Gravity-GNN: Deep Reinforcement Learning Guided Space
Gravity-based Graph Neural Network

Huaming Wu
Center for Applied Mathematics,
Tianjin University
Tianjin, China
whming@tju.edu.cn

Pengfei Jiao
Hangzhou Dianzi University
Hangzhou, China
pjiao@hdu.edu.cn

Abstract

Graph Neural Networks (GNNs) have demonstrated remarkable
capabilities in handling graph data. Typically, GNNs recursively
aggregate node information, including node features and local topo-
logical information, through a message-passing scheme. However,
most existing GNNs are highly sensitive to neighborhood aggre-
gation, and irrelevant information in the graph topology can lead
to inefficient or even invalid node embeddings. To overcome these
challenges, we propose a novel Space Gravity-based Graph Neural
Network (Gravity-GNN) guided by Deep Reinforcement Learning
(DRL). In particular, we introduce a novel similarity measure called
“node gravity”, inspired by gravity between particles in space to com-
pare nodes in graph data. Furthermore, we employ DRL technology
to learn and select the most suitable number of adjacent nodes for
each node. Our experimental results on various real-world datasets
demonstrate that Gravity-GNN outperforms state-of-the-art meth-
ods regarding node classification accuracy, while exhibiting greater
robustness against disturbances.

CCS Concepts

« Computing methodologies — Artificial intelligence; Neural
networks; « Information systems — Data mining.

Keywords

Graph Data; Graph Neural Network; Node Gravity; Deep Reinforce-
ment Learning; Node Embeddings

ACM Reference Format:

Huaming Wu, Lei Tian, Chaogang Tang, Pengfei Jiao, Minxian Xu, and Hui-
jun Tang. 2025. Gravity-GNN: Deep Reinforcement Learning Guided Space
Gravity-based Graph Neural Network. In Proceedings of the 34th ACM Inter-
national Conference on Information and Knowledge Management (CIKM °25),
November 10-14, 2025, Seoul, Republic of Korea. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3746252.3761337

“Corresponding author.

This work is licensed under a Creative Commons Attribution 4.0 International License.
CIKM °25, Seoul, Republic of Korea.

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2040-6/2025/11

https://doi.org/10.1145/3746252.3761337

Lei Tian
Tianjin University
Tianjin, China
tianlei@tju.edu.cn

Minxian Xu
Chinese Academy of Sciences
Shenzhen, China
mx.xu@siat.ac.cn

Chaogang Tang
China University of Mining and
Technology
Xuzhou, China
cgtang@cumt.edu.cn

Huijun Tang"
Durham University
Durham, United Kingdom
huijun.tang@durham.ac.uk

1 Introduction

Graph data is ubiquitous in a multitude of practical applications,
with numerous real-world phenomena naturally exhibiting graph
structures, e.g., social networks, expression networks, and knowl-
edge graphs [16]. A wide spectrum of tasks depends on the analysis
and manipulation of such graph data, including anomaly detec-
tion [25], molecular structure generation [4, 22], social network
analysis [6] and wireless communication systems [12, 29, 31]. These
tasks hinge on the ability to efficiently construct node embeddings,
which serve as a foundational step in graph processing. The suc-
cessful development of Graph Neural Networks (GNNs) and their
variants has substantially advanced the fields mentioned above.
GNNs have demonstrated remarkable capabilities in effectively
managing and analyzing graph data. At the core of GNNs lies the
fundamental concept of designing effective message-passing and
information-aggregation strategies that enable the seamless propa-
gation of information across graph topologies.

Graph data is often noisy, with the central node frequently con-
nected to neighbors that introduce harmful information for down-
stream tasks. For example, in social networks, the presence of fake
users or incorrect connections can cause topology anomalies, lead-
ing to irrelevant neighbors being associated with the central node.
Unfortunately, state-of-the-art GNNs have exhibited suboptimal
performance in fusing node features and topology, leading to the ac-
quisition of inefficient or ineffective node representations [27]. This
is because the presence of outlier neighbor nodes dilutes the true
underlying information and hinders effective learning [2]. Thus, the
development of robust techniques to filter outlier neighbor nodes
for each node in GNNs remains a challenging and imperative issue.
The ability of GNNs to fuse node features and topology in recent
studies is far from optimal or even satisfactory, which will lead
to GNNs learning inefficient or even ineffective node representa-
tions [27]. A large amount of information gleaned from anomalous
neighbors dilutes the true underlying information [2, 19, 27]. Thus,
how to filter outlier neighbor nodes for each node in GNNs is a
challenging and imperative issue.

To address the aforementioned challenges, we propose a two-
fold approach. First, we introduce a novel similarity measure called
“node gravity” to measure the similarity between nodes in graph
data. Inspired by the concept of gravity in particle physics, we
utilize the information entropy of nodes as the masses of particles

https://orcid.org/0000-0002-4761-9973
https://orcid.org/0000-0001-9400-0332
https://orcid.org/0000-0002-4471-9856
https://orcid.org/0000-0003-1049-1002
https://orcid.org/0000-0002-0046-5153
https://orcid.org/0000-0001-7828-9113
https://doi.org/10.1145/3746252.3761337
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3746252.3761337

CIKM °25, November 10-14, 2025, Seoul, Republic of Korea.

and the cosine distance of node features as the distance between
particles. By incorporating both the local topology information of
the nodes and their features, the node gravity can more effectively
express the similarity between nodes. Second, we propose a policy
of adaptively selecting the number of abnormal neighbor nodes for
filtering according to different nodes. The main contributions can
be summarized as follows:

o To effectively measure the similarity between nodes in graph
data, we design a novel metric called “node gravity”. The met-
ric incorporates both the local topology information between
nodes and features, enabling it to capture the underlying
similarities between nodes more comprehensively.

e We propose a novel GNN framework called Gravity-GNN,
which incorporates the concept of gravity between nodes to
improve graph representation learning. Gravity-GNN mod-
els the process of node filtering neighbors in GNN training
as a Markov Decision Process (MDP), and applies DRL tech-
niques to dynamically optimize the number of sampled nodes
for each node in the graph. To the best of our knowledge,
Gravity-GNN is the first work to use the concept of space
gravity for graph representation learning, while also sup-
porting reinforcement learning.

o Extensive experiments conducted on four real-world datasets
clearly demonstrate that Gravity-GNN outperforms current
popular GNNs on node classification tasks and achieves
state-of-the-art performance. The evaluation across multiple
benchmarks verifies the superiority of the proposed Gravity-
GNN on node classification tasks, achieving state-of-the-art
performance on four real-world datasets.

The remainder of this paper is structured as follows. Section 2
provides an overview of existing research on GNNs, including
recent work on reinforcement learning for graph representation.
In Section 3, we present the proposed Gravity-GNN framework,
along with a theoretical analysis of its key components. Section 4
presents the results of extensive experiments conducted to evaluate
the performance of Gravity-GNN. Section 5 concludes this paper.

2 Related work

In this section, we briefly review existing work on GNNs and rein-
forcement learning on graph representation learning.

