
1

Java Threads

2

Multitasking and Multithreading

• Multitasking:
– refers to a computer's ability to perform multiple jobs

concurrently
– more than one program are running concurrently, e.g.,

UNIX

• Multithreading:
– A thread is a single sequence of execution within a

program
– refers to multiple threads of control within a single

program
– each program can run multiple threads of control within

it, e.g., Web Browser

3

Concurrency vs. Parallelism

CPU CPU1 CPU2

4

Threads and Processes

CPU

Process 1 Process 3Process 2 Process 4

main

run

GC

5

What are Threads Good For?

• To maintain responsiveness of an application

during a long running task

• To enable cancellation of separable tasks

• Some problems are intrinsically parallel

• To monitor status of some resource (e.g., DB)

• Some APIs and systems demand it (e.g., Swing)

6

Application Thread

• When we execute an application:

1. The JVM creates a Thread object whose task

is defined by the main() method

2. The JVM starts the thread

3. The thread executes the statements of the

program one by one

4. After executing all the statements, the method

returns and the thread dies

7

Multiple Threads in an Application

• Each thread has its private run-time stack

• If two threads execute the same method, each will

have its own copy of the local variables the

methods uses

• However, all threads see the same dynamic

memory, i.e., heap (are there variables on the

heap?)

• Two different threads can act on the same object

and same static fields concurrently

8

Creating Threads

• There are two ways to create our own

Thread object

1. Subclassing the Thread class and instantiating

a new object of that class

2. Implementing the Runnable interface

• In both cases the run() method should be

implemented

9

Extending Thread

public class ThreadExample extends Thread {

 public void run () {

 for (int i = 1; i <= 100; i++) {

 System.out.println(“---”);

 }

 }

}

10

Thread Methods

void start()

– Creates a new thread and makes it runnable

– This method can be called only once

void run()

– The new thread begins its life inside this method

void stop() (deprecated)

– The thread is being terminated

11

Thread Methods

void yield()

– Causes the currently executing thread object to

temporarily pause and allow other threads to

execute

– Allow only threads of the same priority to run

void sleep(int m) or sleep(int m, int n)
– The thread sleeps for m milliseconds, plus n

nanoseconds

12

Implementing Runnable

public class RunnableExample implements Runnable {

public void run () {

for (int i = 1; i <= 100; i++) {

 System.out.println (“***”);

 }

 }

}

13

A Runnable Object

• When running the Runnable object, a

Thread object is created from the Runnable

object

• The Thread object’s run() method calls the

Runnable object’s run() method

• Allows threads to run inside any object,

regardless of inheritance Example – an applet
that is also a thread

14

Starting the Threads

public class ThreadsStartExample {

 public static void main (String argv[]) {

 new ThreadExample ().start ();

 new Thread(new RunnableExample ()).start ();

 }

}

What will we see when running
ThreadsStartExample?

15

16

Scheduling Threads

I/O operation completes

start()

Currently executed
thread

Ready queue

•Waiting for I/O operation to be completed
•Waiting to be notified
•Sleeping
•Waiting to enter a synchronized section

Newly created
threads

What happens when
a program with a
ServerSocket calls
accept()?

17

Alive

Thread State Diagram

New Thread Dead Thread

Running

Runnable

new ThreadExample();

run() method returns

while (…) { … }

Blocked
Object.wait()
Thread.sleep()
blocking IO call
waiting on a monitor

thread.start();

18

Example

public class PrintThread1 extends Thread {

 String name;

 public PrintThread1(String name) {

 this.name = name;

 }

 public void run() {

 for (int i=1; i<100 ; i++) {

 try {

 sleep((long)(Math.random() * 100));

 } catch (InterruptedException ie) { }

 System.out.print(name);

 }

}

19

Example (cont)

 public static void main(String args[]) {
 PrintThread1 a = new PrintThread1("*");

 PrintThread1 b = new PrintThread1("-");

 a.start();

 b.start();

}

}

20

21

Scheduling

• Thread scheduling is the mechanism used

to determine how runnable threads are

allocated CPU time

• A thread-scheduling mechanism is either

preemptive or nonpreemptive

22

Preemptive Scheduling

• Preemptive scheduling – the thread scheduler

preempts (pauses) a running thread to allow

different threads to execute

• Nonpreemptive scheduling – the scheduler never

interrupts a running thread

• The nonpreemptive scheduler relies on the running

thread to yield control of the CPU so that other

threads may execute

23

Thread Priority

• Every thread has a priority

• When a thread is created, it inherits the

priority of the thread that created it

• The priority values range from 1 to 10,

in increasing priority

24

Thread Priority (cont.)

• The priority can be adjusted subsequently using

the setPriority() method

• The priority of a thread may be obtained using
getPriority()

• Priority constants are defined:

– MIN_PRIORITY=1

– MAX_PRIORITY=10

– NORM_PRIORITY=5

The main thread is
created with priority
NORM_PRIORITY

25

Daemon Threads

• Daemon threads are “background” threads, that

provide services to other threads, e.g., the garbage

collection thread

• The Java VM will not exit if non-Daemon threads

are executing

• The Java VM will exit if only Daemon threads are

executing

• Daemon threads die when the Java VM exits

• Q: Is the main thread a daemon thread?

26

Thread and the Garbage Collector

• Can a Thread object be collected by the

garbage collector while running?

– If not, why?

– If yes, what happens to the execution thread?

• When can a Thread object be collected?

27

ThreadGroup

• The ThreadGroup class is used to create

groups of similar threads. Why is this

needed?

“Thread groups are best viewed as an
unsuccessful experiment, and you may simply
ignore their existence.”

Joshua Bloch, software architect at Sun

	Java Threads
	Multitasking and Multithreading
	Concurrency vs. Parallelism
	Threads and Processes
	What are Threads Good For?
	Application Thread
	Multiple Threads in an Application
	Creating Threads
	Extending Thread
	Thread Methods
	Slide 11
	Implementing Runnable
	A Runnable Object
	Starting the Threads
	Slide 15
	Scheduling Threads
	Thread State Diagram
	Example
	Example (cont)
	Slide 20
	Scheduling
	Preemptive Scheduling
	Thread Priority
	Thread Priority (cont.)
	Daemon Threads
	Thread and the Garbage Collector
	ThreadGroup

