1 BC and
S aaBC = BCéAE . Since A, B, and C are on the three axes of space
rectangular coordinate system respectively, AO L ABOC. As
aresult, AO L BC. Because AE N AO = A, we can know that
BC 1 AAOE. Therefore, OE 1 BC.

Figure 7: We start from point A and draw a perpendicular line to BC at point E.
Therefore, AE L BC.

b-c _
\/bz‘Tcz, because S poc =

With AE = VAO?+OE? =
Vb2 +c2- 2

Obviously, we can get OF =
OE-BC _ BO-OC _ bc
2 = 2 = 7

2.2
225 + a?, we can get S jupc =

Then calculate the partial derivative of S ,4pc to a. We can
get 653% > 0. Without loss of generality, if we use the above
proof to draw a vertical line starting from the vertices B and C,
we can still get the result that ‘%% > 0, % > 0. The re-
sult of partial derivative shows that the area of S ,4p¢ increases
monotonically with a, b, and c. Therefore, the larger calcula-
tion result of S ,4pc, the greater overall error; the larger area of
S aaBc, the lower performance of the model. Our calculation of
the comprehensive evaluation of the error can be described in
Fig.8.

BCAE _

b2+c2

TRMSE

MAE ;\MAPE

~ “a

Figure 8: Result of proposed evaluated method. MAE, RMSE, MAPE are the
three axes in the cartesian coordinate system. The bottom area of the space
tetrahedron is the comprehensive evaluation.

If the value of a certain criterion is much larger than the
other two criteria, we can also use the square root result of this
dimension to maintain the balance of the comprehensive result.
By mapping the three axes to space, the linear relationship be-
tween area and axis in-plane described in [17] can be removed
while treating the three criteria equally.

To enable the three evaluations to be better integrated, we
hope that the various dimensions in the expression should not
be too direct. By calculating the base area of the tetrahedron,
we use Eq.(18) to increase the correlation between these three
dimensions. Through this approach, we have eliminated the
simple correlation between the three dimensions in traditional
calculation methods.

5. EXPERIMENTAL RESULTS

In this section, we will examine our model’s performance
with the data collected in an actual cloud environment. We
conducted experiments on our noise reduction algorithm and
our overall prediction model. In addition, ablation experiments
prove that our improvements to the model are effective and nec-
essary. To verify the usability and robustness of our model un-
der different architectures, we selected a dataset collected from
our cluster based on ARM architecture for the experiment. The
specific description of each dataset is described in subsections
A and B.

5.1. Dataset A: Alibaba Cluster Trace

In this part, we will introduce our experiment based on
Alibaba Cluster Trace!. The Alibaba Cluster Trace Program
is published by Alibaba Group [38]. This program contains
cluster-trace-v2017 and cluster-trace-v2018. Our experimen-
t uses cluster-trace-v2018 dataset whose sampling interval is
10s. However, the sampling interval of cluster-trace-v2017 is
300s in 12 hours. As a result, cluster-trace-v2017 has too little
data to train a model since it only contains 145 data points for
one PM.

Multiple data tables are provided in the dataset. There are
seven dimensions of data in the table that provides physical
machine performance data includes CPU utilization, memory

1 https://github.com/alibaba/clusterdata

utilization, men_gpsb(normalized memory bandwidth), net_in
(normalized incoming network traffic), net_out (normalized
outgoing network traffic), and disk I/O ([0, 100], abnormal val-
ues are of -1 or 101). Each PM has its csv document in this
dataset, which is named by its machine ID to record its re-
source utilization. However, in the raw data, the amount of
missing data in mem_gps and mkpi is relatively large, resulting
in less reference for using these two dimensions. Therefore, the
dimensions we used in this experiment were CPU utilization,
memory utilization, net_in, net_out, and disk I/O.

5.2. Dataset B: ARM-based Cloud Computing Cluster

In the ARM-based Cloud Computing Cluster, we collect P-
M resource utilization from our cloud computing cluster. Our
cluster is made up of five servers based on ARM architecture.
The hardware configuration of these five servers is the same.
Each server has 2 Kunpeng 920 CPUs and each CPU contains
48 cores. And the memory of a server is 256G. The operating
system is CentOS7. We use Openstack as a management plat-
form for our cluster. We use stress-ng to add load to the clus-
ter. The load we added includes CPU-intensive tasks, memory-
intensive tasks, disk I/O-intensive tasks, and net-intensive tasks.
Our sampling interval is 5s. We used the collected 10,000 da-
ta points for experiments. What we collected in the cluster is
mainly the utilization of CPU. The CPU utilization we collected
is divided into two dimensions: cpu_user and cpu_system. Our
data collection software does not directly collect the utilization
of resources other than the CPU. In addition, the IO operation
simulated by stress-ng will often become an operation on the
memory under the influences of the operating system, which
will lead to the inaccurate utilization of memory and disk I/O.
Therefore, the data we mainly use in our experiment is the di-
mension of CPU.

5.3. Data Preprocessing Strategy

The dataset used for time series forecasting is often a con-
tinuous time series with a large amount of data. It is irrational
for us to train our network with the entire dataset. Therefore,
we need to divide our data into several groups. Our strategy for
separating data is shown in Fig.9.

Cloud Cluster Physical Machine Usage Time Series

Training Data Validating Data Testing Data
—
| [] | |
steps_move
J []
\ J [
—

Input Data Predict Data

Figure 9: Data Consolidation Strategy

We divide the entire dataset into a training set, a validation
set, and a test set in chronological order. The test set is used to

test the model’s performance, while the validation set is used to
evaluate the performance during a stage of training. The train-
ing set is used to train the model. Fig.9 shows our organization
of the data more intuitively. The proportion of training set, val-
idation set, and test set in our experiment is about 0.8, 0.1, 0.1.
In the training set, we set the size of the time window as 20 since
this parameter is widely used in many studies. After obtaining
the label of predicted data according to the prediction step, the
starting point of the next group will move back step_move step-
s.

5.4. Denoise Algorithm Experiment

To illustrate the superiority of the noise reduction algorithm
used in this article, we evaluated the noise reduction algorith-
m under the Alibaba Cluster Trace dataset. We use SNR and
RMSE to evaluate our noise reduction algorithm. SNR is sig-
nal to noise ratio, which is described in (21). SNR is used to
measure the ratio of useful components to noise in the time se-
ries before and after noise reduction. The larger SNR, the better
effect.