2.1 Graph Neural Networks

Since GNNs are well-suited for processing graph-structured data,
they have gained widespread popularity recently as an effective
approach for graph representation learning. The first model to ap-
ply Convolutional Neural Networks (CNNs) directly to graphs was
proposed by Kipf et al. [7]. Their approach utilizes a local first-order
approximation of spectral graph convolution, which leverages a
convolutional architecture to learn hidden layer representations
that encode both the local graph structure and node features. Drope-
dge [21] is an approach that randomly drops a certain proportion of
edges from the input graph during each training epoch. This tech-
nique is used to slow down the convergence rate of over-smoothing
and mitigate the resulting loss of information. However, Drope-
dge ignores the relationships between nodes, which can limit its

Wu et al.

effectiveness. RioGNN [19] employs a label-aware neural similar-
ity measure to determine the importance of each relationship, al-
lowing it to identify the individual significance of different edges.
However, RioGNN only relies on node attributes to identify the
importance of nodes, and it does not consider the local topology of
nodes. PTDNet [13] is an approach that prunes task-independent
edges to improve generalization. This is achieved by penalizing the
number of edges in a sparse graph using a parameterized network.
In contrast, prior approaches such as [27] have proposed similar-
ity measures based on node attributes, such as cosine similarity,
but have ignored the local structural information between nodes.
Geom-GCN [18] is an approach that addresses the issue of miss-
ing structural information of nodes in communities by employing
an information aggregation scheme. This scheme includes node
embeddings, structural neighborhoods, and bi-level aggregation.

2.2 DRL-Empowered Graph Neural Networks

DRL has begun to play a pivotal role in applications involving
graph data, as it can further exploit the capabilities of DNNs for
sequential decision-making with reinforcement learning [15] and
improve the applicability of GNN, e.g., edge computing [24, 28],
vaccine supply [10] and job-shop scheduling [11].

For instance, GCPN [30] uses DRL to learn how to generate
molecular maps, while Policy-GNN [8] employs DRL to train the
original framework for feature learning on nodes with varying num-
bers of aggregation iterations. CARE-GNN [3] employs Bernoulli
Multi-armed Bandit (BMAB) and leverages DRL for fraud detection.
Despite the success of the above work to a certain extent, it may
still suffer from poor generalization performance. BN-GNN [33] is
a brain network representation framework that leverages DRL to
automatically determine the optimal number of layers for GNNs,
thereby enhancing the performance of traditional GNNs and their
performance in brain network analysis tasks. Pairnorm [32] learns
k-neighbor subgraphs by restricting the selection of edges to at
most k for each node to achieve robust graph representation learn-
ing. However, the k-neighbor assumption imposes a limit on the
learning ability and could result in poor generalization performance.

2.3 Qualitative Comparison

The Gravity-GNN framework proposed in this paper mainly ad-
dresses the issue of GNNs being very sensitive to neighborhood
aggregation. Unlike the existing solutions, our approach not only
preserves the advantages of GCN but also incorporates the node
gravity defined in the graph data, which includes both the local
topology information of nodes and the measure of node attribute
relationships. In addition, we employ DRL techniques to learn to
optimize the threshold for filtering neighbors for different nodes.
By doing so, our model can fully exploit the potential most relevant
connections between nodes, resulting in enhanced performance.

3 Our Approach

3.1 Preliminary

In this paper, we focus on semi-supervised node classification in
attribute graphs G = (V, E) with |V| nodes, where each node v € V'
is represented and edges (v;,v;) € E indicate a connection between

nodes v; and v;. The adjacency matrix is represented as A € RNXN,

Gravity-GNN: Deep Reinforcement Learning Guided Space Gravity-based Graph Neural Network

where A;; = 1 indicates that there is an edge between nodes v; and
vj. The node features are represented by X = {x1,x2,--,xn} €
RN*M \where M represents the number of features for each node.
The degree of each node is denoted by deg(v;), which represents the
sum of all edges connected to node v;. The degree matrix D is diago-

nal and composed of {deg(v1), deg(v2), - - - ,deg(v;),- - - ,deg(vp)}.

3.1.1 Graph Convolutional Network. The architecture of Graph
Convolutional Network (GCN) can be summarized by:

1
Z(l+1) -5

i - v]e/\%)um \deg(v;)/deg(v;)

(l) w 1pD])

where z(l+1) is the node representation of the [+ 1-th layer for

node v;, o represents a nonlinear activation function, deg(v;) is
the degree of node v; with self-loop edges, w is denoted as a
parameter matrix, b is the bias of the I-th layer, and N (i) refers
to the set of neighbors of node v;.

3.1.2 Deep Deterministic Policy Gradient (DDPG). DDPG lever-
ages DNNs to approximate actor-networks (s, a; 0#) and critic
networks Q(s, a; 89), which estimate policy and Q-value functions,
respectively [9]. To improve the stability and speed of the learning
process, DDPG employs a dual neural network architecture for both
the policy and value functions. This architecture includes target
actor-network p’ with parameters 0" and target critic network Q’
with parameters 09"

The policy gradient can be updated by the chain rule [23] as
follows:

VH#.] ~ Eﬂ’ [VouQ(s, a; 0Q)|s=s[,a=y(s,;8”)]
= B,/ [VaQ(s,3:69) 5=, ampu(s,s0m) Vou(s: 0)|s=s, 1. (2)

which employs the gradient ascent algorithm for optimization cal-
culations to increase the expectation of discounted cumulative
rewards:

J() = Eulri +yri+y2ra+ - +y"ral, ®)

where y is the reward discount factor.
The critic network is updated by means of updating the value of
Deep Q-Network (DQN) [14], and the gradient is expressed as:

L(09) = Eyv [(ye — Q(s1,a1:69))%])

where y; = yQ(sis1, p(s141): 69).

3.1.3 Node Classification Loss Function. The node classification
loss function is the cross-entropy loss function over all training
nodes, which can be defined as follows:

C
Lioss == . > yu g, ®)

leL i=1

where L is the training set, ¥; = [y;;] € R™*C is the real label,
VI € L, and the predicted label is ¥ = [§;;] € R™*C, where ¥ =
softmax(Z) and Z is denoted as the output of the last layer.

CIKM °25, November 10-14, 2025, Seoul, Republic of Korea.

3.2 Gravity-GNN

Gravity-GNN introduces node gravity and a DRL-based neighbor
selection optimizer, enhancing representation learning by captur-
ing node similarities and filtering outlier neighbors. The overall
architecture of Gravity-GNN, as illustrated in Fig. 1, involves sev-
eral steps. Firstly, we sample B nodes from the GNN training set as
input, and their similarity scores are calculated based on the node
gravity. Then, the node attributes are fed into the DDPG algorithm
to obtain the node selection neighbor thresholds for each node in
different GNN layers. Next, the nodes perform neighbor samplings
based on these thresholds, which are subsequently input to the
GNN for training. The DDPG algorithm is updated based on the
signal fed back by the GNN training, and this iterative process
continues until the GNN training is completed.

Gaussian noise
N ~Ni &
NeNGod Updz(e 7. Pollcy gradlen(6. upda(e 5.policy gradient
w.r.t.0?
7.Gradient

HGso) w.rta

PH— m— Critic Network g]

7. = p(s)

2.(50, @ 7o, Se41) JQ.Soﬂupdate 5_y,| le.Soﬁupdate

Target Critic
letwor

| 5.1/ (504)
N N
1.Action a,
) 3. Store
\ (Se.@n TS
4.5ample
mini-batch

Figure 1: The aggregation process of Gravity-GNN in each
training episode.

