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Abstract
Graph Neural Networks (GNNs) have demonstrated remarkable

capabilities in handling graph data. Typically, GNNs recursively

aggregate node information, including node features and local topo-

logical information, through a message-passing scheme. However,

most existing GNNs are highly sensitive to neighborhood aggre-

gation, and irrelevant information in the graph topology can lead

to inefficient or even invalid node embeddings. To overcome these

challenges, we propose a novel Space Gravity-based Graph Neural

Network (Gravity-GNN) guided by Deep Reinforcement Learning

(DRL). In particular, we introduce a novel similarity measure called

“node gravity”, inspired by gravity between particles in space to com-

pare nodes in graph data. Furthermore, we employ DRL technology

to learn and select the most suitable number of adjacent nodes for

each node. Our experimental results on various real-world datasets

demonstrate that Gravity-GNN outperforms state-of-the-art meth-

ods regarding node classification accuracy, while exhibiting greater

robustness against disturbances.
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1 Introduction
Graph data is ubiquitous in a multitude of practical applications,

with numerous real-world phenomena naturally exhibiting graph

structures, e.g., social networks, expression networks, and knowl-

edge graphs [16]. A wide spectrum of tasks depends on the analysis

and manipulation of such graph data, including anomaly detec-

tion [25], molecular structure generation [4, 22], social network

analysis [6] and wireless communication systems [12, 29, 31]. These

tasks hinge on the ability to efficiently construct node embeddings,

which serve as a foundational step in graph processing. The suc-

cessful development of Graph Neural Networks (GNNs) and their

variants has substantially advanced the fields mentioned above.

GNNs have demonstrated remarkable capabilities in effectively

managing and analyzing graph data. At the core of GNNs lies the

fundamental concept of designing effective message-passing and

information-aggregation strategies that enable the seamless propa-

gation of information across graph topologies.

Graph data is often noisy, with the central node frequently con-

nected to neighbors that introduce harmful information for down-

stream tasks. For example, in social networks, the presence of fake

users or incorrect connections can cause topology anomalies, lead-

ing to irrelevant neighbors being associated with the central node.

Unfortunately, state-of-the-art GNNs have exhibited suboptimal

performance in fusing node features and topology, leading to the ac-

quisition of inefficient or ineffective node representations [27]. This

is because the presence of outlier neighbor nodes dilutes the true

underlying information and hinders effective learning [2]. Thus, the

development of robust techniques to filter outlier neighbor nodes

for each node in GNNs remains a challenging and imperative issue.

The ability of GNNs to fuse node features and topology in recent

studies is far from optimal or even satisfactory, which will lead

to GNNs learning inefficient or even ineffective node representa-

tions [27]. A large amount of information gleaned from anomalous

neighbors dilutes the true underlying information [2, 19, 27]. Thus,

how to filter outlier neighbor nodes for each node in GNNs is a

challenging and imperative issue.

To address the aforementioned challenges, we propose a two-

fold approach. First, we introduce a novel similarity measure called

“node gravity” to measure the similarity between nodes in graph

data. Inspired by the concept of gravity in particle physics, we

utilize the information entropy of nodes as the masses of particles
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and the cosine distance of node features as the distance between

particles. By incorporating both the local topology information of

the nodes and their features, the node gravity can more effectively

express the similarity between nodes. Second, we propose a policy

of adaptively selecting the number of abnormal neighbor nodes for

filtering according to different nodes. The main contributions can

be summarized as follows:

• To effectively measure the similarity between nodes in graph

data, we design a novel metric called “node gravity”. The met-

ric incorporates both the local topology information between

nodes and features, enabling it to capture the underlying

similarities between nodes more comprehensively.

• We propose a novel GNN framework called Gravity-GNN,

which incorporates the concept of gravity between nodes to

improve graph representation learning. Gravity-GNN mod-

els the process of node filtering neighbors in GNN training

as a Markov Decision Process (MDP), and applies DRL tech-

niques to dynamically optimize the number of sampled nodes

for each node in the graph. To the best of our knowledge,

Gravity-GNN is the first work to use the concept of space

gravity for graph representation learning, while also sup-

porting reinforcement learning.

• Extensive experiments conducted on four real-world datasets

clearly demonstrate that Gravity-GNN outperforms current

popular GNNs on node classification tasks and achieves

state-of-the-art performance. The evaluation across multiple

benchmarks verifies the superiority of the proposed Gravity-

GNN on node classification tasks, achieving state-of-the-art

performance on four real-world datasets.

The remainder of this paper is structured as follows. Section 2

provides an overview of existing research on GNNs, including

recent work on reinforcement learning for graph representation.

In Section 3, we present the proposed Gravity-GNN framework,

along with a theoretical analysis of its key components. Section 4

presents the results of extensive experiments conducted to evaluate

the performance of Gravity-GNN. Section 5 concludes this paper.

2 Related work
In this section, we briefly review existing work on GNNs and rein-

forcement learning on graph representation learning.

2.1 Graph Neural Networks
Since GNNs are well-suited for processing graph-structured data,

they have gained widespread popularity recently as an effective

approach for graph representation learning. The first model to ap-

ply Convolutional Neural Networks (CNNs) directly to graphs was

proposed by Kipf et al. [7]. Their approach utilizes a local first-order
approximation of spectral graph convolution, which leverages a

convolutional architecture to learn hidden layer representations

that encode both the local graph structure and node features. Drope-

dge [21] is an approach that randomly drops a certain proportion of

edges from the input graph during each training epoch. This tech-

nique is used to slow down the convergence rate of over-smoothing

and mitigate the resulting loss of information. However, Drope-

dge ignores the relationships between nodes, which can limit its

effectiveness. RioGNN [19] employs a label-aware neural similar-

ity measure to determine the importance of each relationship, al-

lowing it to identify the individual significance of different edges.

However, RioGNN only relies on node attributes to identify the

importance of nodes, and it does not consider the local topology of

nodes. PTDNet [13] is an approach that prunes task-independent

edges to improve generalization. This is achieved by penalizing the

number of edges in a sparse graph using a parameterized network.

In contrast, prior approaches such as [27] have proposed similar-

ity measures based on node attributes, such as cosine similarity,

but have ignored the local structural information between nodes.

Geom-GCN [18] is an approach that addresses the issue of miss-

ing structural information of nodes in communities by employing

an information aggregation scheme. This scheme includes node

embeddings, structural neighborhoods, and bi-level aggregation.

2.2 DRL-Empowered Graph Neural Networks
DRL has begun to play a pivotal role in applications involving

graph data, as it can further exploit the capabilities of DNNs for

sequential decision-making with reinforcement learning [15] and

improve the applicability of GNNs, e.g., edge computing [24, 28],

vaccine supply [10] and job-shop scheduling [11].