P signal

SNR = 10log,,
noise
Z?:1 xz(i)

1 () = x(0)

We need to process each dimension separately when im-
plementing CPW on PM resource utilization since each has its
feature. As a result, we adopt the calculate method of RMSE,
as shown in (22). RMSE is used to measure the degree of d-
ifference between the calculated sequence and the original se-
quence. The lower RMSE, the better performance. If RMSE
is large, the calculated sequence is quite different from the o-
riginal sequence, and much information will be lost. While a s-
maller RMSE shows it closer to the original sequence, and more
information in the original sequence will be kept.

2y

= 10log,

RMSE(X, h) = i Z (h (x® — y®))? (22)
i=1

All the experiments were carried out on a server of Intel(R)
Core(TM) i7-5930K CPU @ 3.50GHz, 62G memory, and 4
GTX TiTan X 12G. The experiment environments are open-
source machine learning library Scikit-learn and deep learning
framework Pytorch with CUDA 10.0. When using the Alibaba
Cluster Trace dataset, we have found that the changes in net_in
and net_out are tiny. As we can see in Fig.10(a) and Fig.10(b),
the net_in and net_out have very small fluctuations during the
given period. They did not even change in some specific time.
This phenomenon will cause infinite value when calculating S-
NR using (21).

To solve this problem and evaluate our noise reduction al-
gorithm, we directly used the dimension of CPU utilization in
the experiment. We randomly select the resource utilization of
10 physical machines for the experiment each time and record
the average value of 10 the experiments, which is recorded in
the Average column in Table 1 and Table 2. For experimen-
t analysis, due to space limitations, we take Machine334 and

Table 1: noise reduction method compairsion result of Alibaba Cluster

Table 2: noise reduction method compairsion result of ARM cluster

. . Machine:334 Machine:2020 Average .) Machine 1 Machine 2 Average
Noise Reduction Method —cp=rprieET—SNR TRMSE | SNR %QMSE Noise Reduction Method —cp—rprier TSNR T RMSE | SNR %{MSE
SSA 23,1011 | 2.9780 | 17.0307 | 5.6484 | 20,0103 | 4.1187 SSA 213618 | 12355 | 7.1316 | 10.5429 | 9.0027 | 84030
Wavelel 203431 | 3249 | 16,7163 | 5.8567 | 19.4022 | 43781 Wavelet 175213 | 19225 | 194762 | 25453 | 187836 | 2.1453
CEEMDAN-WT | 29.7308 | 13882 | 26,1666 | 19730 | 274777 | 16746 CEEMDAN-WT | 284691 | 05400 | 28.3489 | 0.9164 | 28.2682 | 0.7258
CEEMDAN-PE-SSA | 27.5247 | 1.789% | 19.6264 | 4.1893 | 23.9053 | 2.6016 CEEMDAN-PE-SSA | 25.8029 | 0.7341 | 25.6503 | 12490 | 25.6455 | 0.9988
CEEMDAN-PE-Wavelet | 33.7634 | 0.8726 | 277386 | 1.6464 | 303495 | 12405 CEEMDAN-PE-Wavelet | 307767 | 04176 | 33.6641 | 0.4970 | 32.8425 | 0.4249

Machine2020 (which are randomly selected from our exper-
iment machines due to our limit space) in Dataset A as ex-
amples. We randomly selected the physical machine ID 334,
2020 for detailed comparison. We compare our noise reduction
algorithm with WT, SSA, CEEMDAN-WT, and a variant of
our method called CEEMDAN-PE-SSA. CEEMDAN-WT us-
es CEEMDAN to decompose the original signal. Then, it us-
es Wavelet Transform to denoise each IMF from CEEMDAN.
CEEMDAN-WT can be considered as ablation of CEEMDAN-
PE-Wavelet. In CEEMDAN-PE-SSA, we use SSA to smooth
the IMFs instead of Wavelet Transform.

For fairness, we selected the parameters of noise reduc-
tion algorithm during the experiment. When using SSA, we
select the refactor RP € {4,5,6,7,8}, time window TW €
{30,35,40,45}. The only one parameter we need to select
in Wavelet Transform and CEEMDAN-WT is wavelet thresh-
old T € {0.04,0.05,0.06,0.07,0.1}. The parameters we need
to select in CEEMDAN-PE-SSA are embedded dimensions
ED, delay time DT, refactor RP, time window TW and the
threshold of permutation entropy PT where ED € {6,7,8,9},
DT € {6,7,8,9}, RP € {6,7,8,9}, TW € {30,35,40,45},
PT €{0.4,0.5,0.6,0.7}.

The parameter we need to select in CPW is ED, DT,
PT where PT € {0.7,0.8,0.9} and wavelet threshold T €
{0.04,0.05,0.06}. In our experiment, the wavelet base is db8.
The value range of ED and DT is the same as CEEMDAN-PE-
SSA. The comparison result is shown in Table 1.

From Table 1, we can see that our noise reduction method
achieves the best result in both SNR and RMSE among the
noise reduction algorithm. The average SNR of CPW is
30.3495, which is the highest. In contrast, the average RMSE
of CPW is 1.2405, which is lower than other comparison algo-
rithms in this paper. And there is a negative correlation between

net in 159
555 — actual
5.50] !—'—,_’—l
5.45
0 50 100 150 200 250 300

(a) net in of machine 159

net out 159
662 — actual
6.60]|
6.58]
6:26 0 50 100 150 200 250 300

(b) net out of machine 159

Figure 10: Network usage of Machine 159

SNR and RMSE. Typically, the algorithm with bigger SNR will
have a smaller RMSE at the same time. CEEMDAN-WT takes
second place among the comparison method. Also, we can tel-
1 from Fig.11 that our noise reduction algorithm can preserve
the information in the original data as much as possible while
smoothing the original data.

Table 2 shows the experiment results of Dataset B. Machine
1 is the controller of our cluster while Machine 2 is one of the
members. We use the CPU usage data of these five servers for
experiments and record the average value of 10 experiments
which is recorded in Average column in Table 2.

From the result of Table 1 and Table 2, we can know that
CPW achieves the best performance while CEEMDAN-WT
ranked second. The performance of SSA in Dataset B is much
worse than that in Dataset A. Fig.12 shows the comparison re-
sult among the five noise reduction methods of Machine 1 in
dataset B. We can see from Fig.12 that CPW saves the data
at the tip better than the others. It shows that CPW smooths
and reduces noise while retaining the original information more
than other comparable models.

