
Threads : Java

What is a Thread?
 facility to allow multiple activities to coexist within a

single process.

Represents a separate path of execution of a group of

statements

Java is the first language to include threading within the

language, rather than treating it as a facility of the OS

 Video Game example
1.one thread for graphics
2.one thread for user interaction
3.one thread for networking

 Server Example
1.Do various jobs

2.Handle Several Clients

Main Thread

Default Thread in any Java Program

JVM uses to execute program statements

o Program To Find the Main Thread

Class Current

{

public static void main(String args[])

{

Thread t=Thread.currentThread();

System.out.println(“Current Thread: “+t);

System.out.println(“Name is: “+t.getName());

}

}

Threads in Java

Creating threads in Java:

Extend java.lang.Thread class

run() method must be overridden (similar to main method

of sequential program)

run() is called when execution of the thread begins

A thread terminates when run() returns

start() method invokes run()

OR

Implement java.lang.Runnable interface

4

Life cycle of a Thread

 New

The thread is in new state if you create an instance

of Thread class but before the invocation of start()

method.

 Runnable

The thread is in runnable state after invocation of start() method,

but the thread scheduler has not selected it to be the running

thread.
 Running

The thread is in running state if the thread scheduler has

selected it.
 Non-Runnable (Blocked)

This is the state when the thread is still alive, but is currently not

eligible to run.
 Terminated

A thread is in terminated or dead state when its run() method

exits.

Thread Priority
7

 Each thread is assigned a default priority of

Thread.NORM_PRIORITY (constant of 5).

 You can reset the priority using setPriority(int priority).

 Some constants for priorities include:

o Thread.MIN_PRIORITY

o Thread.MAX_PRIORITY

o Thread.NORM_PRIORITY

 By default, a thread has the priority level of the thread that

created it.

 Thread Synchronization
8

A shared resource may be corrupted if it is accessed

simultaneously by multiple threads.

Example: two unsynchronized threads accessing the same

bank account may cause conflict.

 Known as a race condition in multithreaded programs.

A thread-safe class does not cause a race condition in the

presence of multiple threads.

Synchronized
9

Problem : race conditions

Solution : give exclusive access to one thread at a time to code

that manipulates a shared object.

Synchronization keeps other threads waiting until the object is

available.

The synchronized keyword synchronizes the method so that only one
thread can access the method at a time.

public synchronized void xMethod() {

// method body

}

Obj t1 (Enters the object)

t2—wait until t1 comes out

Deadlock :

a part of multithreading

can occur when a thread is waiting for an object lock, that

is acquired by another thread and second thread is waiting

for an object lock that is acquired by first thread

Since, both threads are waiting for each other to release

the lock, the condition is called deadlock

Preventing Deadlock

Deadlock can be easily avoided by resource ordering.

With this technique, assign an order on all the objects
whose locks must be acquired and ensure that the
locks are acquired in that order.

Example:

Thread 1:

lock A

Thread 2:

wait for A

Thread 3:
wait for A

lock B

lock C(when A is locked)

wait for B wait for C

11

Advantages of Threads:

easier to program

provide better performance

allow any program to perform multiple tasks at once.

multiple threads can share resources

an Internet-aware language such as Java, this is a very

important tool

References

 http://www.slideshare.net/parag/multithreading-in-java

 https://code.google.com/p/googleappengine/wiki/SdkForJavaReleaseNotes

 http://stackoverflow.com/questions/2213340/what-is-daemon-thread-in-java

 https://github.com/orientechnologies/orientdb/wiki/Java-Multi-Threading

 http://www.javatpoint.com/creating-thread

 http://www.tutorialspoint.com/java/java_multithreading.htm

 http://tutorials.jenkov.com/java-concurrency/creating-and-starting-threads.html

 http://docs.oracle.com/javase/tutorial/essential/concurrency/runthread.html

 http://www.javabeginner.com/learn-java/java-threads-tutorial

 http://www.geeksforgeeks.org/java/

 http://www.javacodegeeks.com/2014/08/java-concurrency-tutorial-visibility-between-

threads.html

http://www.slideshare.net/parag/multithreading-in-java
https://code.google.com/p/googleappengine/wiki/SdkForJavaReleaseNotes
http://stackoverflow.com/questions/2213340/what-is-daemon-thread-in-java
https://github.com/orientechnologies/orientdb/wiki/Java-Multi-Threading
http://www.javatpoint.com/creating-thread
http://www.tutorialspoint.com/java/java_multithreading.htm
http://tutorials.jenkov.com/java-concurrency/creating-and-starting-threads.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/runthread.html
http://www.javabeginner.com/learn-java/java-threads-tutorial
http://www.geeksforgeeks.org/java/
http://www.javacodegeeks.com/2014/08/java-concurrency-tutorial-visibility-between-threads.html
http://www.javacodegeeks.com/2014/08/java-concurrency-tutorial-visibility-between-threads.html

Thank You