For instance, GCPN [30] uses DRL to learn how to generate

molecular maps, while Policy-GNN [8] employs DRL to train the

original framework for feature learning on nodes with varying num-

bers of aggregation iterations. CARE-GNN [3] employs Bernoulli

Multi-armed Bandit (BMAB) and leverages DRL for fraud detection.

Despite the success of the above work to a certain extent, it may

still suffer from poor generalization performance. BN-GNN [33] is

a brain network representation framework that leverages DRL to

automatically determine the optimal number of layers for GNNs,

thereby enhancing the performance of traditional GNNs and their

performance in brain network analysis tasks. Pairnorm [32] learns

𝑘-neighbor subgraphs by restricting the selection of edges to at

most 𝑘 for each node to achieve robust graph representation learn-

ing. However, the 𝑘-neighbor assumption imposes a limit on the

learning ability and could result in poor generalization performance.

2.3 Qualitative Comparison
The Gravity-GNN framework proposed in this paper mainly ad-

dresses the issue of GNNs being very sensitive to neighborhood

aggregation. Unlike the existing solutions, our approach not only

preserves the advantages of GCN but also incorporates the node

gravity defined in the graph data, which includes both the local

topology information of nodes and the measure of node attribute

relationships. In addition, we employ DRL techniques to learn to

optimize the threshold for filtering neighbors for different nodes.

By doing so, our model can fully exploit the potential most relevant

connections between nodes, resulting in enhanced performance.

3 Our Approach
3.1 Preliminary
In this paper, we focus on semi-supervised node classification in

attribute graphs G = (𝑉 , 𝐸) with |𝑉 | nodes, where each node 𝑣 ∈ 𝑉
is represented and edges (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸 indicate a connection between

nodes 𝑣𝑖 and 𝑣 𝑗 . The adjacency matrix is represented as𝐴 ∈ R𝑁×𝑁
,
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where 𝐴𝑖 𝑗 = 1 indicates that there is an edge between nodes 𝑣𝑖 and

𝑣 𝑗 . The node features are represented by 𝑋 = {𝑥1, 𝑥2, · · · , 𝑥𝑛} ∈
R𝑁×𝑀

, where𝑀 represents the number of features for each node.

The degree of each node is denoted by𝑑𝑒𝑔(𝑣𝑖 ), which represents the
sum of all edges connected to node 𝑣𝑖 . The degree matrix𝐷 is diago-

nal and composed of {𝑑𝑒𝑔(𝑣1), 𝑑𝑒𝑔(𝑣2), · · · , 𝑑𝑒𝑔(𝑣𝑖 ), · · · , 𝑑𝑒𝑔(𝑣𝑛)}.

3.1.1 Graph Convolutional Network. The architecture of Graph

Convolutional Network (GCN) can be summarized by:

𝑧
(𝑙+1)
𝑖

= 𝜎

( ∑︁
𝑣𝑗 ∈N(𝑖 )∪𝑣𝑖

1√︁
𝑑𝑒𝑔(𝑣𝑖 )

√︁
𝑑𝑒𝑔(𝑣 𝑗 )

𝑧
(𝑙 )
𝑖

𝑤 (𝑙 ) + 𝑏 (𝑙 )
)
, (1)

where 𝑧
(𝑙+1)
𝑖

is the node representation of the 𝑙 + 1-th layer for

node 𝑣𝑖 , 𝜎 represents a nonlinear activation function, 𝑑𝑒𝑔(𝑣𝑖 ) is
the degree of node 𝑣𝑖 with self-loop edges, 𝑤 (𝑙 ) is denoted as a

parameter matrix, 𝑏 (𝑙 ) is the bias of the 𝑙-th layer, and N(𝑖) refers
to the set of neighbors of node 𝑣𝑖 .

3.1.2 Deep Deterministic Policy Gradient (DDPG). DDPG lever-

ages DNNs to approximate actor-networks 𝜇 (𝑠, 𝑎;𝜃𝜇 ) and critic

networks𝑄 (𝑠, 𝑎;𝜃𝑄 ), which estimate policy and Q-value functions,

respectively [9]. To improve the stability and speed of the learning

process, DDPG employs a dual neural network architecture for both

the policy and value functions. This architecture includes target

actor-network 𝜇′ with parameters 𝜃𝜇
′
and target critic network 𝑄 ′

with parameters 𝜃𝑄
′
.

The policy gradient can be updated by the chain rule [23] as

follows:

∇𝜃𝜇 𝐽 ≈ 𝐸𝜇′ [∇𝜃𝜇𝑄 (𝑠, 𝑎;𝜃𝑄 ) |𝑠=𝑠𝑡 ,𝑎=𝜇 (𝑠𝑡 ;𝜃𝜇 ) ]

= 𝐸𝜇′ [∇𝑎𝑄 (𝑠, 𝑎;𝜃𝑄 ) |𝑠=𝑠𝑡 ,𝑎=𝜇 (𝑠𝑡 ;𝜃𝜇 )∇𝜃𝜇 𝜇 (𝑠;𝜃𝜇 ) |𝑠=𝑠𝑡 ], (2)

which employs the gradient ascent algorithm for optimization cal-

culations to increase the expectation of discounted cumulative

rewards:

𝐽 (𝜇) = 𝐸𝜇 [𝑟1 + 𝛾𝑟1 + 𝛾2𝑟2 + · · · + 𝛾𝑛𝑟𝑛], (3)

where 𝛾 is the reward discount factor.

The critic network is updated by means of updating the value of

Deep Q-Network (DQN) [14], and the gradient is expressed as:

𝐿(𝜃𝑄 ) = 𝐸𝜇′ [(𝑦𝑡 −𝑄 (𝑠𝑡 , 𝑎𝑖 ;𝜃𝑄 ))2] (4)

where 𝑦𝑡 = 𝛾𝑄 (𝑠𝑖+1, 𝜇 (𝑠𝑡+1);𝜃𝑄 ).

3.1.3 Node Classification Loss Function. The node classification
loss function is the cross-entropy loss function over all training

nodes, which can be defined as follows:

L𝑙𝑜𝑠𝑠 = −
∑︁
𝑙∈𝐿

𝐶∑︁
𝑖=1

𝑦𝑖𝑙 ln𝑦𝑖𝑙 , (5)

where 𝐿 is the training set, 𝑌𝑙 = [𝑦𝑖𝑙 ] ∈ R𝑛×𝐶
is the real label,

∀𝑙 ∈ 𝐿, and the predicted label is 𝑌 = [𝑦𝑖𝑙 ] ∈ R𝑛×𝐶
, where 𝑌 =

𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑍 ) and 𝑍 is denoted as the output of the last layer.