5.5. Model Evaluation Results

When evaluating the performance of the model, we com-
pare it with the state-of-art models in time series forecasting.
The Seq2Seq framework has recently been more and more ef-
fective in natural language processing and time series predic-
tion. In the comparative experiment, we used Seq2Seq-LSTM
[39]. This model uses an attention mechanism between the en-
coder and the decoder. We also used GRU [40] and Seq2Seq-
GRU for comparison. We used GRU to replace the LSTM in
Seq2Seq-LSTM for Seq2Seq-GRU network to test the Seq2Seq
framework’s performance in this scenario.

In addition to comparing the framework of sequence pro-
cessing, we also need to compare the models of multivariate
output. DM-LSTM [31] is Deep Multi-output LSTM neural
network. In order to illustrate the effectiveness of our denoising
algorithm, we combine Wavelet Transform with DM-LSTM as
WT-DM-LSTM.

In the previous part, we selected the parameters of the
denoise methods. In this experiment, we selected the best-
performing parameter combination to experiment. The parame-
ter combination we selected in CPW is ED = 6, DT = 8, PT =
0.9,T = 0.05. We first used the networks on the data of one
machine for the grid search. After the searching was complet-
ed, the best-performing parameter combination was used as the
setting parameter for our experiment. From the grid search re-
sult, we set the self-feedback coefficient « as 0.65, the number

Cpu user

— actual
80 - CPW

--—- CEEMDAN-PE-SSA
- CEEMDAN-WT
40
20

0

300

Figure 11: Denoise result compairsion of machine 2020 in Dataset A. Each color represent one noise reduction mathod.

of hidden layers is 3, and the number of neurons in hidden lay-
ers is 16. In GRU, TG-LSTM, and DM-LSTM, the number of
hidden layers is 3. The number of neurons in hidden layers is
16. In WT-DM-LSTM, the wavelet threshold is 0.05, and the
wavelet base is db8. For Seq2Seq-LSTM and Seq2Seq-GRU,
the experiment setting is the same as above.

In our experiments, the epoch is 500, the learning rate 7 is
0.05, batch_size is 128, and the dropout rate is 0.5. The regu-
larization coefficient C in our experiments is le-5. Since each
physical machine recorded a lot of data, we extracted the data
from the first 8000 time points for experiments. We randomly
selected ten physical machines each time and recorded the av-
erage results of CMES after ten experiments in Table 11. The
results of Machine334 and Machine2020 are shown in Table 3
and 4. The resource utilization forecasting result comparison
between the forecasted value of CPW-EAMC and the actual
value in 3 steps ahead prediction of Machine2020 is shown in
Fig.13. The horizontal axis is the time axis. We can observe the
output of every dimension at each moment since our model is
multi-output.

In Table 3 and 4, RMSE is much larger than MAE and
MAPE. Therefore, as mentioned above, we use the square root
of RMSE to calculate CMES for maintaining the balance of
these three indexes. From the tables, except for the CPW-
EAMC, the overall performance of ENN in the experiment is
better, while its performance is not stable enough. In Machine
334 and 2020, WT-DM-LSTM performed the best in the LST-
M based network in most cases. At step 6 of Table 3, GRU
achieved the worst performance, which showed that gradient
explosion might happen in this experiment.

Tabel 5 and Table 6 are experiment results of tow server in
dataset B. We use the same strategy to get the average value
of the models’ performance as in the previous part. The aver-
age results of dataset A are shown in Table 11 while Table 12
records the average results of dataset B. In Table 11, the average
CMES of ENN in step 3 is much higher than other models as
the result that ENN performs unstable. Due to the unstable per-
formance of ENN in the ten experiments, the average value is

large. CPW-EAMC achieves the best performance in Table 5 at
each step. The result of ENN has a substantial error in step 12.
In Table 6, however, the result of ENN has fewer advantages
over our model in step 12, which makes CPW-EMAC ranked
second. This phenomenon shows that the performance of ENN
in this scenario is volatile. Although ENN has fewer advantages
over our model in step 12 at Machine 2, CPW-EAMC still per-
forms the best average results. The experiment results show
that as the number of prediction steps increases, the model’s
prediction error expands accordingly. It is related to our fore-
casting strategy. Since we use the circular prediction method in
our prediction, the previous prediction error will be passed on
to the next prediction. Therefore, the shorter prediction steps,
the lower error is reflected by the model.

5.6. Ablation Experiment

To show the effectiveness of our model improvement, we
conduct ablation experiments on CPW-EAMC. We named the
improved model gradually removed as follows: (1) EMC: Re-
move CPW and attention mechanism from CPW-EAMC; (2)
EAMC: Remove CPW from CPW-EAMC. We conduct our ab-
lation experiments on the physical machines in both datasets.
As mentioned above, we use the same strategy to record the
average performance of models. The average results of abla-
tion experiments in Dataset A are shown in Table 13 while Ta-
ble 7 and 8 record the detailed result of Machine334 and Ma-
chine2020 in Dataset A. Table 14 shows the average results in
Dataset B while Tabel 9 and 10 show the detailed ablation ex-
periment results of machine 1 and machine 2 in Dataset B. All
tables show a similar trend in ablation experiments: as the pre-
diction steps increase, the performance of models decreases.

We can also conclude from the ablation experiment results
that the improved method of our model is adequate and robust.
We can see that as our model improves, deviation decrease at
each step. The CPW algorithm smoothes the data and improves
the robustness and generalization ability of the model. The at-
tention mechanism can fuse the information of the historical
state and the current moment to the MLP. While retaining the