3.2.1 Node Gravity Measurement. It not only incorporates the im-
pact of the nodes’ topological structure, but also considers the
relationships between node features.

o Space Gravity The magnitude of gravitation is related to the
mass of an object and the distance between two particles. The
greater the mass of the objects, the greater the gravitational
force between them. Additionally, the farther the objects are,
the less the gravitational force between them [17].

M
F:G—;n, (6)
r

where G is the gravitational constant that represents the
strength of the gravitational force between two objects. The
masses of the two particles are M and m, respectively, and r
is the spatial distance between the particles.

Node Information Entropy The information entropy of a
node reflects the nature of the interaction between particle
masses. The information entropy of each node v; in the graph
G can be calculated by:

Z Hz)ivj = Z Po;o; logp

. . 0iUj
v €Ty, v; €Ty, J

Vo eV, (7)

where Ty, is the first-order neighbor set of node v, py,0; =

d; . e
<—L— and d ; is the degree of node u;. In addition, we
Zvlerui dl

have Zvlel",,i Pojo; = 1.

CIKM °25, November 10-14, 2025, Seoul, Republic of Korea.

e Node Distance Similarly, we adopt the cosine distance be-
tween node features to characterize the distance between
particles. The distance between node v; and node v; can be
described as:

XiXj

dis(i, j) = 1= cos(xj, xj) =1 - (8)

BTN
where x; and x; are node features of nodes v; and v}, respec-
tively.

e Node Gravity Finally, we define the “node gravity” in graph
data as follows:

EiE;
Fij = nm ()
where G, is the node gravity constant and « is the weight
tuning coefficient that balances node topology information
and node attributes. The node gravity metric comprehen-
sively captures node similarities by considering topology

and features, resulting in more accurate node embeddings.

3.2.2 Neighbor Selection Optimizer. First, we specify node gravity
between the central node and its neighbors, and then compute the
similarity score, which is normalized to the range [0, 1]. The overall
process is detailed in Algorithm 1. Next, we design a neighbor
selection optimizer to sample the k-nearest neighbors adaptively.
We employ the DDPG algorithm to train the GNNs and find the
optimal threshold during training. DDPG determines the number
and selection of nodes for each node in each GNN layer by providing
a threshold for the central node.

Algorithm 1 Node Gravity Metric Score Calculation

Input: Central node v; and its neighbor set N (v;); Node Gravity
constant G, weight tuning coefficient o
Output: The similarity score between the central node v; and the
neighbor nodes N (v;)
1: while v; € v; U N(v;) do
2 while (vj,0,) € Edo
dy,
Pojon = 5
4 end while
55 Ej=- Zvneruj Pono; 108 Po,o;
6: end while
7. while v; € N(v;) do
& dis(i,j)=1- —2d

[i]x;]
9: Fijj = Gn%
10: end while
11: maxg = 0,ming =0
12: while v; € N(v;) do
13 maxp = max(maxp, Fj ;)
14: minp = min(ming, Fj ;)
15: end while
16: while v; € N(v;) do
F; j—ming

17: scorejj =

18: end while
19: return score

Wu et al.

The next step is to describe how the DRL-based neighbor selec-
tion optimizer works, and how to formalize the process of learning
the optimal neighbor selection policy as an MDP. As illustrated
in Fig. 1, the agent selects actions based on the current state, and
the reward is obtained by quantifying the performance of the GNN
model on the validation set. This process is repeated until a termi-
nation state is reached. The process of nodes filtering neighbors in
GNN training can be represented as an MDP, which is characterized
by a tuple (S, A, T, R), where S is the set of states, A is the set
of actions, 7 is the state transition function, and R is the reward
given by the GNNss training.

e State S: The state s; € S at time step ¢ is defined as the
node attribute of the current node. In batch training dur-
ing the GNNs training process, the state can be expressed
as sy = [X, Mask;], where Mask; € RNx1 represents the
mask matrix at time step ¢. Specifically, elements 0 and 1 in
Mask; represent an unsampled node and a sampled node,
respectively.

e Action A: Denoted as a; € A, includes all nodes’ neighbor

filter thresholds at each layer. Specifically, at each time step

t, the action can be expressed as a; = [ag, a1, ,ap-1] €

RBXL where a; € [0,1],i € [0,B — 1]. Here, B represents

the mini-batch size of GNNs and L represents the number of

layers in the GNN stacking.

State transition 7: Based on the action a; € A generated

by the agent, the node features of the next nodes are selected

among the neighbors based on the threshold values defined
in a;. Specifically, when the similarity score between the
central node and its neighbor exceeds the threshold, among
the selected neighbors, those not in the set Vygjted are chosen
with medium probability as the state for the next time slot.

In case there are no selected neighbor nodes satisfying the

threshold condition, we randomly sample nodes from the

training set, and take their node features as the state in the
next time slot.

Reward R: we set the reward function as:

-1
R = o(P(st,a1) - L3 P a)), (10)
b-1.44,

where P(s;, ar) is the performance evaluation metric on the
validation set during the GNNs training process, and o is a
parameter that adjusts the sensitivity of the agent to changes
in the performance of GNNs. Specifically, a larger value of w
means the agent is more sensitive to performance changes.
Moreover, we include a wait-and-see period of b steps be-
tween the current training performance and the historical
performance.

e Termination condition: We define the termination con-
dition of an episode as the completion of a full traversal of
the training set during the GNNs training process. This is
achieved when the set of visited state indices Ty jzeq 1S a
superset of T;, where T; represents the current training set
being used.

As illustrated in Fig. 2, the dotted line represents the entire
training set node. Initially, we randomly sample nodes from the
training set as the starting states. Then, based on the action selected

Gravity-GNN: Deep Reinforcement Learning Guided Space Gravity-based Graph Neural Network

CIKM °25, November 10-14, 2025, Seoul, Republic of Korea.

Possible node states
state in the next time slot

@ Current node

== State transition @ Visited node

states

Figure 2: Schematic diagram of the state transition process.

by the neighbor selection optimizer, we choose the state node for
the next time slot randomly among the selected neighbors. This
process continues until all the nodes in the training set have been
visited, serving as the termination condition for the episode.

3.2.3 Neighbor Selection Optimizer on DDPG. Due to the high-
dimensional state space and continuous action space, we design a
DDPG-based neighbor selection optimizer algorithm, as shown in
Algorithm 2.

First, we initialize the online actor network p(s, a; 0#) and the
online critic network Q(s, a; GQ) with the parameters 6# and 09,
respectively. The online network parameters are then assigned to
their corresponding target network parameters, i.e., 69" — 09
and ¥ «— M. Additionally, we initialize the GNN and record the
indices of the training state set T;s;seq. During a single experience
trajectory episode, an action a; is generated by adding behavioral
noise N; at time step ¢, as follows:

ar = p(s,a: %) + Ny, (11)

where N; samples the Gaussian distribution Ny ~ N(ptp,, 62), i is
the mean and o2 is the variance.