3.2 Gravity-GNN
Gravity-GNN introduces node gravity and a DRL-based neighbor

selection optimizer, enhancing representation learning by captur-

ing node similarities and filtering outlier neighbors. The overall

architecture of Gravity-GNN, as illustrated in Fig. 1, involves sev-

eral steps. Firstly, we sample 𝐵 nodes from the GNN training set as

input, and their similarity scores are calculated based on the node

gravity. Then, the node attributes are fed into the DDPG algorithm

to obtain the node selection neighbor thresholds for each node in

different GNN layers. Next, the nodes perform neighbor samplings

based on these thresholds, which are subsequently input to the

GNN for training. The DDPG algorithm is updated based on the

signal fed back by the GNN training, and this iterative process

continues until the GNN training is completed.

Figure 1: The aggregation process of Gravity-GNN in each
training episode.

3.2.1 Node Gravity Measurement. It not only incorporates the im-

pact of the nodes’ topological structure, but also considers the

relationships between node features.

• Space Gravity Themagnitude of gravitation is related to the

mass of an object and the distance between two particles. The

greater the mass of the objects, the greater the gravitational

force between them. Additionally, the farther the objects are,

the less the gravitational force between them [17].

𝐹 = 𝐺
𝑀𝑚

𝑟2
, (6)

where 𝐺 is the gravitational constant that represents the

strength of the gravitational force between two objects. The

masses of the two particles are𝑀 and𝑚, respectively, and 𝑟

is the spatial distance between the particles.

• Node Information Entropy The information entropy of a

node reflects the nature of the interaction between particle

masses. The information entropy of each node 𝑣𝑖 in the graph

G can be calculated by:

𝐸𝑖 =
∑︁

𝑣𝑗 ∈Γ𝑣𝑖

𝐻𝑣𝑖 𝑣𝑗 =
∑︁

𝑣𝑗 ∈Γ𝑣𝑖

𝑝𝑣𝑖 𝑣𝑗 log

1

𝑝𝑣𝑖 𝑣𝑗
,∀𝑣𝑖 ∈ 𝑉 , (7)

where Γ𝑣𝑖 is the first-order neighbor set of node 𝑣𝑖 , 𝑝𝑣𝑖 𝑣𝑗 =
𝑑 𝑗∑

𝑣𝑙 ∈Γ𝑣𝑖
𝑑𝑙

and 𝑑 𝑗 is the degree of node 𝑢 𝑗 . In addition, we

have

∑
𝑣𝑙 ∈Γ𝑣𝑖 𝑝𝑣𝑙 𝑣𝑖 = 1.
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• Node Distance Similarly, we adopt the cosine distance be-

tween node features to characterize the distance between

particles. The distance between node 𝑣𝑖 and node 𝑣 𝑗 can be

described as:

𝑑𝑖𝑠 (𝑖, 𝑗) = 1 − cos(𝑥𝑖 , 𝑥 𝑗 ) = 1 −
𝑥𝑖𝑥 𝑗

|𝑥𝑖 | |𝑥 𝑗 |
, (8)

where 𝑥𝑖 and 𝑥 𝑗 are node features of nodes 𝑣𝑖 and 𝑣 𝑗 , respec-

tively.

• Node Gravity Finally, we define the “node gravity” in graph

data as follows:

𝐹𝑖, 𝑗 = 𝐺𝑛

𝐸𝑖𝐸 𝑗

𝑑𝑖𝑠 (𝑖, 𝑗)𝛼 , (9)

where 𝐺𝑛 is the node gravity constant and 𝛼 is the weight

tuning coefficient that balances node topology information

and node attributes. The node gravity metric comprehen-

sively captures node similarities by considering topology

and features, resulting in more accurate node embeddings.

3.2.2 Neighbor Selection Optimizer. First, we specify node gravity

between the central node and its neighbors, and then compute the

similarity score, which is normalized to the range [0, 1]. The overall
process is detailed in Algorithm 1. Next, we design a neighbor

selection optimizer to sample the 𝑘-nearest neighbors adaptively.

We employ the DDPG algorithm to train the GNNs and find the

optimal threshold during training. DDPG determines the number

and selection of nodes for each node in each GNN layer by providing

a threshold for the central node.

Algorithm 1 Node Gravity Metric Score Calculation

Input: Central node 𝑣𝑖 and its neighbor set N(𝑣𝑖 ); Node Gravity
constant 𝐺𝑛 , weight tuning coefficient 𝛼

Output: The similarity score between the central node 𝑣𝑖 and the

neighbor nodes N(𝑣𝑖 )
1: while 𝑣 𝑗 ∈ 𝑣𝑖 ∪ N(𝑣𝑖 ) do
2: while (𝑣 𝑗 , 𝑣𝑛) ∈ E do
3: 𝑝𝑣𝑗 𝑣𝑛 =

𝑑𝑣𝑛∑
𝑣𝑙 ∈Γ𝑣𝑖

𝑑𝑣𝑙

4: end while
5: 𝐸 𝑗 = −

∑
𝑣𝑛∈Γ𝑣𝑗 𝑝𝑣𝑛𝑣𝑗 log𝑝𝑣𝑛𝑣𝑗

6: end while
7: while 𝑣 𝑗 ∈ N (𝑣𝑖 ) do
8: 𝑑𝑖𝑠 (𝑖, 𝑗) = 1 − 𝑥𝑖𝑥 𝑗

|𝑥𝑖 | |𝑥 𝑗 |

9: 𝐹𝑖, 𝑗 = 𝐺𝑛
𝐸𝑖𝐸 𝑗

𝑑𝑖𝑠 (𝑖, 𝑗 )𝛼
10: end while
11: max𝐹 = 0,min𝐹 = 0

12: while 𝑣 𝑗 ∈ N (𝑣𝑖 ) do
13: max𝐹 = max(max𝐹 , 𝐹𝑖, 𝑗 )
14: min𝐹 = min(min𝐹 , 𝐹𝑖, 𝑗 )
15: end while
16: while 𝑣 𝑗 ∈ N (𝑣𝑖 ) do
17: 𝑠𝑐𝑜𝑟𝑒𝑖 𝑗 =

𝐹𝑖,𝑗−min𝐹

max𝐹 −min𝐹

18: end while
19: return score

The next step is to describe how the DRL-based neighbor selec-

tion optimizer works, and how to formalize the process of learning

the optimal neighbor selection policy as an MDP. As illustrated

in Fig. 1, the agent selects actions based on the current state, and

the reward is obtained by quantifying the performance of the GNN

model on the validation set. This process is repeated until a termi-

nation state is reached. The process of nodes filtering neighbors in

GNN training can be represented as an MDP, which is characterized

by a tuple (S,A,T ,R), where S is the set of states, A is the set

of actions, T is the state transition function, and R is the reward

given by the GNNs training.