Table 3: Machine 334 compairsion result of dataset A

Machine _id:334
Network step:3 step:6 step:9 step:12
MAE | RMSE | MAPE | CMES | MAE | RMSE | MAPE | CMES | MAE | RMSE | MAPE | CMES | MAE | RMSE | MAPE | CMES
Seq2Seq-LSTM | 0.3665 | 4.4888 | 0.0705 | 1.3707 | 0.0644 | 4.9697 | 0.0891 | 1.8323 | 0.6214 | 4.8121 | 0.0966 | 1.9033 | 0.6692 | 7.1888 | 0.1187 | 2.6612
TG-LSTM 2.6612 | 3.8585 | 0.0654 | 1.1628 | 0.4937 | 3.7940 | 0.0755 | 1.4142 | 0.4913 | 49156 | 0.0909 | 1.7093 | 0.5323 | 8.7686 | 0.1272 | 13.7267
DM-LSTM 0.2426 | 3.6757 | 0.0548 | 0.9560 | 0.4170 | 4.8930 | 0.0905 | 1.5664 | 0.3159 | 5.2529 | 0.0777 | 1.4315 | 0.4309 | 5.3986 | 0.0865 | 1.7109
WT-DM-LSTM | 0.5141 | 7.7906 | 0.1126 | 2.4643 | 0.3057 | 3.3748 | 0.0610 | 1.0103 | 0.3733 | 3.4795 | 0.0639 | 1.1455 | 0.3564 | 4.5833 | 0.0682 | 1.3714
GRU 0.2899 | 2.8745 | 0.0532 | 0.8718 | 0.6340 | 8.8743 | 0.1407 | 3.0300 | 0.3691 | 5.1454 | 0.0785 | 1.5240 | 0.3691 | 5.1454 | 0.0785 | 1.5240
Seq2Seq-GRU | 0.3490 | 4.6142 | 0.0738 | 1.3656 | 0.4320 | 5.8444 | 0.0958 | 1.8199 | 0.6137 | 5.3636 | 0.1044 | 2.0489 | 0.6262 | 5.8674 | 0.1054 | 2.2117
ENN 0.1892 | 2.5882 | 0.0414 | 0.6478 | 0.2262 | 3.2813 | 0.0557 | 0.8496 | 0.4073 | 4.0204 | 0.0744 | 1.3350 | 0.3291 | 4.4288 | 0.0736 | 1.2862
CPW-EAMC | 0.1698 | 2.5048 | 0.0382 | 0.5981 | 0.2446 | 2.8058 | 0.0512 | 0.7851 | 0.3205 | 3.6590 | 0.0605 | 1.0984 | 0.3256 | 3.6408 | 0.0621 | 1.1036
Table 4: Machine 2020 compairsion result of dataset A
Machine_id:2020
Network step:3 step:6 step:9 step:12
MAE | RMSE | MAPE | CMES | MAE | RMSE | MAPE | CMES | MAE | RMSE | MAPE | CMES | MAE | RMSE | MAPE | CMES
Seq2Seq-LSTM | 0.4674 | 2.9268 | 0.0849 | 1.1371 | 0.5237 | 3.6320 | 0.0960 | 1.4156 | 0.4873 | 3.7720 | 0.1040 | 1.4042 | 0.5167 | 6.2930 | 0.1425 | 2.1256
TG-LSTM 0.4286 | 3.3383 | 0.0879 | 1.1982 | 0.4996 | 2.8574 | 0.0855 | 1.1568 | 0.5030 | 3.0452 | 0.0903 | 1.2172 | 0.5962 | 4.5812 | 0.1268 | 1.8029
DM-LSTM 0.4830 | 3.0068 | 0.0886 | 1.1805 | 0.5274 | 2.9321 | 0.0898 | 1.2135 | 0.5169 | 3.0644 | 0.0891 | 1.2402 | 0.5278 | 3.8217 | 0.0977 | 1.4758
WT-DM-LSTM | 0.5300 | 2.6102 | 0.0868 | 1.1169 | 0.4926 | 3.0561 | 0.0909 | 1.2073 | 0.5406 | 3.2300 | 0.0942 | 1.3203 | 0.4063 | 2.9547 | 0.0845 | 1.0650
GRU 0.1590 | 2.1023 | 0.0449 | 0.5112 | 0.4464 | 4.2782 | 0.1026 | 1.4727 | 0.5754 | 4.6986 | 0.1169 | 1.8007 | 0.3589 | 3.1837 | 0.0815 | 1.0557
Seq2Seq-GRU | 0.4765 | 3.3034 | 0.0938 | 1.2570 | 0.4932 | 3.1321 | 0.0897 | 1.2299 | 0.4786 | 3.5113 | 0.0939 | 1.3176 | 0.4617 | 3.3108 | 0.0888 | 1.2377
ENN 0.2376 | 2.2015 | 0.0538 | 0.6475 | 0.1989 | 3.0471 | 0.0700 | 0.7637 | 0.3241 | 3.5274 | 0.0870 | 1.0842 | 0.4624 | 3.5510 | 0.0905 | 1.3044
CPW-EAMC | 0.1318 | 2.2080 | 0.0439 | 0.4847 | 0.2325 | 2.4518 | 0.0579 | 0.6949 | 0.2794 | 2.6526 | 0.0651 | 0.8094 | 0.3068 | 3.2497 | 0.0835 | 0.9921
Table 5: Machine 1 compairsion result of dataset B
Network step:3 step:6 step:9 step:12
MAE | RMSE | MAPE | CMES | MAE | RMSE | MAPE | CMES | MAE | RMSE | MAPE | CMES | MAE | RMSE | MAPE | CMES
Seq2Seq-LSTM | 0.6634 | 2.4558 | 0.1907 | 1.3539 | 0.9084 | 3.1559 | 0.2456 | 1.7782 | 0.9441 | 3.1852 | 0.2411 | 1.8052 | 1.0170 | 3.2541 | 0.2466 | 1.8692
TG-LSTM 0.6918 | 2.4906 | 0.1937 | 1.3831 | 0.9828 | 3.2624 | 0.2411 | 1.8551 | 0.8518 | 3.2364 | 0.2298 | 1.7768 | 0.9270 | 3.1450 | 0.2468 | 1.7829
DM-LSTM 0.7363 | 2.5619 | 0.1796 | 1.4301 | 0.9422 | 3.1641 | 0.2444 | 1.7969 | 0.9824 | 3.2512 | 0.2417 | 1.8505 | 0.9219 | 3.1512 | 0.2434 | 1.7817
WT-DM-LSTM | 0.6661 | 2.3855 | 0.1906 | 1.3267 | 0.9094 | 3.1328 | 0.2503 | 1.7711 | 0.9108 | 3.1501 | 0.2575 | 1.7821 | 0.9288 | 3.2445 | 0.2397 | 1.8219
GRU 0.8154 | 2.6306 | 0.2170 | 1.5064 | 0.9027 | 2.9327 | 0.2196 | 1.6733 | 1.1015 | 3.3276 | 0.2478 | 1.9376 | 0.9213 | 3.1419 | 0.2432 | 1.7775
Seq2Seq-GRU | 0.7487 | 2.4344 | 0.1817 | 1.4270 | 0.7985 | 3.0564 | 0.2140 | 1.6717 | 1.0691 | 3.7245 | 0.2456 | 2.0883 | 1.2263 | 4.1183 | 0.3800 | 2.400
ENN 0.6653 | 2.4344 | 0.1817 | 1.3437 | 0.8430 | 2.9689 | 0.2220 | 1.6612 | 0.9314 | 3.1396 | 0.2599 | 1.7883 | 11.1818 | 31.0233 | 2.4823 | 24.2579
CPW-EAMC | 0.6734 | 2.3758 | 0.1813 | 1.3237 | 0.8584 | 2.9369 | 0.2287 | 1.6578 | 0.8905 | 3.1384 | 0.2412 | 1.7607 | 0.9066 | 3.0949 | 0.2429 | 1.7511
250 Cpu user % —
| - acClUa
2 2 . 5 :Ar 1 - CPW
20.0 A v A A K \‘ ---- CEEMDAN-PE-SSA
& LEATA Bk g 14 ---- CEEMDAN-WT
1 7 & 5 ! ; ; \ "‘h" ;t :‘ \ i ”1 ‘,| [¥ ,’: e WT
15.0p 74 | Lo [» R " han | —--- SSA
125 VERA R "x af TR |
S 4 Vi i WAV 1\ U 2 f
10.0 { L i i '.
7.5 ! ‘ v Y
5.0
0 50 100 150 200 250 300