The GNN is then trained on the action a; produced by the agent,
which returns rewards r; and new states s;41. The agent then stores
the generated tuple of information (s;, as, ¢, Sr+1) in R as training
samples for the online network. Subsequently, the agent randomly
samples Bry, (sz, as, ¢, St+1) from R as mini-batch training data. The
actor target network 1’ outputs actions y/ (st+1), and y; is calculated
as yr = yO(si+1, #(sr+1); 69). The critic network’s parameter 69 is
updated using the stochastic gradient descent algorithm. Then, the
actor-network p(s, a; 0) is updated as follows:

1
Voul ~ 5 Z VaQ(5@00)|s=s,.a=u(s.) Vort (5 09)ls,. (12)

Finally, DDPG employs a soft update method to update the target
actor-network p’ and critic network Q’ as follows:

609 709 + (1 -1)62, (13)
O 10" +(1—1)0", (14)

where the default value of the soft update factor 7 is 0.001.

3.24 GNN Message Passing Module. After sampling the neighbor-
ing nodes, the subsequent step is to aggregate the information from
these nodes. We assume that the most effective neighboring nodes
have been selected for a specific downstream task. To retain the
benefits of traditional GCN, we adopt the node message passing
scheme as follows.

(1+1) _

1
o -
i Z A A
(jeﬂ(i)Uvi \deg(vi)y/deg(v})

(I+1)
i
node v;, o represents a nonlinear activation function, deg(v;) is
degree of sampled node v; with self-loop edges, wD is denoted as
a parameter matrix, b(!) is the bias of the [-th layer and N/ (i) refers
to the set of the sampled neighbor nodes.

z z}l)w(l) +b(l)), (15)

where z is the node representation of the [+ 1-th layer for

3.3 Time Complexity Analysis of Gravity-GNN

Our proposed Gravity-GNN demands calculating the feature map-
ping of all nodes and node gravitation between nodes and their
neighbors. As shown in Algorithm 1, there are two loops (line 1
and line 2) to calculate the gravitational similarity score between
the central node and the neighbor node. Therefore, the time com-
plexity of Algorithm 1 is O(dZ), and d, is the average degree
of the node. Furthermore, as shown in Algorithm 2, the Gravity-
GNN’s message passing scheme has a complexity of O(]V|?) due
to matrix multiplication, where |V| is the number of nodes in the
graph. The time complexity of the cross-entropy loss function is
also linear and O(|V|). Therefore, the overall time complexity of
the proposed Gravity-GNN is O(|V|? + d2,).

3.4 Convergence Analysis of Gravity-GNN

In this section, we will analyze the convergence of the proposed
algorithm, and the proof heavily refers to [20], which provides a
set of practical sufficient conditions for the convergence of the
single-agent DDPG algorithm in the continuous action spaces.

THEOREM 1. Given the following assumptions:

(1) The critic step-size sequence a(t) > 0,¥t > 0. Further, the se-
quence is monotonically decreasing and satisfies 3,5 a(t) =

CIKM °25, November 10-14, 2025, Seoul, Republic of Korea.

Algorithm 2 Neighbor Selection Optimizer based on DDPG

Input: Number of training episode E; Training set T; of GNNs,
Critic network learning rate acyjzic; Actor-network learning
rate acriric; Experience relay buffer R; Mini-batch size Bgy;
Train set in GNNss training T;

1: Initialize the weight parameters 6 and 69 of actor-network
u(s, a; 0H) and critic network Q(s, a; QQ), respectively.

2. Initialize the weight parameters 89 «—62 and ¥ «—06# of

target critic network Q" and target actor-network /', respec-

tively.

: Empty experience relay buffer R

: while each episode =1,2,--- ,E do

Reset the initial state sy of training the GNNs algorithm.

Reset the visited state index set T,;s;04, and add the index

of the state so to Tpisized-

7: while Tvisited D Tt do

U W

8: Calculate the action a; = p(s,a : %) + N; at the current
time step based on the current policy p(s,a : 6¥) with
noise.

9: Perform actions ay, train the GNNs algorithm, and record
the reward r; and the state s;41 of the next time step.

10: Store transfer tuple (sy, ar, 14, St+1) in experience relay
buffer R.

11 Update T;sizeq> adding the index of the state s;41 to
Tvisited .

12: Randomly sample mini-batches Bgy of transitions

(s¢, ag, 1y, St+1) from R.
13: Yi = ri + Q' (541, 1 (5041 07);097)

14: Minimizing the loss to update the critic network Q(s, a :
69).
15: Update actor-networks using gradient policy algorithm.
16:
Vou] =

1
N 2 VaQ(s.@:00) s amp(sr) Vour(s: 65,
i

17: Soft update the target network via Egs. (13) and (14).
18: end while
19: end while

00, Y;s0a%(t) < co. The actor step-size sequence {f(t)}r>0
(t)

satisfies lim;— 0 % =1
(2) (@) supr=oll62] < o0 as.

() supeoll6l] < o as.
(3) The state transition kernel p(- | s, a) is continuous.

Then the limit (éoQo, 6L,) of the algorithm satisfies: gL(éoQo, ok, Hico) =
0 and 5](@3, H_élo,yfoo) =0.

ProoF. In the algorithm, the policies y and critics Q are fully
connected feedforward neural networks that possess twice con-
tinuously differentiable activation functions. The reward function
r: 8 x A — R is continuous.

Wu et al.

When we do not consider experience replays, i.e., By, = 1, the
parameters of 69 and 6# are iteratively updated as follows:

931 = 9? + a(t)V(;QL(Q?, 0, st,ar), (16)
0" =0 + B(1)Vu] (02,04, 51). 17)

The loss gradient of Eq. (16) is given by
VooL(62,0¢ =V ;02
00L(07,0;,st,at) = Vo Q(se, ar; 07) r(se, ar)+

v [Qs 669 ptat s~ Ofsavsef)).
The loss gradient of Eq. (17) is given by
Vo (62,61, 50)
= Voun(st; 0}') X VaQ(st, p(513 0): 7). (19)

We then construct continuous-time trajectories that have iden-
tical limiting behavior and downgrade the analysis to understand
the asymptotic behavior of these trajectories.

First, we utilize the given step size sequence to divide the time
axis as follows:

mo =0 and m; = f;g) a(n), vVt > 1.

We define §9 € C([0,), R?) and 6# € C([0,), RP) as follows:

(1) 62(m;) = 62 and 6#(my) = 0Vt > 0,
(2) 02(m) = 69 (my)+7 2= [09 (my41)—-02 (my)], Ym € (my, mys1)

M1 —My
a_nd m > q, .)
3) 64 (m) = 0”(m,)+mr;::"r’nt [0H(mps1)—0H (ms)],Vm € (my, miy1)
and m > 0,

where R? and R? respectively are the parameter spaces of QtQ and
o
0y .

Similar to [20], we define a process of probability measures on

S X A by

p1(m) = 6(st, ar), (20)
and the associated process on S by
Hi(m) = pr(m) (-, A) = Js,., (21)

where m € (my, myy1), (s, ar) and &5, denotes the Dirac measure.
Then, we define

VL(69, 6, 0) = / VoL(69, 04,5, a)o(ds, da), (22)

V69, 0H v%) = / Vou (09,6, 5)0° (ds), (23)

where v is the probability measure on S X A and v° is the associated
marginal measure on S.