• State S: The state 𝑠𝑡 ∈ S at time step 𝑡 is defined as the

node attribute of the current node. In batch training dur-

ing the GNNs training process, the state can be expressed

as 𝑠𝑡 = [𝑋,𝑀𝑎𝑠𝑘𝑡 ], where 𝑀𝑎𝑠𝑘𝑡 ∈ R𝑁×1
represents the

mask matrix at time step 𝑡 . Specifically, elements 0 and 1 in

𝑀𝑎𝑠𝑘𝑡 represent an unsampled node and a sampled node,

respectively.

• Action A: Denoted as 𝑎𝑡 ∈ A, includes all nodes’ neighbor

filter thresholds at each layer. Specifically, at each time step

𝑡 , the action can be expressed as 𝑎𝑡 = [𝑎0, 𝑎1, · · · , 𝑎𝐵−1] ∈
R𝐵×𝐿

, where 𝑎𝑖 ∈ [0, 1], 𝑖 ∈ [0, 𝐵 − 1]. Here, 𝐵 represents

the mini-batch size of GNNs and 𝐿 represents the number of

layers in the GNN stacking.

• State transition T : Based on the action 𝑎𝑡 ∈ A generated

by the agent, the node features of the next nodes are selected

among the neighbors based on the threshold values defined

in 𝑎𝑡 . Specifically, when the similarity score between the

central node and its neighbor exceeds the threshold, among

the selected neighbors, those not in the set𝑉
visited

are chosen

with medium probability as the state for the next time slot.

In case there are no selected neighbor nodes satisfying the

threshold condition, we randomly sample nodes from the

training set, and take their node features as the state in the

next time slot.

• Reward R: we set the reward function as:

R = 𝜔

(
𝑃 (𝑠𝑡 , 𝑎𝑡 ) −

1

𝑏 − 1

𝑡−1∑︁
𝑖=𝑡−𝑏

𝑃 (𝑠𝑖 , 𝑎𝑖 )
)
, (10)

where 𝑃 (𝑠𝑡 , 𝑎𝑡 ) is the performance evaluation metric on the

validation set during the GNNs training process, and 𝜔 is a

parameter that adjusts the sensitivity of the agent to changes

in the performance of GNNs. Specifically, a larger value of 𝜔

means the agent is more sensitive to performance changes.

Moreover, we include a wait-and-see period of 𝑏 steps be-

tween the current training performance and the historical

performance.

• Termination condition: We define the termination con-

dition of an episode as the completion of a full traversal of

the training set during the GNNs training process. This is

achieved when the set of visited state indices 𝑇𝑣𝑖𝑠𝑖𝑡𝑒𝑑 is a

superset of 𝑇𝑡 , where 𝑇𝑡 represents the current training set

being used.

As illustrated in Fig. 2, the dotted line represents the entire

training set node. Initially, we randomly sample nodes from the

training set as the starting states. Then, based on the action selected
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Figure 2: Schematic diagram of the state transition process.

by the neighbor selection optimizer, we choose the state node for

the next time slot randomly among the selected neighbors. This

process continues until all the nodes in the training set have been

visited, serving as the termination condition for the episode.

3.2.3 Neighbor Selection Optimizer on DDPG. Due to the high-

dimensional state space and continuous action space, we design a

DDPG-based neighbor selection optimizer algorithm, as shown in

Algorithm 2.
First, we initialize the online actor network 𝜇 (𝑠, 𝑎;𝜃𝜇 ) and the

online critic network 𝑄 (𝑠, 𝑎;𝜃𝑄 ) with the parameters 𝜃𝜇 and 𝜃𝑄 ,

respectively. The online network parameters are then assigned to

their corresponding target network parameters, i.e., 𝜃𝑄
′ ←− 𝜃𝑄

and 𝜃𝜇
′ ←− 𝜃𝜇 . Additionally, we initialize the GNN and record the

indices of the training state set 𝑇𝑣𝑖𝑠𝑖𝑡𝑒𝑑 . During a single experience

trajectory episode, an action 𝑎𝑡 is generated by adding behavioral

noise 𝑁𝑡 at time step 𝑡 , as follows:

𝑎𝑡 = 𝜇 (𝑠, 𝑎 : 𝜃𝜇 ) + 𝑁𝑡 , (11)

where 𝑁𝑡 samples the Gaussian distribution 𝑁𝑡 ∼ N(𝜇𝑛, 𝜎2

𝑛), 𝜇𝑛 is

the mean and 𝜎2

𝑛 is the variance.

The GNN is then trained on the action 𝑎𝑡 produced by the agent,

which returns rewards 𝑟𝑡 and new states 𝑠𝑡+1. The agent then stores

the generated tuple of information (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in 𝑅 as training

samples for the online network. Subsequently, the agent randomly

samples 𝐵𝑅𝐿 (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) from 𝑅 as mini-batch training data. The

actor target network 𝜇′ outputs actions 𝜇
′ (𝑠𝑡+1), and𝑦𝑖 is calculated

as 𝑦𝑡 = 𝛾𝑄 (𝑠𝑖+1, 𝜇 (𝑠𝑡+1);𝜃𝑄 ). The critic network’s parameter 𝜃𝑄 is

updated using the stochastic gradient descent algorithm. Then, the

actor-network 𝜇 (𝑠, 𝑎;𝜃𝜇 ) is updated as follows:

∇𝜃𝜇 𝐽 ≈ 1

𝑁

∑︁
𝑖

∇𝑎𝑄 (𝑠, 𝑎;𝜃𝑄 ) |𝑠=𝑠𝑡 ,𝑎=𝜇 (𝑠𝑡 )∇𝜃𝜇 𝜇 (𝑠;𝜃𝜇 ) |𝑠𝑡 . (12)

Finally, DDPG employs a soft update method to update the target

actor-network 𝜇′ and critic network 𝑄 ′ as follows:

𝜃𝑄
′
←−𝜏𝜃𝑄

′
+ (1 − 𝜏)𝜃𝑄 , (13)

𝜃𝜇
′
←−𝜏𝜃𝜇

′
+ (1 − 𝜏)𝜃𝜇 , (14)

where the default value of the soft update factor 𝜏 is 0.001.

3.2.4 GNN Message Passing Module. After sampling the neighbor-

ing nodes, the subsequent step is to aggregate the information from

these nodes. We assume that the most effective neighboring nodes

have been selected for a specific downstream task. To retain the

benefits of traditional GCN, we adopt the node message passing

scheme as follows.