Figure 12: Denoise result compairsion of machine 1 in Dataset B. Each color represent one noise reduction mathod. The data shown in this picture is cpu_user.

Table 6: Machine 2 compairsion result of dataset B

Network step:3 step:6 step:9 step:12
MAE | RMSE | MAPE | CMES | MAE | RMSE | MAPE | CMES | MAE | RMSE | MAPE | CMES | MAE | RMSE | MAPE | CMES
Seq2Seq-LSTM | 1.5757 | 3.2349 | 0.2795 | 2.0779 | 1.9216 | 3.7200 | 0.3207 | 2.4311 | 1.6231 | 3.3135 | 0.2894 | 2.1339 | 1.7932 | 3.5895 | 0.3073 | 2.3247
TG-LSTM 12013 | 2.5614 | 0.2033 | 1.6177 | 1.3986 | 3.0414 | 0.2465 | 1.9191 | 1.6679 | 3.3514 | 0.2954 | 2.1679 | 1.9045 | 3.8065 | 0.3079 | 2.4622
DM-LSTM 1.2499 | 2.5821 | 0.2134 | 1.6452 | 1.3995 | 2.9864 | 0.2420 | 1.8920 | 1.6219 | 3.3369 | 0.2726 | 2.1380 | 2.1025 | 4.0834 | 0.3501 | 2.6739
WT-DM-LSTM | 1.1874 | 2.5544 | 0.2042 | 1.6101 | 1.4363 | 2.9889 | 0.2433 | 1.9052 | 1.7566 | 3.5115 | 0.2988 | 2.2726 | 1.8504 | 3.6757 | 0.3133 | 2.3857
GRU 1.1121 | 2.3992 | 0.1899 | 1.5095 | 1.4659 | 3.0237 | 0.2412 | 1.9302 | 1.6380 | 3.5115 | 0.2988 | 2.2726 | 2.0170 | 4.1658 | 0.2946 | 2.6628
Seq2Seq-GRU | 1.3115 | 2.6435 | 0.2201 | 1.6951 | 1.7230 | 3.3661 | 0.2896 | 2.1887 | 2.1028 | 4.2748 | 0.3360 | 2.7591 | 1.9145 | 3.9130 | 0.3229 | 2.5231
ENN 1.1097 | 2.4062 | 0.1982 | 1.5139 | 1.4672 | 3.2279 | 0.2632 | 2.0344 | 1.5772 | 3.3908 | 0.2742 | 2.1504 | 1.6014 | 3.4050 | 0.2642 | 2.1610
CPW-EAMC | 1.0659 | 2.3306 | 0.1894 | 1.4622 | 1.3603 | 2.9276 | 0.2399 | 1.8512 | 1.5550 | 3.3568 | 0.2675 | 2.1247 | 1.7037 | 3.5900 | 0.2943 | 2.2922
Table 7: Ablation experiment result of Machine 334 in Dataset A
Machine _id:334
Network step:3 step:6 step:9 step:12
MAE | RMSE | MAPE | CMES | MAE | RMSE | MAPE | CMES | MAE | RMSE | MAPE | CMES | MAE | RMSE | MAPE | CMES
EMC 0.2047 | 2.9008 | 0.0455 | 0.7343 | 0.2943 | 3.0779 | 0.0547 | 0.9243 | 0.3559 | 3.7174 | 0.0644 | 1.1736 | 0.4081 | 4.1035 | 0.0756 | 1.3569
EAMC 0.1943 | 2.6577 | 0.0406 | 0.6690 | 0.2568 | 2.7965 | 0.0489 | 0.8022 | 0.3573 | 3.5425 | 0.0642 | 1.1349 | 0.3321 | 3.8784 | 0.0710 | 1.1706
CPW-EAMC | 0.1698 | 2.5048 | 0.0382 | 0.5981 | 0.2446 | 2.8058 | 0.0512 | 0.7851 | 0.3205 | 3.6590 | 0.0605 | 1.0984 | 0.3256 | 3.6408 | 0.0621 | 1.1036
Table 8: Ablation experiment result of Machine 2020 in dataset A
Machine_id:2020
Network step:3 step:6 step:9 step:12
MAE | RMSE | MAPE | CMES | MAE | RMSE | MAPE | CMES | MAE | RMSE | MAPE | CMES | MAE | RMSE | MAPE | CMES
EMC 0.2294 | 2.2526 | 0.0535 | 0.6471 | 0.3361 | 2.6255 | 0.0712 | 0.8835 | 0.3644 | 2.7963 | 0.0801 | 0.9666 | 0.4557 | 3.8529 | 0.0923 | 1.3751
EAMC 0.1682 | 2.2658 | 0.0472 | 0.5561 | 0.2369 | 2.5199 | 0.0625 | 0.7174 | 0.2911 | 2.6158 | 0.0655 | 0.8180 | 0.3033 | 3.3507 | 0.0790 | 1.0071
CPW-EAMC | 0.1318 | 2.2080 | 0.0439 | 0.4847 | 0.2325 | 2.4518 | 0.0579 | 0.6949 | 0.2794 | 2.6526 | 0.0651 | 0.8094 | 0.3068 | 3.2497 | 0.0835 | 0.9921
Table 9: Ablation experiment result of Machine 1 in dataset B
Network step:3 step:6 step:9 step:12
MAE | RMSE | MAPE | CMES | MAE | RMSE | MAPE | CMES | MAE | RMSE | MAPE | CMES | MAE | RMSE | MAPE | CMES
EMC 0.6998 | 2.3980 | 0.1802 | 1.3453 | 0.8444 | 3.1005 | 0.2608 | 1.7316 | 0.9354 | 3.1259 | 0.2378 | 1.7753 | 0.9144 | 3.2511 | 0.2410 | 1.8182
EAMC 0.7025 | 2.4640 | 0.1763 | 1.3728 | 0.8988 | 2.9611 | 0.2291 | 1.6866 | 0.8946 | 3.1238 | 0.2496 | 1.7601 | 0.9684 | 3.2202 | 0.2304 | 1.8270
CPW-EAMC | 0.6734 | 2.3758 | 0.1813 | 1.3237 | 0.8584 | 29369 | 0.2287 | 1.6578 | 0.8905 | 3.1384 | 0.2412 | 1.7607 | 0.9066 | 3.0949 | 0.2429 | 1.7511
Table 10: Ablation experiment result of Machine 2 in dataset B
Network step:3 step:6 step:9 step:12
MAE | RMSE | MAPE | CMES | MAE | RMSE | MAPE | CMES | MAE | RMSE | MAPE | CMES | MAE | RMSE | MAPE | CMES
EMC 1.0864 | 2.3534 | 0.1921 | 1.4801 | 1.4295 | 3.0412 | 0.2527 | 1.9309 | 1.6216 | 3.4556 | 0.2642 | 2.1914 | 1.8115 | 3.7999 | 0.3286 | 2.4408
EAMC 1.0701 | 2.3388 | 0.1894 | 1.4674 | 1.3849 | 2.9880 | 0.2445 | 1.8890 | 1.5902 | 3.4424 | 0.2747 | 2.1790 | 1.7319 | 3.6603 | 0.2923 | 2.3334
CPW-EAMC | 1.0659 | 2.3306 | 2.3304 | 1.4622 | 1.3603 | 2.9276 | 0.2399 | 1.8512 | 1.5550 | 3.3568 | 0.2675 | 2.1247 | 1.7037 | 35900 | 0.2943 | 2.2922