According to [20], under the above assumptions, the limits (Hg, o)
of the algorithm satisfy VL(Gg,, o, Hico) = 0and V](QOQO, o1, ,ufoo) =
0.

The following analyzes the situation when experience replays
are included, which means that in every iteration ¢, instead of only
using the tuple (sz, az, r¢, s¢+1) for training, the tuple encountered
is stored. At time step T, the agent randomly samples a mini-batch

Gravity-GNN: Deep Reinforcement Learning Guided Space Gravity-based Graph Neural Network

of size Bry < B tuples from the experience replay, and the weights
are updated as follows:

Brr

1
09, =02 +a(p) [@ 21 Voo L(02,6% s (i), aku,i))] . (24)

0 =01+ B(t)

t+1

Bgrr
1 Q ot
E Vv 07,0 i 25
BRL £ 9”](to t>sk(t,l))]s ()

where T —B+1 < k(t,i) <T.
Next, for m € [my, ms41), we redefine yi1 (m) to be the probability

measure on S X A that places a mass of 1/Bgy, on (sk(t,i)’ ak(t’i))
for1 <i < Bgr.
For m = my,
VL (62(m), 6% (). (m))
= [VoL (09 (m), 0+ (m). s, a)pus (m)
1
= §2?ff Vool (9?, Hf,Sk(t,i),ak(t,i)) : (26)

Similarly,
V] (éQ(m), o (m), ui(m))

/ Vo J (62 (m), 6 (m),)1 (m)

1 B
B S Vo) (62,05) (27)
It can be shown that the analysis follows the same lines as the

redefined measure process and see [20] for details.
O

4 Performance Evaluation

In order to verify the effectiveness of Gravity-GNN, different datasets
and baselines are used for the experiment. In particular, we adopt a
semi-supervised node classification task. First, we introduce some
details about the datasets. Then we list the comparative baselines
and some variants of Gravity-GNN.

4.1 Experimental Setting

4.1.1 Datasets. Extensive experiments are conducted on widely
used real-world citation networks, which are listed as follows:

e Cora, Citeseer and Pubmed [7]: These datasets belong to
the Academic Paper Citation Network, where nodes repre-
sent publications and edges represent citation links. Each
document is assigned a unique tag based on its subject, and
node attributes are represented as a bag of words. All nodes
are classified into 7, 6, and 3 classes, respectively.

e ACM [26]: The network is drawn from the ACM collection,
where nodes represent papers and edges represent the co-
authorship relationship between them. Node features are
constructed based on the keywords of the papers, and all
papers are divided into three categories: database, wireless
communication, and data mining.

In addition, other details of the above datasets are summarized
in Table 1.

CIKM °25, November 10-14, 2025, Seoul, Republic of Korea.

Table 1: Statistical characteristics.

Datasets Cora Citeseer PubMed ACM
Classes 7 6 3 3
Feature 1,433 3,703 500 1,870

Nodes 2,708 3,327 19,717 3,025
Edges 5,429 4,732 44,338 13,138

Training 140 120 60 60
validation 500 500 500 500
Test 1,000 1,000 1,000 1,000

4.1.2 Baselines. We employ the most popular GNNs as bench-
marks for comparison, and the specific details are listed below.

e GCN [7]: It aims to learn the encoding of local graph struc-
tures and node feature representations by utilizing local first-
order approximations of spectral graph convolutions. This
approach leverages the inherent properties of the spectral
graph convolution, allowing for more efficient and scalable
computation of the graph convolutional operation.

e FastGCN [1]: It interprets graph convolution as an integral
transformation of the embedding function under probabilis-
tic measures. It enhances the performance of the model by
leveraging importance sampling augmentation. This enables
the model to encode graph structures and node feature rep-
resentations more effectively.

e Dropedge-GCN [21]: It aims to prevent the model from
over-smoothing and enhance generalization by removing a
fixed proportion of edges at each training iteration.

e AM-GCN [27]: It is an adaptive multi-channel GCN and
applies an attention mechanism to simultaneously extract
node embeddings from node attributes, topology, and their
combinations.

e PTDNet-GCN [13]: It improves the robustness and general-
ization performance of GNNs by utilizing a parameterized
topological denoising network, which learns to discard task-
irrelevant edges. This helps prevent the GNN from being
affected by noisy or irrelevant information in the graph.

4.1.3 Variants of Gravity-GNN. We explore the effects of the three
key modules in Gravity-GNN by implementing a series of variants.
Specifically, we modify the node gravity measure and neighbor
selection optimizer to investigate their impact on the model’s per-
formance. The variants are designed to examine the crucial mecha-
nisms of the two modules.

e Cosine-GNN: The model employs a straightforward ap-
proach that involves utilizing the cosine similarity of node
features and the DDPG algorithm to select and filter the
number of neighbor nodes.

e Gravity-GNN-R: The proposed node gravity is utilized to
measure node similarity, and the threshold for selecting
neighbor nodes is determined by randomly generating a
number. Specifically, a random number is generated in the
range of [0, 1] for each node, which is used as the threshold
for selecting neighboring nodes.

CIKM °25, November 10-14, 2025, Seoul, Republic of Korea.

o Gravity-GNN-H: The model utilizes the novel node similar-
ity measure “node gravity” to measure similarity and selects
thresholds from a range of [0.1, 1] as hyperparameters.

o Gravity-GNN-TD3: The model employs TD3 [5] as the node
neighbor optimizer, while the remaining modules use the
same settings as those of Gravity-GNN.

To comprehensively evaluate our proposed Gravity-GNN, we
adopted the parameters suggested in the original paper for all base-
lines and further adjusted the hyperparameters to achieve better
performance. Specifically, we set the number of layers of all GCNs
to 2 and the hidden layer units to 128. The learning rate was set
within the range of {0.01, 0.02, 0.03, 0.04, 0.05}, and the dropout rate
was set to 0.4, 0.5. The node gravitational constant is generally set
to 1 by default for simplicity. Furthermore, we set the hidden layer
units of MLP to 128,256 and the learning rate as {le-4, le-3} in
DDPG. The experience replay buffer capacity was set to 10,000, and
other parameters were adjusted based on the original paper.

4.2 Performance Comparison

As presented in Table 2, our proposed Gravity-GNN consistently
outperforms both baselines and variants in terms of node classifica-
tion accuracy. The comparisons demonstrate the superiority of our
model for node classification. It can be observed that Gravity-GNN
and its variants achieve improvements ranging from 0.58% to 2.04%,
1.49% to 4.29%, 0.86% to 1.93%, and 2.9% to 5.56% over currently
popular methods on the four datasets, respectively. Gravity-GNN-R
and Gravity-GNN-H are inferior to our adaptive neighbor selec-
tion method Gravity-GNN, which proves the superiority of our
DRL-based Neighbor Selection Optimizer. The performance im-
provement over the baselines justifies the necessity of our proposed
neighbor selection optimizer modeled as an MDP. Moreover, the
comparison between Cosine-GNN and Gravity-GNN verifies that
the node gravity metric can more effectively express the similar
relationship between node features and topological information.