𝑧
(𝑙+1)
𝑖

= 𝜎

( ∑︁
𝑗∈ ˆN(𝑖 )∪𝑣𝑖

1√︃
ˆ𝑑𝑒𝑔(𝑣𝑖 )

√︃
ˆ𝑑𝑒𝑔(𝑣 𝑗 )

𝑧
(𝑙 )
𝑖

𝑤 (𝑙 ) + 𝑏 (𝑙 )
)
, (15)

where 𝑧
(𝑙+1)
𝑖

is the node representation of the 𝑙 + 1-th layer for

node 𝑣𝑖 , 𝜎 represents a nonlinear activation function,
ˆ𝑑𝑒𝑔(𝑣𝑖 ) is

degree of sampled node 𝑣𝑖 with self-loop edges,𝑤 (𝑙 ) is denoted as

a parameter matrix, 𝑏 (𝑙 ) is the bias of the 𝑙-th layer and
ˆN(𝑖) refers

to the set of the sampled neighbor nodes.

3.3 Time Complexity Analysis of Gravity-GNN
Our proposed Gravity-GNN demands calculating the feature map-

ping of all nodes and node gravitation between nodes and their

neighbors. As shown in Algorithm 1, there are two loops (line 1
and line 2) to calculate the gravitational similarity score between

the central node and the neighbor node. Therefore, the time com-

plexity of Algorithm 1 is O(𝑑2

𝑚), and 𝑑𝑚 is the average degree

of the node. Furthermore, as shown in Algorithm 2, the Gravity-
GNN’s message passing scheme has a complexity of O(|V|2) due
to matrix multiplication, where |V| is the number of nodes in the

graph. The time complexity of the cross-entropy loss function is

also linear and O(|V|). Therefore, the overall time complexity of

the proposed Gravity-GNN is O(|V|2 + 𝑑2

𝑚).

3.4 Convergence Analysis of Gravity-GNN
In this section, we will analyze the convergence of the proposed

algorithm, and the proof heavily refers to [20], which provides a

set of practical sufficient conditions for the convergence of the

single-agent DDPG algorithm in the continuous action spaces.

Theorem 1. Given the following assumptions:

(1) The critic step-size sequence 𝛼 (𝑡) > 0,∀𝑡 ≥ 0. Further, the se-
quence is monotonically decreasing and satisfies

∑
𝑡≥0

𝛼 (𝑡) =
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Algorithm 2 Neighbor Selection Optimizer based on DDPG

Input: Number of training episode 𝐸; Training set 𝑇𝑡 of GNNs,

Critic network learning rate 𝛼𝐶𝑟𝑖𝑡𝑖𝑐 ; Actor-network learning

rate 𝛼𝐶𝑟𝑖𝑡𝑖𝑐 ; Experience relay buffer 𝑅; Mini-batch size 𝐵𝑅𝐿 ;

Train set in GNNs training 𝑇𝑡

1: Initialize the weight parameters 𝜃𝜇 and 𝜃𝑄 of actor-network

𝜇 (𝑠, 𝑎;𝜃𝜇 ) and critic network 𝑄 (𝑠, 𝑎;𝜃𝑄 ), respectively.
2: Initialize the weight parameters 𝜃𝑄

′
←−𝜃𝑄 and 𝜃𝜇

′
←−𝜃𝜇 of

target critic network 𝑄
′
and target actor-network 𝜇

′
, respec-

tively.

3: Empty experience relay buffer 𝑅

4: while each 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1, 2, · · · , 𝐸 do
5: Reset the initial state 𝑠0 of training the GNNs algorithm.

6: Reset the visited state index set 𝑇𝑣𝑖𝑠𝑖𝑡𝑒𝑑 , and add the index

of the state 𝑠0 to 𝑇𝑣𝑖𝑠𝑖𝑡𝑒𝑑 .

7: while 𝑇𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ⊅ 𝑇𝑡 do
8: Calculate the action 𝑎𝑡 = 𝜇 (𝑠, 𝑎 : 𝜃𝜇 ) + 𝑁𝑡 at the current

time step based on the current policy 𝜇 (𝑠, 𝑎 : 𝜃𝜇 ) with
noise.

9: Perform actions 𝑎𝑡 , train the GNNs algorithm, and record

the reward 𝑟𝑡 and the state 𝑠𝑡+1 of the next time step.

10: Store transfer tuple (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in experience relay

buffer 𝑅.

11: Update 𝑇𝑣𝑖𝑠𝑖𝑡𝑒𝑑 , adding the index of the state 𝑠𝑡+1 to

𝑇𝑣𝑖𝑠𝑖𝑡𝑒𝑑 .

12: Randomly sample mini-batches 𝐵𝑅𝐿 of transitions

(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) from 𝑅.

13: 𝑦𝑖 = 𝑟𝑖 +𝑄 ′ (𝑠𝑡+1, 𝜇′ (𝑠𝑡+1;𝜃𝜇′ );𝜃𝑄 ′ )
14: Minimizing the loss to update the critic network 𝑄 (𝑠, 𝑎 :

𝜃𝑄 ).
15: Update actor-networks using gradient policy algorithm.

16:

∇𝜃𝜇 𝐽 ≈
1

𝑁

∑︁
𝑖

∇𝑎𝑄 (𝑠, 𝑎;𝜃𝑄 ) |𝑠=𝑠𝑡 ,𝑎=𝜇 (𝑠𝑡 )∇𝜃𝜇 𝜇 (𝑠;𝜃𝜇 ) |𝑠𝑡

17: Soft update the target network via Eqs. (13) and (14).

18: end while
19: end while

∞, ∑
𝑡≥0

𝛼2 (𝑡) < ∞. The actor step-size sequence {𝛽 (𝑡)}𝑡≥0

satisfies lim𝑡→∞
𝛽 (𝑡 )
𝛼 (𝑡 ) = 1.

(2) (a) 𝑠𝑢𝑝𝑡≥0∥𝜃𝑄𝑡 ∥ < ∞ 𝑎.𝑠 .

(b) 𝑠𝑢𝑝𝑡≥0∥𝜃𝜇𝑡 ∥ < ∞ 𝑎.𝑠 .

(3) The state transition kernel 𝑝 (· | 𝑠, 𝑎) is continuous.

Then the limit ( ¯𝜃𝑄∞, ¯𝜃
𝜇
∞) of the algorithm satisfies: ∇̃𝐿( ¯𝜃𝑄∞, ¯𝜃

𝜇
∞, 𝜇1∞) =

0 and ∇̃𝐽
(
¯𝜃
𝑄
∞, ¯𝜃

𝜇
∞, 𝜇

𝑠
1∞

)
= 0.

Proof. In the algorithm, the policies 𝜇 and critics 𝑄 are fully

connected feedforward neural networks that possess twice con-

tinuously differentiable activation functions. The reward function

𝑟 : S × A → R is continuous.