cpu_util_percent

— actual
—— forecast

net in

45 —— actual
40 —— forecast

net out

325 —— actual
275 —— forecast

0 100 200 300 400 500 600 700
disk io_percent

—— actual
—— forecast

Figure 13: Three steps ahead forecasting results of machine 2020 with CPW-EAMC at each dimension

cpu_util_percent

0 50 100 150 200 250 300

— EMC
—— EAMC
—— CPW_EAMC

300

45 — actual
40 e

—— CPW_EAMC
30 -

0 50 100 150 200 250 300
net_out

— actual
— EMC
—— EAMC
—— CPW_EAMC

0 50 100 150 200 250 300
disk_io_percent

— actual
— EMC

— EAMC
—— CPW_EAMC

Figure 14: Ablation experiment compairsion result of machine 2020 in three steps ahead prediction. To highlight the details, we only selected 300 data points.

Table 11: Average CMES compairsion results of 10 machines in dataset A

Network step:3 step:6 | step:9 | step:12
Seq2Seq-LSTM | 2.3053 | 2.6857 | 2.9305 | 3.2955
TG-LSTM 1.6918 | 2.0323 | 2.4364 | 2.9645
DM-LSTM 1.1779 | 1.7956 | 2.7897 | 2.4955
WT-DM-LSTM | 1.8078 | 2.0876 | 2.7006 | 2.6229
GRU 1.2681 | 2.2486 | 2.4695 | 2.6453
Seq2Seq-GRU | 2.2645 | 2.9746 | 2.8019 | 2.8996
ENN 10.2754 | 1.6484 | 3.8027 | 2.2610
CPW-EAMC | 1.0053 | 1.3908 | 1.7403 | 1.9354

Table 12: Average CMES compairsion results of 5 machines in dataset B

Network step:3 | step:6 | step:9 | step:12
Seq2Seq-LSTM | 1.7181 | 2.0476 | 2.0523 | 2.2003
TG-LSTM 1.6021 | 1.9903 | 2.0638 | 2.1391
DM-LSTM 1.5407 | 1.9374 | 2.1048 | 2.1516
WT-DM-LSTM | 1.5845 | 1.9468 | 2.0614 | 2.1341
GRU 1.6705 | 1.9398 | 2.0934 | 2.1702
Seq2Seq-GRU | 1.7501 | 1.9639 | 2.1893 | 2.2617
ENN 1.4790 | 2.3334 | 2.0672 | 6.6017
CPW-EAMC | 14769 | 1.8436 | 2.0411 | 2.1052

Table 13: Average CMES compairsion results of 10 machines in ablation ex-
periment of dataset A

Network step:3 | step:6 | step:9 | step:12
EMC 1.2772 | 2.6281 | 2.1727 | 2.2610
EAMC 1.1837 | 1.6428 | 2.0440 | 1.9798
CPW-EAMC | 1.0053 | 1.3908 | 1.7403 | 1.9354

Table 14: Average CMES compairsion results of 5 machines in ablation exper-
iment of dataset B

Network step:3 | step:6 | step:9 | step:12
EMC 1.4990 | 1.9242 | 2.0724 | 2.1505
EAMC 1.4902 | 1.8570 | 2.0623 | 2.1220
CPW-EAMC | 14769 | 1.8436 | 2.0411 | 2.1052

historical information under long-term dependence, the impact
of the current input at the same time is enhanced, thereby im-
proving the model’s fitting ability to the data.

5.7. Discussion

In this part, we will discuss the cost of models in this paper.
With the help of the tool named Thop?[41], we can analyze the
floating-point operations (flops), and the number of parameters
(params) in each model. Flops and params can be used to
calculate the amount of computation of a neural network. To
discuss the cost of models concisely, we use an input sample
of Dataset B for experiments. Table 15 records flops, params
and training_time of the models compared in this paper.