Table 2: Node classification accuracy (%) (Bold: best)

Methods Cora Citeseer PubMed ACM
GCN 80.68 70.44 79.12 85.84
FastGCN 78.57 69.74 79.09 86.18
DrOpedge—GCN 80.85 70.97 78.74 84.46
AM-GCN 76.91 69.44 79.58 88.56
PTDNet-GCN 82.14 72.54 79.81 87.12
Cosine-GNN 81.74 72.18 79.70 86.78
Gravity-GNN-R 77.31 69.46 78.62 84.38
Gravity-GNN-H 78.45 70.82 79.66 85.91
Gravity-GNN-TD3 | 81.31 73.34 80.67 87.03
Gravity-GNN 82.72 74.03 79.89 90.02

We evaluated the robustness of Gravity-GNN on the ACM dataset
by randomly introducing noisy edges into the original graph. For in-
stance, with a perturbation ratio of 5%, 50 edges would be randomly
added to a dataset with 1,000 original edges. As shown in Fig. 3, our
proposed model exhibited remarkable robust performance under
different levels of perturbation. This resilience is attributed to its
node gravity measure, which effectively captures both node features

Wu et al.

and local topology, along with the neighbor selection optimizer
based on DDPG. In contrast, the traditional GCN model suffers
from dilution of potential value information due to the presence
of noisy edges. Other baselines, such as FastGCN and Dropedge-
GCN, lack effective node similarity measures and adaptive neighbor
selection strategies, making them less capable of handling noisy
edges. Cosine-GNN, which relies solely on the cosine similarity
of node features for neighbor selection, proved less robust than
Gravity-GNN due to its absence of topological information.

04 X
~
~
~
~
¥ '\\
L 8 o,
851 g% .
A -~
S~
,“b
. " ‘-"'-.._
e, Tl g I T
L B0 v e % =
g -4- GCN e . Ty S~
FastGCN e
@ Dropedge-GCN) N Tl
75 4 PTDNet-GCN
Cosine-GNN ®
Gravity-GNN-R :
70l Gravity-GNN-H ® *
) Gravity-GNN-TD3 .
== Gravity-GNN °
T T T T T T
0 5 10 15 20 25

Perturbation rate(%)

Figure 3: The results (%) of Gravity-GNN and variants com-
pared to baselines at different perturbation rates on ACM.

The variants Gravity-GNN-R and Gravity-GNN-H, which em-
ploy random assignment and traditional hyperparameter assign-
ment methods for setting neighbor selection thresholds, respec-
tively, were also found to be inferior to Gravity-GNN with the
DDPG-based neighbor selection optimizer. In addition, while PTDNet-
GCN uses a parameterized topology denoising network to filter
out task-irrelevant edges, it generally underperformed compared
to Gravity-GNN, except at a 25% perturbation rate on the ACM
dataset. Overall, Gravity-GNN consistently achieved the highest
classification accuracy compared to all baseline algorithms and vari-
ants, except for a slight dip in performance at the 25% perturbation
level on the ACM dataset, where it ranked second best.

4.3 Hyperparameter Sensitivity

4.3.1 Impact of hyperparameter ». We conducted an experiment
to assess the impact of the hyperparameter w on the performance
of the Gravity-GNN model. As previously mentioned, controls
the sensitivity of the model to performance variations, with larger
values making the agent more sensitive to changes in the GNN’s
performance. To evaluate the effect of w, we varied its value at
values of 100, 1,000, and 10,000, and measured the corresponding
accuracy percentages. As shown in Fig. 4, the accuracy initially
increases but subsequently decreases as w becomes larger. This sug-
gests that heightened sensitivity to feedback does not necessarily
lead to better performance. Based on our findings, we recommend
setting o to 1,000 to achieve optimal results.

AcC

AcC

Gravity-GNN: Deep Reinforcement Learning Guided Space Gravity-based Graph Neural Network

B Gravity-GNN = Gravity-GNN-TD3 m Cosine-GNN = Gravity-GNN

5 74
7
EY
7
7 8
<n
76
70
7 6
72 8
100 100

1000 10000

Gravity-GNN-TD3 m Cosine-GNI

1000 10000
w w

(a) Cora (b) Citeseer
B Gravity-GNN B Gravity-GNN-TD3 m Cosine-GNN B GravityGNN = Gravity-GNN-TO3 m Cosine-GNN

x/ o
81 %
w0 o
7

" L=
” $o
% w
” 85
"

/3 o
72 83

100 1000 10000 10 1000 10000
w M
(c) PubMed (d) ACM

Figure 4: The effect of hyperparameter » on the experimental
results (%) in different datasets.

4.3.2 Impact of hyperparameter a. We evaluated the effect of the
hyperparameter o on the accuracy across different datasets. Specif-
ically, @ balances the influence of node topology information and
node attributes. We varied & from 0.5 to 2 and recorded the result-
ing accuracy changes, as illustrated in Fig. 5. The results indicate
that accuracy initially increases with a but begins to decline as «
continues to increase. Based on these observations, setting o to 1
typically yields the best performance.

83

& Gravity-GNN 7
@ Gravity-GNNTD3

- Gravity-GNN
@ Gravity-GNNTD3

(b) Citeseer

Py S cravity NN %
A\ ~@- Gravity-GNN-TD3

k- Gravity-GNN
~@- Gravity-GNNTD3

(c) PubMed (d) ACM

Figure 5: The effect of hyperparameter « on the experimental
results (%) in different datasets.

4.3.3 Impact of hyperparameter b. We conducted experiments to
evaluate the impact of the hyperparameter b on the classification
accuracy across different datasets. Fig. 6 shows the results, where
b denotes the window size used to track historical performance
changes of GNNs during training. We varied b from 5 to 25 and

CIKM °25, November 10-14, 2025, Seoul, Republic of Korea.

observed the corresponding accuracy changes. Generally, an in-
creasing trend in b values led to varied effects on accuracy, except
for the PubMed dataset, where a consistent decline in classification
accuracy was noted as b increased.

e Gravity-GNN 7.0
8- Graviey-GNN-TD3 o
@~ Cosine-GNN \

& Gravity-GNN
~@- Gravity-GNN-TD3
7351 "\ @ Cosine-GNN

7.0

725

ACC
ACC

720

75

7.0

705

700

(a) Cora (b) Citeseer

'\ —h~ Gravity-GNN 90
\. @~ Gravity-GNN-TD3
@ Cosine-GNN

k- Gravity-GNN
~@- Gravity-GNN-TD3
~@- Cosine-GNN

ACC

5 10 15 20 2 5 10 15 20 25
b

(c) PubMed (d) ACM

Figure 6: The effect of hyperparameter b on the experimental
results (%) in different datasets.