When we do not consider experience replays, i.e., 𝐵𝑅𝐿 = 1, the

parameters of 𝜃𝑄 and 𝜃𝜇 are iteratively updated as follows:

𝜃
𝑄

𝑡+1 = 𝜃
𝑄
𝑡 + 𝛼 (𝑡)∇𝜃𝑄𝐿(𝜃

𝑄
𝑡 , 𝜃

𝜇
𝑡 , 𝑠𝑡 , 𝑎𝑡 ), (16)

𝜃
𝜇

𝑡+1 = 𝜃
𝜇
𝑡 + 𝛽 (𝑡)∇𝜃𝜇 𝐽 (𝜃𝑄𝑡 , 𝜃

𝜇
𝑡 , 𝑠𝑡 ) . (17)

The loss gradient of Eq. (16) is given by

∇𝜃𝑄𝐿(𝜃
𝑄
𝑡 , 𝜃

𝜇
𝑡 , 𝑠𝑡 , 𝑎𝑡 ) = ∇𝜃𝑄𝑄

(
𝑠𝑡 , 𝑎𝑡 ;𝜃

𝑄
𝑡

) (
𝑟 (𝑠𝑡 , 𝑎𝑡 )+

𝛾

∫
𝑄 (𝑦, 𝜇 (𝑦;𝜃

𝜇
𝑡 );𝜃

𝑄
𝑡 )𝑝 (𝑑𝑦 | 𝑠𝑡 , 𝑎𝑡 ) − 𝑄

(
𝑠𝑡 , 𝑎𝑡 ;𝜃

𝜇
𝑡

))
.

(18)

The loss gradient of Eq. (17) is given by

∇𝜃𝜇 𝐽 (𝜃𝑄𝑡 , 𝜃
𝜇
𝑡 , 𝑠𝑡 )

= ∇𝜃𝜇 𝜇
(
𝑠𝑡 ;𝜃

𝜇
𝑡

)
× ∇𝑎𝑄

(
𝑠𝑡 , 𝜇

(
𝑠𝑡 ;𝜃

𝜇
𝑡

)
;𝜃

𝑄
𝑡

)
. (19)

We then construct continuous-time trajectories that have iden-

tical limiting behavior and downgrade the analysis to understand

the asymptotic behavior of these trajectories.

First, we utilize the given step size sequence to divide the time

axis as follows:

𝑚0 = 0 and𝑚𝑡 =
∑𝑡−1

𝑛=0
𝛼 (𝑛), ∀𝑡 ≥ 1.

We define
¯𝜃𝑄 ∈ 𝐶 ( [0,∞),R𝑞) and ¯𝜃𝜇 ∈ 𝐶 ( [0,∞),R𝑝 ) as follows:

(1)
¯𝜃𝑄 (𝑚𝑡 ) = 𝜃

𝑄
𝑡 and

¯𝜃𝜇 (𝑚𝑡 ) = 𝜃
𝜇
𝑡 ,∀𝑡 ≥ 0,

(2)
¯𝜃𝑄 (𝑚) = ¯𝜃𝑄 (𝑚𝑡 )+ 𝑚−𝑚𝑡

𝑚𝑡+1−𝑚𝑡
[ ¯𝜃𝑄 (𝑚𝑡+1)− ¯𝜃𝑄 (𝑚𝑡 )],∀𝑚 ∈ (𝑚𝑡 ,𝑚𝑡+1)

and𝑚 ≥ 0,

(3)
¯𝜃𝜇 (𝑚) = ¯𝜃𝜇 (𝑚𝑡 )+ 𝑚−𝑚𝑡

𝑚𝑡+1−𝑚𝑡
[ ¯𝜃𝜇 (𝑚𝑡+1)− ¯𝜃𝜇 (𝑚𝑡 )],∀𝑚 ∈ (𝑚𝑡 ,𝑚𝑡+1)

and𝑚 ≥ 0,

where R𝑞 and R𝑝
respectively are the parameter spaces of 𝜃

𝑄
𝑡 and

𝜃
𝜇
𝑡 .

Similar to [20], we define a process of probability measures on

S × A by

𝜇1 (𝑚) = 𝛿 (𝑠𝑡 , 𝑎𝑡 ), (20)

and the associated process on S by

𝜇𝑠
1
(𝑚) = 𝜇1 (𝑚) (·,A) = 𝛿𝑠𝑡 , (21)

where𝑚 ∈ (𝑚𝑡 ,𝑚𝑡+1), 𝛿 (𝑠𝑡 , 𝑎𝑡 ) and 𝛿𝑠𝑡 denotes the Dirac measure.

Then, we define

∇̃𝐿(𝜃𝑄 , 𝜃𝜇 , 𝑣) =
∫
∇𝜃𝑄𝐿(𝜃𝑄 , 𝜃𝜇 , 𝑠, 𝑎)𝑣 (𝑑𝑠, 𝑑𝑎), (22)

∇̃𝐽 (𝜃𝑄 , 𝜃𝜇 , 𝑣𝑠 ) =
∫
∇𝜃𝜇 𝐽 (𝜃𝑄 , 𝜃𝜇 , 𝑠)𝑣𝑠 (𝑑𝑠), (23)

where 𝑣 is the probability measure onS×A and 𝑣𝑠 is the associated

marginal measure on S.
According to [20], under the above assumptions, the limits ( ¯𝜃𝑄∞, ¯𝜃

𝜇
∞)

of the algorithm satisfy ∇̃𝐿( ¯𝜃𝑄∞, ¯𝜃
𝜇
∞, 𝜇1∞) = 0 and ∇̃𝐽

(
¯𝜃
𝑄
∞, ¯𝜃

𝜇
∞, 𝜇

𝑠
1∞

)
=

0.

The following analyzes the situation when experience replays

are included, which means that in every iteration 𝑡 , instead of only

using the tuple (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) for training, the tuple encountered
is stored. At time step 𝑇 , the agent randomly samples a mini-batch
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of size 𝐵𝑅𝐿 < 𝐵 tuples from the experience replay, and the weights

are updated as follows:

𝜃
𝑄

𝑡+1 = 𝜃
𝑄
𝑡 + 𝛼 (𝑡)

[
1

𝐵𝑅𝐿

𝐵𝑅𝐿∑︁
𝑖=1

∇𝜃𝑄𝐿(𝜃
𝑄
𝑡 , 𝜃

𝜇
𝑡 , 𝑠𝑘 (𝑡,𝑖 ) , 𝑎𝑘 (𝑡,𝑖 ) )

]
, (24)

𝜃
𝜇

𝑡+1 = 𝜃
𝜇
𝑡 + 𝛽 (𝑡)

[
1

𝐵𝑅𝐿

𝐵𝑅𝐿∑︁
𝑖=1

∇𝜃𝜇 𝐽 (𝜃𝑄𝑡 , 𝜃
𝜇
𝑡 , 𝑠𝑘 (𝑡,𝑖 ) )

]
, (25)

where 𝑇 − 𝐵 + 1 ≤ 𝑘 (𝑡, 𝑖) ≤ 𝑇 .
Next, for𝑚 ∈ [𝑚𝑡 ,𝑚𝑡+1), we redefine 𝜇1 (𝑚) to be the probability

measure on S × A that places a mass of 1/𝐵𝑅𝐿 on

(
𝑠𝑘 (𝑡,𝑖 ) , 𝑎𝑘 (𝑡,𝑖 )

)
for 1 ≤ 𝑖 ≤ 𝐵𝑅𝐿 .