As shown in Table 15, the flops and params of TG-LSTM
is the least while its training_time is the longest. The time-
consuming operation in TG-LSTM leads to this phenomenon.
With the gradual improvement of the model from the original
ENN to EAMC, the computational cost increases. Neverthe-
less, our model is still competitive in terms of overhead com-
pared to other models.

In this scenario, we conducted experiments on ENN and
other prediction networks. We found that the prediction accura-
cy of ENN has an acceptable performance with a short training
time. However, the performance of ENN is not stable enough,
which is caused by the single-layer neurons of the context lay-
er. With the use of MLP, this network can remember historical
features in long-time dependency. Therefore, the network can
have a more stable and more accurate prediction. Furthermore,
setting a self-feedback coefficient @ can effectively focus atten-
tion on the recent period, enhancing the impact of recent data
and improving the ability to fit sudden changes.

Table 15: Cost of models with input of Dataset B

flops params | training_time(s)
Seq2SeqGRU | 187416576 | 52012 3308.3
GRU 860209152 | 16290 47242
Seq2Seq-LSTM | 302776320 | 66988 3783.8
TG-LSTM 360448 258 6935.4
DM-LSTM 57212928 | 21666 1391.4
ENN 2998272 1314 1513.7
EMC 10862592 4482 2296.3
EAMC 21512192 8738 28274

6. Conclusion and Future Work

We can extract the trend from historical data and predict
the future value of PM resources utilization through time se-
ries forecasting technology. The resource utilization forecast-
ing of physical machines can provide the scheduling algorithm
with future information for scheduling decisions. Therefore,
the scheduling algorithm can make a more efficient scheduling
decision base on multi-dimensional predictive information.

2Thop:Pytorch-Opcounter. https://pypi.org/project/thop/

For the first time, we propose a noise reduction algorithm
for processing the utilization of PM resources in a cloud data
center and present a MIMO model for PM resource usage pre-
diction. We use CEEMDAN-PE-Wavelet to reduce the noise of
the original physical machine resource utilization data. In or-
der to enhance the long-term dependency of ENN, we replace
the context layer with a network unit MLP with feature extrac-
tion and memory capabilities. To highlight the influence of the
input data at the current moment, we adopt an attention mecha-
nism so that the network can pay more attention to learning the
features of the current moment while maintaining long-term de-
pendence on resource utilization data. Using the physical ma-
chine data collected by Alibaba Cluster Trace to evaluate the
performance of the CPW-EAMC model, we can see that the
model has a performance improvement compared with the cur-
rent latest time-series processing framework in this scenario.

The resource utilization of physical machines in cloud da-
ta centers has a great relationship with the types of submitted
tasks by users and the scheduling algorithm of data centers. As
time goes by, the historical trends will vary from period to pe-
riod. It will cause the original forecasting model to become
unusable. Therefore, we will focus on adapting our network
into an online training model in our future work. With a more
accurate prediction model, the scheduling algorithm can make a
more efficient scheduling strategy to alleviate the waste of data
center resources.

Acknowledgment

This work was supported in part by the Guangdong Ma-
jor Project of Basic and Applied Basic Research under Project
2019B030302002, in part by the Science and Technology Ma-
jor Project of Guangzhou under number 202007030006, in part
by the Industrial Development Fund Project of Guangzhou un-
der Project X2JSD8183470, in part by the Engineering and
Technology Research Center of Guangdong Province for L-
ogistics Supply Chain and Internet of Things under Project
GDDST[2016]176, and in part by National Natural Science
Foundation of China (62072187, 61872084, 61772205).

References

[1] Y. Liu, X. Wei, J. Xiao, Z. Liu, Y. Xu, Y. Tian, Energy consumption and
emission mitigation prediction based on data center traffic and pue for
global data centers, Global Energy Interconnection 3 (3) (2020) 272-282.

[2] Data centres and data transmission networks, https://www.iea.org/
reports/data-centres-and-data-transmission-networks Ac-
cessed Dec 16, 2020.

[3] Z. Zhou, J. Abawajy, M. Chowdhury, Z. Hu, K. Li, H. Cheng, A. A.
Alelaiwi, F. Li, Minimizing sla violation and power consumption in cloud
data centers using adaptive energy-aware algorithms, Future Generation
Computer Systems 86 (2018) 836-850.

[4] L. Li, J. Dong, D. Zuo, J. Wu, Sla-aware and energy-efficient vm con-
solidation in cloud data centers using robust linear regression prediction
model, IEEE Access 7 (2019) 9490-9500.

[5] F. Liu, Z. Ma, B. Wang, W. Lin, A virtual machine consolidation algo-
rithm based on ant colony system and extreme learning machine for cloud
data center, IEEE Access 8 (2019) 53-67.

[6] J. Kumar, A. K. Singh, Workload prediction in cloud using artificial neu-
ral network and adaptive differential evolution, Future Generation Com-
puter Systems 81 (2018) 41-52.

(71

(8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

F. Farahnakian, T. Pahikkala, P. Liljeberg, J. Plosila, H. Tenhunen, Uti-
lization prediction aware vm consolidation approach for green cloud com-
puting, in: 2015 IEEE 8th International Conference on Cloud Computing,
IEEE, 2015, pp. 381-388.

E. Zharikov, S. Telenyk, P. Bidyuk, Adaptive workload forecasting in
cloud data centers, Journal of Grid Computing 18 (1) (2020) 149-168.
N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-
C. Yen, C. C. Tung, H. H. Liu, The empirical mode decomposition and
the hilbert spectrum for nonlinear and non-stationary time series analy-
sis, Proceedings of the Royal Society of London. Series A: mathematical,
physical and engineering sciences 454 (1971) (1998) 903-995.

Z. Wu, N. E. Huang, Ensemble empirical mode decomposition: a noise-
assisted data analysis method, Advances in adaptive data analysis 1 (01)
(2009) 1-41.

X. Cheng, J. Mao, J. Li, H. Zhao, C. Zhou, X. Gong, Z. Rao, An
eemd-svd-lwt algorithm for denoising a lidar signal, Measurement (2020)
108405.

M. E. Torres, M. A. Colominas, G. Schlotthauer, P. Flandrin, A complete
ensemble empirical mode decomposition with adaptive noise, in: 2011
IEEE international conference on acoustics, speech and signal processing
(ICASSP), IEEE, 2011, pp. 4144-4147.