5 Conclusion

In this paper, we introduce a novel GNN framework that effectively
reduces noise interference by leveraging both node topology infor-
mation and node attributes. To achieve this, we define a new node
similarity measure, called “node gravity”, which applies classical
mechanics from physics to graph data. We combine the node grav-
ity metric and the DRL-based neighbor selection optimizer into the
Gravity-GNN framework, improving graph representation learning
and achieving state-of-the-art performance in node classification
tasks. In addition, we apply the concept of gravity from classical
mechanics to GNNs, offering a new perspective on graph data anal-
ysis and representation learning. Specifically, we model the process
of node filtering neighbors in GNN training as an MDP and utilize
DRL to generate a threshold for filtering neighbors for each node,
which enhances the model’s generalization ability. We conduct ex-
tensive experiments on real-world datasets to evaluate the superior
performance of our Gravity-GNN against state-of-the-art models.
Our results demonstrate the potential robustness against noisy
data with varying quality, and the generalizability of Gravity-GNN
across various network settings.

Acknowledgments

This work was supported by the National Key Research and De-
velopment Program of China (31400), the National Natural Sci-
ence Foundation of China (62071327 and 62401190), the Emerg-
ing Frontiers Cultivation Program of Tianjin University Interdis-
ciplinary Center, and the UK EPSRC CHEDDAR Communications
Hub (EP/X040518/1 and EP/Y037421/1).

CIKM °25, November 10-14, 2025, Seoul, Republic of Korea.

GenAlI Usage Disclosure

The authors disclose that no Generative Al (GenAl) tools were
used at any stage of the research, including data collection, code
development, or manuscript writing.

References

[1] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: Fast Learning with Graph
Convolutional Networks via Importance Sampling. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings. OpenReview.net. https://openreview.net/
forum?id=rytstx WAW

Hande Dong, Jiawei Chen, Fuli Feng, Xiangnan He, Shuxian Bi, Zhaolin Ding, and
Peng Cui. 2021. On the Equivalence of Decoupled Graph Convolution Network
and Label Propagation. In Proceedings of the Web Conference 2021 (Ljubljana,
Slovenia) (WWW ’21). ACM, New York, NY, USA, 3651-3662. doi:10.1145/3442381.
3449927

Yingtong Dou, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, and Philip S. Yu. 2020.
Enhancing Graph Neural Network-based Fraud Detectors against Camouflaged
Fraudsters. In Proceedings of the 29th ACM International Conference on Information
& Knowledge Management (Virtual Event, Ireland) (CIKM "20). ACM, New York,
NY, USA, 315-324. doi:10.1145/3340531.3411903

[4] Joshua Dean Ellis, Razib Igbal, and Keiichi Yoshimatsu. 2024. Deep Q-Learning-
Based Molecular Graph Generation for Chemical Structure Prediction From
Infrared Spectra. IEEE Trans. Artif. Intell. 5, 2 (2024), 634-646. d0i:10.1109/TAL
2023.3287947

Scott Fujimoto, Herke van Hoof, and David Meger. 2018. Addressing Function
Approximation Error in Actor-Critic Methods. In Proceedings of the 35th Interna-
tional Conference on Machine Learning, ICML 2018, Stockholmsmdssan, Stockholm,
Sweden, July 10-15, 2018 (Proceedings of Machine Learning Research, Vol. 80). PMLR,
1582-1591. http://proceedings.mlr.press/v80/fujimoto18a.html

Mengzhou Gao, Pengfei Jiao, Ruili Lu, Huaming Wu, Yinghui Wang, and Zhidong
Zhao. 2024. Inductive Link Prediction via Interactive Learning Across Relations
in Multiplex Networks. IEEE Trans. Comput. Soc. Syst. 11, 3 (2024), 3118-3130.
doi:10.1109/TCSS.2022.3176928

Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net. https://openreview.net/forum?id=SJU4ayYgl

[8] Kwei-Herng Lai, Daochen Zha, Kaixiong Zhou, and Xia Hu. 2020. Policy-GNN:
Aggregation Optimization for Graph Neural Networks. In Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining (Virtual Event, CA, USA) (KDD °20). ACM, New York, NY, USA, 461-471.
doi:10.1145/3394486.3403088

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2016. Continuous control
with deep reinforcement learning. In 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings. http://arxiv.org/abs/1509.02971

[10] LuLing, Washim Uddin Mondal, and Satish V. Ukkusuri. 2024. Cooperating Graph
Neural Networks With Deep Reinforcement Learning for Vaccine Prioritization.
IEEE J. Biomed. Health Inform. 28, 8 (2024), 4891-4902. doi:10.1109/JBHI.2024.
3392436

Chien-Liang Liu and Tzu-Hsuan Huang. 2023. Dynamic Job-Shop Scheduling
Problems Using Graph Neural Network and Deep Reinforcement Learning. IEEE
Trans. Syst., Man, Cybern. Syst. 53, 11 (2023), 6836-6848. doi:10.1109/TSMC.2023.
3287655

Mengbing Liu, Chongwen Huang, Ahmed Alhammadi, Marco Di Renzo,
Mérouane Debbah, and Chau Yuen. 2025. Beamforming Design and Association
Scheme for Multi-RIS Multi-User mmWave Systems Through Graph Neural Net-
works. IEEE Trans. Wireless Commun. (2025), 1-1. doi:10.1109/TWC.2025.3563529
Dongsheng Luo, Wei Cheng, Wenchao Yu, Bo Zong, Jingchao Ni, Haifeng Chen,
and Xiang Zhang. 2021. Learning to Drop: Robust Graph Neural Network via
Topological Denoising. In Proceedings of the 14th ACM International Conference
on Web Search and Data Mining (Virtual Event, Israel) (WSDM ’21). ACM, New
York, NY, USA, 779-787. doi:10.1145/3437963.3441734

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, loannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nature 518, 7540
(Feb. 2015), 529-533. d0i:10.1038/nature14236

Sai Munikoti, Deepesh Agarwal, Laya Das, Mahantesh Halappanavar, and Bal-
asubramaniam Natarajan. 2024. Challenges and Opportunities in Deep Rein-
forcement Learning With Graph Neural Networks: A Comprehensive Review of

A

=

1
=

G

=

[7

[

[9

=

[11

[12

[13

[14

(15

Wu et al.

Algorithms and Applications. IEEE Trans. Neural Netw. Learn. Syst. 35, 11 (2024),
15051-15071. doi:10.1109/TNNLS.2023.3283523

Jingchao Ni, Shiyu Chang, Xiao Liu, Wei Cheng, Haifeng Chen, Dongkuan Xu,
and Xiang Zhang. 2018. Co-Regularized Deep Multi-Network Embedding. In
Proceedings of the 2018 World Wide Web Conference (Lyon, France) (WWW ’18).
International World Wide Web Conferences Steering Committee, Republic and
Canton of Geneva, CHE, 469-478. doi:10.1145/3178876.3186113

Hans C. Ohanian and Remo Ruffini. 2013. Gravitation and Spacetime. Cambridge
University Press. doi:10.1017/cb09781139003391

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. 2020.
Geom-GCN: Geometric Graph Convolutional Networks. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net. https://openreview.net/forum?id=S1e2agrFvS
Hao Peng, Ruitong Zhang, Yingtong Dou, Renyu Yang, Jingyi Zhang, and Philip S.
Yu. 2021. Reinforced Neighborhood Selection Guided Multi-Relational Graph
Neural Networks. ACM Trans. Inf. Syst. 40, 4, Article 69 (Dec. 2021), 46 pages.
doi:10.1145/3490181