For𝑚 =𝑚𝑡 ,

∇̃𝐿
(

¯𝜃𝑄 (𝑚), ¯𝜃𝜇 (𝑚), 𝜇1 (𝑚)
)

=
∫
∇𝜃𝑄𝐿( ¯𝜃𝑄 (𝑚), ¯𝜃𝜇 (𝑚), 𝑠, 𝑎)𝜇1 (𝑚)

=
1

𝐵𝑅𝐿
Σ𝐵𝑅𝐿

𝑖=1
∇𝜃𝑄𝐿

(
𝜃
𝑄
𝑡 , 𝜃

𝜇
𝑡 , 𝑠𝑘 (𝑡,𝑖 ) , 𝑎𝑘 (𝑡,𝑖 )

)
. (26)

Similarly,

∇̃𝐽
(

¯𝜃𝑄 (𝑚), ¯𝜃𝜇 (𝑚), 𝜇𝑠
1
(𝑚)

)
=

∫
∇𝜃𝜇 𝐽 ( ¯𝜃𝑄 (𝑚), ¯𝜃𝜇 (𝑚), 𝑠)𝜇𝑠

1
(𝑚)

=
1

𝐵𝑅𝐿
Σ𝐵𝑅𝐿

𝑖=1
∇𝜃𝜇 𝐽

(
𝜃
𝑄
𝑡 , 𝜃

𝜇
𝑡 , 𝑠𝑘 (𝑡,𝑖 )

)
. (27)

It can be shown that the analysis follows the same lines as the

redefined measure process and see [20] for details.

□

4 Performance Evaluation
In order to verify the effectiveness of Gravity-GNN, different datasets

and baselines are used for the experiment. In particular, we adopt a

semi-supervised node classification task. First, we introduce some

details about the datasets. Then we list the comparative baselines

and some variants of Gravity-GNN.

4.1 Experimental Setting
4.1.1 Datasets. Extensive experiments are conducted on widely

used real-world citation networks, which are listed as follows:

• Cora, Citeseer and Pubmed [7]: These datasets belong to

the Academic Paper Citation Network, where nodes repre-

sent publications and edges represent citation links. Each

document is assigned a unique tag based on its subject, and

node attributes are represented as a bag of words. All nodes

are classified into 7, 6, and 3 classes, respectively.

• ACM [26]: The network is drawn from the ACM collection,

where nodes represent papers and edges represent the co-

authorship relationship between them. Node features are

constructed based on the keywords of the papers, and all

papers are divided into three categories: database, wireless

communication, and data mining.

In addition, other details of the above datasets are summarized

in Table 1.

Table 1: Statistical characteristics.

Datasets Cora Citeseer PubMed ACM
Classes 7 6 3 3

Feature 1,433 3,703 500 1,870

Nodes 2,708 3,327 19,717 3,025

Edges 5,429 4,732 44,338 13,138

Training 140 120 60 60

validation 500 500 500 500

Test 1,000 1,000 1,000 1,000

4.1.2 Baselines. We employ the most popular GNNs as bench-

marks for comparison, and the specific details are listed below.

• GCN [7]: It aims to learn the encoding of local graph struc-

tures and node feature representations by utilizing local first-

order approximations of spectral graph convolutions. This

approach leverages the inherent properties of the spectral

graph convolution, allowing for more efficient and scalable

computation of the graph convolutional operation.

• FastGCN [1]: It interprets graph convolution as an integral

transformation of the embedding function under probabilis-

tic measures. It enhances the performance of the model by

leveraging importance sampling augmentation. This enables

the model to encode graph structures and node feature rep-

resentations more effectively.

• Dropedge-GCN [21]: It aims to prevent the model from

over-smoothing and enhance generalization by removing a

fixed proportion of edges at each training iteration.

• AM-GCN [27]: It is an adaptive multi-channel GCN and

applies an attention mechanism to simultaneously extract

node embeddings from node attributes, topology, and their

combinations.

• PTDNet-GCN [13]: It improves the robustness and general-

ization performance of GNNs by utilizing a parameterized

topological denoising network, which learns to discard task-

irrelevant edges. This helps prevent the GNN from being

affected by noisy or irrelevant information in the graph.

4.1.3 Variants of Gravity-GNN. We explore the effects of the three

key modules in Gravity-GNN by implementing a series of variants.

Specifically, we modify the node gravity measure and neighbor

selection optimizer to investigate their impact on the model’s per-

formance. The variants are designed to examine the crucial mecha-

nisms of the two modules.

• Cosine-GNN: The model employs a straightforward ap-

proach that involves utilizing the cosine similarity of node

features and the DDPG algorithm to select and filter the

number of neighbor nodes.

• Gravity-GNN-R: The proposed node gravity is utilized to

measure node similarity, and the threshold for selecting

neighbor nodes is determined by randomly generating a

number. Specifically, a random number is generated in the

range of [0, 1] for each node, which is used as the threshold

for selecting neighboring nodes.
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• Gravity-GNN-H: The model utilizes the novel node similar-

ity measure “node gravity” to measure similarity and selects

thresholds from a range of [0.1, 1] as hyperparameters.

• Gravity-GNN-TD3: Themodel employs TD3 [5] as the node

neighbor optimizer, while the remaining modules use the

same settings as those of Gravity-GNN.

To comprehensively evaluate our proposed Gravity-GNN, we

adopted the parameters suggested in the original paper for all base-

lines and further adjusted the hyperparameters to achieve better

performance. Specifically, we set the number of layers of all GCNs

to 2 and the hidden layer units to 128. The learning rate was set

within the range of {0.01, 0.02, 0.03, 0.04, 0.05}, and the dropout rate
was set to 0.4, 0.5. The node gravitational constant is generally set

to 1 by default for simplicity. Furthermore, we set the hidden layer

units of MLP to 128, 256 and the learning rate as {1e-4, 1e-3} in

DDPG. The experience replay buffer capacity was set to 10,000, and

other parameters were adjusted based on the original paper.

