
Threads : Java

What is a Thread?
 facility to allow multiple activities to coexist within a

single process.

Represents a separate path of execution of a group of

statements

Java is the first language to include threading within the

language, rather than treating it as a facility of the OS

 Video Game example
1.one thread for graphics
2.one thread for user interaction
3.one thread for networking

 Server Example
1.Do various jobs

2.Handle Several Clients

Main Thread

Default Thread in any Java Program

JVM uses to execute program statements

o Program To Find the Main Thread

Class Current

{

public static void main(String args[])

{

Thread t=Thread.currentThread();

System.out.println(“Current Thread: “+t);

System.out.println(“Name is: “+t.getName());

}

}

Threads in Java

Creating threads in Java:

Extend java.lang.Thread class

run() method must be overridden (similar to main method

of sequential program)

run() is called when execution of the thread begins

A thread terminates when run() returns

start() method invokes run()

OR

Implement java.lang.Runnable interface

4

Life cycle of a Thread

 New

The thread is in new state if you create an instance

of Thread class but before the invocation of start()

method.

 Runnable

The thread is in runnable state after invocation of start() method,

but the thread scheduler has not selected it to be the running

thread.
 Running

The thread is in running state if the thread scheduler has

selected it.
 Non-Runnable (Blocked)

This is the state when the thread is still alive, but is currently not

eligible to run.
 Terminated

A thread is in terminated or dead state when its run() method

exits.

Thread Priority
7

 Each thread is assigned a default priority of

Thread.NORM_PRIORITY (constant of 5).

 You can reset the priority using setPriority(int priority).

 Some constants for priorities include:

o Thread.MIN_PRIORITY

o Thread.MAX_PRIORITY

o Thread.NORM_PRIORITY

 By default, a thread has the priority level of the thread that

created it.

 Thread Synchronization
8

A shared resource may be corrupted if it is accessed

simultaneously by multiple threads.

Example: two unsynchronized threads accessing the same

bank account may cause conflict.

 Known as a race condition in multithreaded programs.

A thread-safe class does not cause a race condition in the

presence of multiple threads.

Synchronized
9

Problem : race conditions

Solution : give exclusive access to one thread at a time to code

that manipulates a shared object.

Synchronization keeps other threads waiting until the object is

available.

The synchronized keyword synchronizes the method so that only one
thread can access the method at a time.

public synchronized void xMethod() {

// method body

}

Obj t1 (Enters the object)

t2—wait until t1 comes out

Deadlock :

a part of multithreading

can occur when a thread is waiting for an object lock, that

is acquired by another thread and second thread is waiting

for an object lock that is acquired by first thread

Since, both threads are waiting for each other to release

the lock, the condition is called deadlock

Preventing Deadlock

Deadlock can be easily avoided by resource ordering.

With this technique, assign an order on all the objects
whose locks must be acquired and ensure that the
locks are acquired in that order.

Example:

Thread 1:

lock A

Thread 2:

wait for A

Thread 3:
wait for A

lock B

lock C(when A is locked)

wait for B wait for C

11

Advantages of Threads:

easier to program

provide better performance

allow any program to perform multiple tasks at once.

multiple threads can share resources

an Internet-aware language such as Java, this is a very

important tool

References

 http://www.slideshare.net/parag/multithreading-in-java

 https://code.google.com/p/googleappengine/wiki/SdkForJavaReleaseNotes

 http://stackoverflow.com/questions/2213340/what-is-daemon-thread-in-java

 https://github.com/orientechnologies/orientdb/wiki/Java-Multi-Threading

 http://www.javatpoint.com/creating-thread

 http://www.tutorialspoint.com/java/java_multithreading.htm

 http://tutorials.jenkov.com/java-concurrency/creating-and-starting-threads.html

 http://docs.oracle.com/javase/tutorial/essential/concurrency/runthread.html

 http://www.javabeginner.com/learn-java/java-threads-tutorial

 http://www.geeksforgeeks.org/java/

 http://www.javacodegeeks.com/2014/08/java-concurrency-tutorial-visibility-between-

threads.html

http://www.slideshare.net/parag/multithreading-in-java
https://code.google.com/p/googleappengine/wiki/SdkForJavaReleaseNotes
http://stackoverflow.com/questions/2213340/what-is-daemon-thread-in-java
https://github.com/orientechnologies/orientdb/wiki/Java-Multi-Threading
http://www.javatpoint.com/creating-thread
http://www.tutorialspoint.com/java/java_multithreading.htm
http://tutorials.jenkov.com/java-concurrency/creating-and-starting-threads.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/runthread.html
http://www.javabeginner.com/learn-java/java-threads-tutorial
http://www.geeksforgeeks.org/java/
http://www.javacodegeeks.com/2014/08/java-concurrency-tutorial-visibility-between-threads.html
http://www.javacodegeeks.com/2014/08/java-concurrency-tutorial-visibility-between-threads.html

Thank You