J. Cao, Z. Li, J. Li, Financial time series forecasting model based on
ceemdan and Istm, Physica A: Statistical Mechanics and its Applications
519 (2019) 127-139.

P. Bento, J. Pombo, M. Calado, S. Mariano, Optimization of neural net-
work with wavelet transform and improved data selection using bat algo-
rithm for short-term load forecasting, Neurocomputing 358 (2019) 53-71.
W. Qiao, Z. Yang, Forecast the electricity price of us using a wavelet
transform-based hybrid model, Energy 193 (2020) 116704.

Y. Li, Y. Li, X. Chen, J. Yu, H. Yang, L. Wang, A new underwater acoustic
signal denoising technique based on ceemdan, mutual information, per-
mutation entropy, and wavelet threshold denoising, Entropy 20 (8) (2018)
563.

A. R. S. Parmezan, V. M. Souza, G. E. Batista, Evaluation of statistical
and machine learning models for time series prediction: Identifying the
state-of-the-art and the best conditions for the use of each model, Infor-
mation Sciences 484 (2019) 302-337.

S. Galeshchuk, Neural networks performance in exchange rate prediction,
Neurocomputing 172 (2016) 446-452.

J. T. Connor, R. D. Martin, L. E. Atlas, Recurrent neural networks and
robust time series prediction, IEEE transactions on neural networks 5 (2)
(1994) 240-254.

Y. Hu, X. Sun, X. Nie, Y. Li, L. Liu, An enhanced Istm for trend following
of time series, IEEE Access 7 (2019) 34020-34030.

B. Yang, S. Sun, J. Li, X. Lin, Y. Tian, Traffic flow prediction using Istm
with feature enhancement, Neurocomputing 332 (2019) 320-327.

S. O. Sahin, S. S. Kozat, Nonuniformly sampled data processing using 1-
stm networks, IEEE transactions on neural networks and learning systems
30 (5) (2018) 1452-1461.

J. Hu, W. Zheng, Multistage attention network for multivariate time series
prediction, Neurocomputing 383 (2020) 122—-137.

Z. Lin, L. Cheng, G. Huang, Electricity consumption prediction based
on Istm with attention mechanism, IEEJ Transactions on Electrical and
Electronic Engineering 15 (4) (2020) 556-562.

Z. Niu, Z. Yu, W. Tang, Q. Wu, M. Reformat, Wind power forecasting
using attention-based gated recurrent unit network, Energy 196 (2020)
117081.

J. Wang, A deep learning approach for atrial fibrillation signals classifica-
tion based on convolutional and modified elman neural network, Future
Generation Computer Systems 102 (2020) 670-679.

Y. Wang, L. Wang, F. Yang, W. Di, Q. Chang, Advantages of direct input-
to-output connections in neural networks: the elman network for stock
index forecasting, Information Sciences (2020).

Y. Zhang, X. Wang, H. Tang, An improved elman neural network with
piecewise weighted gradient for time series prediction, Neurocomputing
359 (2019) 199-208.

W. Wu, W. Lin, L. He, G. Wu, C.-H. Hsu, A power consumption model
for cloud servers based on elman neural network, IEEE Transactions on
Cloud Computing (2019).

Y. Bao, T. Xiong, Z. Hu, Multi-step-ahead time series prediction using
multiple-output support vector regression, Neurocomputing 129 (2014)

(31]

[32]

(33]

[34]

(35]

[36]

[37]

(38]

(39]

[40]

[41]

482-493.

Y. Zhou, F-J. Chang, L.-C. Chang, I.-F. Kao, Y.-S. Wang, Explore a
deep learning multi-output neural network for regional multi-step-ahead
air quality forecasts, Journal of cleaner production 209 (2019) 134-145.
S. Jeddi, S. Sharifian, A hybrid wavelet decomposer and gmdh-elm en-
semble model for network function virtualization workload forecasting in
cloud computing, Applied Soft Computing 88 (2020) 105940.

M. Kim, J. Jun, N. Kim, Y. Song, C. S. Pyo, Sequence-to-sequence model
for building energy consumption prediction, in: 2018 International Con-
ference on Information and Communication Technology Convergence
(ICTC), IEEE, 2018, pp. 1243-1245.

H. M. Nguyen, G. Kalra, D. Kim, Host load prediction in cloud com-
puting using long short-term memory encoder—decoder, The Journal of
Supercomputing 75 (11) (2019) 7592-7605.

C. Bandt, B. Pompe, Permutation entropy: a natural complexity measure
for time series, Physical review letters 88 (17) (2002) 174102.

T. Koskela, M. Lehtokangas, J. Saarinen, K. Kaski, Time series predic-
tion with multilayer perceptron, fir and elman neural networks, in: Pro-
ceedings of the World Congress on Neural Networks, Citeseer, 1996, pp.
491-496.

M. Shiblee, P. K. Kalra, B. Chandra, Time series prediction with multilay-
er perceptron (mlp): a new generalized error based approach, in: Interna-
tional Conference on Neural Information Processing, Springer, 2008, pp.
37-44.

J. Guo, Z. Chang, S. Wang, H. Ding, Y. Feng, L. Mao, Y. Bao, Who
limits the resource efficiency of my datacenter: An analysis of alibaba
datacenter traces, in: 2019 IEEE/ACM 27th International Symposium on
Quality of Service (IWQoS), IEEE, 2019, pp. 1-10.

F.Li, Z. Gui, Z. Zhang, D. Peng, S. Tian, K. Yuan, Y. Sun, H. Wu, J. Gong,
Y. Lei, A hierarchical temporal attention-based Istm encoder-decoder
model for individual mobility prediction, Neurocomputing (2020).

F. Shahid, A. Zameer, M. Muneeb, Predictions for covid-19 with deep
learning models of Istm, gru and bi-Istm, Chaos, Solitons & Fractals 140
(2020) 110212.

Y. Wu, Z. Wang, Y. Shi, J. Hu, Enabling on-device cnn training by self-
supervised instance filtering and error map pruning, IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 39 (11)
(2020) 3445-3457.

Guoxiang Zhong

X

Yongde Zhang

~
e

Fagui Liu

i

Minxian Xu

[”r/

Cﬂ/ﬂ”; I

Bin Wang

Lin Weiwei