Adrian Redder, Arunselvan Ramaswamy, and Holger Karl. 2022. 3DPG: Dis-
tributed Deep Deterministic Policy Gradient Algorithms for Networked Multi-
Agent Systems. arXiv:2201.00570

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. 2020. DropEdge:
Towards Deep Graph Convolutional Networks on Node Classification. In 8th
International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net. https://openreview.net/forum?id=
Hkx1qkrKPr

Mallikharjuna Rao Sakhamuri, Shagufta Henna, Leo Creedon, and Kevin Meehan.
2024. Molecular Adversarial Generative Graph Network Model for Large-scale
Molecular Networks. In 2024 35th Irish Signals and Systems Conference (ISSC).
01-06. doi:10.1109/ISSC61953.2024.10603046

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and
Martin Riedmiller. 2014. Deterministic Policy Gradient Algorithms. In Proceedings
of the 31st International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 32). PMLR, Bejing, China, 387-395. https://proceedings.
mlr.press/v32/silver14.html

Guangchen Wang, Peng Cheng, Zhuo Chen, Branka Vucetic, and Yonghui Li.
2024. Inverse Reinforcement Learning With Graph Neural Networks for Full-
Dimensional Task Offloading in Edge Computing. IEEE Trans. Mob. Comput. 23,
6 (2024), 6490-6507. doi:10.1109/TMC.2023.3324332

Kai Wang, Shuaiyi Lyu, Yang Liu, and Bailing Wang. 2025. Graph Optimization
Via Decoupled Edge Tuning for Efficient Industrial Anomaly Detection. IEEE
Trans. Netw. Sci. Eng. (2025), 1-16. doi:10.1109/TNSE.2025.3567671

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S
Yu. 2019. Heterogeneous Graph Attention Network. In The World Wide Web
Conference (San Francisco, CA, USA) (WWW ’19). ACM, New York, NY, USA,
2022-2032. doi:10.1145/3308558.3313562

Xiao Wang, Meiqi Zhu, Deyu Bo, Peng Cui, Chuan Shi, and Jian Pei. 2020. AM-
GCN: Adaptive Multi-channel Graph Convolutional Networks. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining (Virtual Event, CA, USA) (KDD ’20). ACM, New York, NY, USA,
1243-1253. doi:10.1145/3394486.3403177

Yixiao Wang, Huaming Wu, and Ruidong Li. 2024. Deep Graph Reinforcement
Learning for Mobile Edge Computing: Challenges and Solutions. IEEE Network
38, 5 (2024), 314-323. doi:10.1109/MNET.2024.3383242

Yuzhi Yang, Zhaoyang Zhang, Yuqing Tian, Richeng Jin, and Chongwen Huang.
2023. Implementing Graph Neural Networks Over Wireless Networks via Over-
the-Air Computing: A Joint Communication and Computation Framework. IEEE
Wireless Commun. 30, 3 (2023), 62—69. doi:10.1109/MWC.012.2200552

Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay S. Pande, and Jure Leskovec. 2018.
Graph Convolutional Policy Network for Goal-Directed Molecular Graph Gener-
ation. In Advances in Neural Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018,
Montréal, Canada. 6412-6422. https://proceedings.neurips.cc/paper/2018/hash/
d60678e8f2badc540798ebbde31177e8- Abstract.html

Kexin Zhao, Xiao Tang, Limeng Dong, Ruonan Zhang, and Qinghe Du. 2025.
Graph Neural Network for Multi-User MISO Secure Wireless Communications.
In 2025 IEEE Wireless Communications and Networking Conference (WCNC). 1-6.
do0i:10.1109/WCNC61545.2025.10978207

Lingxiao Zhao and Leman Akoglu. 2020. PairNorm: Tackling Oversmoothing
in GNNs. In 8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net. https://openreview.
net/forum?id=rkeclirtwB

Xusheng Zhao, Jia Wu, Hao Peng, Amin Beheshti, Jessica .M. Monaghan, David
McAlpine, Heivet Hernandez-Perez, Mark Dras, Qiong Dai, Yangyang Li, Philip S.
Yu, and Lifang He. 2022. Deep reinforcement learning guided graph neural
networks for brain network analysis. Neural Networks 154 (Oct. 2022), 56-67.
doi:10.1016/j.neunet.2022.06.035

https://openreview.net/forum?id=rytstxWAW
https://openreview.net/forum?id=rytstxWAW
https://doi.org/10.1145/3442381.3449927
https://doi.org/10.1145/3442381.3449927
https://doi.org/10.1145/3340531.3411903
https://doi.org/10.1109/TAI.2023.3287947
https://doi.org/10.1109/TAI.2023.3287947
http://proceedings.mlr.press/v80/fujimoto18a.html
https://doi.org/10.1109/TCSS.2022.3176928
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1145/3394486.3403088
http://arxiv.org/abs/1509.02971
https://doi.org/10.1109/JBHI.2024.3392436
https://doi.org/10.1109/JBHI.2024.3392436
https://doi.org/10.1109/TSMC.2023.3287655
https://doi.org/10.1109/TSMC.2023.3287655
https://doi.org/10.1109/TWC.2025.3563529
https://doi.org/10.1145/3437963.3441734
https://doi.org/10.1038/nature14236
https://doi.org/10.1109/TNNLS.2023.3283523
https://doi.org/10.1145/3178876.3186113
https://doi.org/10.1017/cbo9781139003391
https://openreview.net/forum?id=S1e2agrFvS
https://doi.org/10.1145/3490181
https://arxiv.org/abs/2201.00570
https://openreview.net/forum?id=Hkx1qkrKPr
https://openreview.net/forum?id=Hkx1qkrKPr
https://doi.org/10.1109/ISSC61953.2024.10603046
https://proceedings.mlr.press/v32/silver14.html
https://proceedings.mlr.press/v32/silver14.html
https://doi.org/10.1109/TMC.2023.3324332
https://doi.org/10.1109/TNSE.2025.3567671
https://doi.org/10.1145/3308558.3313562
https://doi.org/10.1145/3394486.3403177
https://doi.org/10.1109/MNET.2024.3383242
https://doi.org/10.1109/MWC.012.2200552
https://proceedings.neurips.cc/paper/2018/hash/d60678e8f2ba9c540798ebbde31177e8-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/d60678e8f2ba9c540798ebbde31177e8-Abstract.html
https://doi.org/10.1109/WCNC61545.2025.10978207
https://openreview.net/forum?id=rkecl1rtwB
https://openreview.net/forum?id=rkecl1rtwB
https://doi.org/10.1016/j.neunet.2022.06.035

	Abstract
	1 Introduction
	2 Related work
	2.1 Graph Neural Networks
	2.2 DRL-Empowered Graph Neural Networks
	2.3 Qualitative Comparison

	3 Our Approach
	3.1 Preliminary
	3.2 Gravity-GNN
	3.3 Time Complexity Analysis of Gravity-GNN
	3.4 Convergence Analysis of Gravity-GNN

	4 Performance Evaluation
	4.1 Experimental Setting
	4.2 Performance Comparison
	4.3 Hyperparameter Sensitivity

	5 Conclusion
	Acknowledgments
	References