4.2 Performance Comparison
As presented in Table 2, our proposed Gravity-GNN consistently

outperforms both baselines and variants in terms of node classifica-

tion accuracy. The comparisons demonstrate the superiority of our

model for node classification. It can be observed that Gravity-GNN

and its variants achieve improvements ranging from 0.58% to 2.04%,

1.49% to 4.29%, 0.86% to 1.93%, and 2.9% to 5.56% over currently

popular methods on the four datasets, respectively. Gravity-GNN-R

and Gravity-GNN-H are inferior to our adaptive neighbor selec-

tion method Gravity-GNN, which proves the superiority of our

DRL-based Neighbor Selection Optimizer. The performance im-

provement over the baselines justifies the necessity of our proposed

neighbor selection optimizer modeled as an MDP. Moreover, the

comparison between Cosine-GNN and Gravity-GNN verifies that

the node gravity metric can more effectively express the similar

relationship between node features and topological information.

Table 2: Node classification accuracy (%) (Bold: best)

Methods Cora Citeseer PubMed ACM
GCN 80.68 70.44 79.12 85.84

FastGCN 78.57 69.74 79.09 86.18

Dropedge-GCN 80.85 70.97 78.74 84.46

AM-GCN 76.91 69.44 79.58 88.56

PTDNet-GCN 82.14 72.54 79.81 87.12

Cosine-GNN 81.74 72.18 79.70 86.78

Gravity-GNN-R 77.31 69.46 78.62 84.38

Gravity-GNN-H 78.45 70.82 79.66 85.91

Gravity-GNN-TD3 81.31 73.34 80.67 87.03

Gravity-GNN 82.72 74.03 79.89 90.02

We evaluated the robustness of Gravity-GNN on theACMdataset

by randomly introducing noisy edges into the original graph. For in-

stance, with a perturbation ratio of 5%, 50 edges would be randomly

added to a dataset with 1,000 original edges. As shown in Fig. 3, our

proposed model exhibited remarkable robust performance under

different levels of perturbation. This resilience is attributed to its

node gravitymeasure, which effectively captures both node features

and local topology, along with the neighbor selection optimizer

based on DDPG. In contrast, the traditional GCN model suffers

from dilution of potential value information due to the presence

of noisy edges. Other baselines, such as FastGCN and Dropedge-

GCN, lack effective node similarity measures and adaptive neighbor

selection strategies, making them less capable of handling noisy

edges. Cosine-GNN, which relies solely on the cosine similarity

of node features for neighbor selection, proved less robust than

Gravity-GNN due to its absence of topological information.

Figure 3: The results (%) of Gravity-GNN and variants com-
pared to baselines at different perturbation rates on ACM.

The variants Gravity-GNN-R and Gravity-GNN-H, which em-

ploy random assignment and traditional hyperparameter assign-

ment methods for setting neighbor selection thresholds, respec-

tively, were also found to be inferior to Gravity-GNN with the

DDPG-based neighbor selection optimizer. In addition, while PTDNet-

GCN uses a parameterized topology denoising network to filter

out task-irrelevant edges, it generally underperformed compared

to Gravity-GNN, except at a 25% perturbation rate on the ACM

dataset. Overall, Gravity-GNN consistently achieved the highest

classification accuracy compared to all baseline algorithms and vari-

ants, except for a slight dip in performance at the 25% perturbation

level on the ACM dataset, where it ranked second best.

4.3 Hyperparameter Sensitivity
4.3.1 Impact of hyperparameter 𝜔 . We conducted an experiment

to assess the impact of the hyperparameter 𝜔 on the performance

of the Gravity-GNN model. As previously mentioned, 𝜔 controls

the sensitivity of the model to performance variations, with larger

values making the agent more sensitive to changes in the GNN’s

performance. To evaluate the effect of 𝜔 , we varied its value at

values of 100, 1,000, and 10,000, and measured the corresponding

accuracy percentages. As shown in Fig. 4, the accuracy initially

increases but subsequently decreases as𝜔 becomes larger. This sug-

gests that heightened sensitivity to feedback does not necessarily

lead to better performance. Based on our findings, we recommend

setting 𝜔 to 1,000 to achieve optimal results.
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(a) Cora (b) Citeseer

(c) PubMed (d) ACM

Figure 4: The effect of hyperparameter𝜔 on the experimental
results (%) in different datasets.

4.3.2 Impact of hyperparameter 𝛼 . We evaluated the effect of the

hyperparameter 𝛼 on the accuracy across different datasets. Specif-

ically, 𝛼 balances the influence of node topology information and

node attributes. We varied 𝛼 from 0.5 to 2 and recorded the result-

ing accuracy changes, as illustrated in Fig. 5. The results indicate

that accuracy initially increases with 𝛼 but begins to decline as 𝛼

continues to increase. Based on these observations, setting 𝛼 to 1

typically yields the best performance.

(a) Cora (b) Citeseer

(c) PubMed (d) ACM

Figure 5: The effect of hyperparameter 𝛼 on the experimental
results (%) in different datasets.

4.3.3 Impact of hyperparameter 𝑏. We conducted experiments to

evaluate the impact of the hyperparameter 𝑏 on the classification

accuracy across different datasets. Fig. 6 shows the results, where

𝑏 denotes the window size used to track historical performance

changes of GNNs during training. We varied 𝑏 from 5 to 25 and

observed the corresponding accuracy changes. Generally, an in-

creasing trend in 𝑏 values led to varied effects on accuracy, except

for the PubMed dataset, where a consistent decline in classification

accuracy was noted as 𝑏 increased.

(a) Cora (b) Citeseer

(c) PubMed (d) ACM

Figure 6: The effect of hyperparameter 𝑏 on the experimental
results (%) in different datasets.

5 Conclusion
In this paper, we introduce a novel GNN framework that effectively

reduces noise interference by leveraging both node topology infor-

mation and node attributes. To achieve this, we define a new node

similarity measure, called “node gravity”, which applies classical

mechanics from physics to graph data. We combine the node grav-

ity metric and the DRL-based neighbor selection optimizer into the

Gravity-GNN framework, improving graph representation learning

and achieving state-of-the-art performance in node classification

tasks. In addition, we apply the concept of gravity from classical

mechanics to GNNs, offering a new perspective on graph data anal-

ysis and representation learning. Specifically, we model the process

of node filtering neighbors in GNN training as an MDP and utilize

DRL to generate a threshold for filtering neighbors for each node,

which enhances the model’s generalization ability. We conduct ex-

tensive experiments on real-world datasets to evaluate the superior

performance of our Gravity-GNN against state-of-the-art models.

Our results demonstrate the potential robustness against noisy

data with varying quality, and the generalizability of Gravity-GNN

across various network settings.
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