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Abstract With the development of new sensor tech-
nologies, Internet of Things (IoT)-based healthcare
applications have gained momentum in recent years.
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However, IoT devices have limited resources, making
them incapable of executing large computational oper-
ations. To solve this problem, the serverless paradigm,
with its advantages such as dynamic scalability and
infrastructure management, can be used to support
the requirements of IoT-based applications. However,
due to the heterogeneous structure of IoT, user trust
must also be taken into account when providing this
integration. This problem can be overcome by using
a Blockchain that guarantees data immutability and
ensures that any data generated by the IoT device is not
modified. This paper proposes a BlockFaaS framework
that supports dynamic scalability and guarantees secu-
rity and privacy by integrating a serverless platform
and Blockchain architecture into latency-sensitive Arti-
ficial Intelligence (AI)-based healthcare applications.
To do this, we deployed the AIBLOCK framework,
which guarantees data immutability in smart health-
care applications, into HealthFaaS, a serverless-based
framework for heart disease risk detection. To expand
this framework, we used high-performance AI models
and a more efficient Blockchain module. We use the
Transport Layer Security (TLS) protocol in all commu-
nication channels to ensure privacy within the frame-
work. To validate the proposed framework, we compare
its performance with the HealthFaaS and AIBLOCK
frameworks. The results show that BlockFaaS outper-
forms HealthFaaS with an AUC of 4.79% and con-
sumes 162.82 millijoules less energy on the Blockchain
module than AIBLOCK. Additionally, the cold start
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latency value occurring in Google Cloud Platform, the
serverless platform into which BlockFaaS is integrated,
and the factors affecting this value are examined.

Keywords Serverless computing · Internet of things ·
Healthcare · Privacy · Blockchain · AI

1 Introduction

The Internet of Things (IoT) can provide the basis for a
data exchange network that enables objects to work in
a synchronous manner [1]. The data collected through
sensors and actuators can be transferred to the cloud
or other devices via a gateway. Moreover, the analysis
results obtained using this data can help make decisions
and support citizens within a smart city [2]. IoT use is
spread over industrial, commercial, defence, and infras-
tructure scenarios [3]. One of these areas is healthcare,
where applications can directly affect human lives.
The general working mechanism of IoT-based health-
care applications is as follows: data is collected from
patients using sensors and sent to a gateway via an IoT
device. The gateway node is the middle layer that pro-
vides connectivity, manageability and security between
the cloud and the IoT device [4]. In the final stage, the
health data collected at the gateway is sent to the cloud
for analysis and diagnostic studies [5].

1.1 Our Previous Works

In our previous IoT-based health studies, we developed
three frameworks named iFaaSBus, AIBLOCK, and
HealthFaaS, which detect COVID and Heart Disease
Risk [6–8]. In these frameworks, health data is col-
lected from users via IoT and sent to Machine Learn-
ing (ML) models deployed on serverless platforms. By
detecting the condition, it is intended to avoid fatal
instances and needless medical costs based on the pre-
dictions generated by these ML models. ML models are
applied to serverless platforms because, as the number
of users using the frameworks increases, the amount of
data that needs to be processed also increases. At the
same time, system resources such as CPU and RAM
are required for the training and prediction processes of
ML models used in disease diagnosis. Considering that
IoT devices generally consist of resource- and storage-

limited devices, serverless computing is inspiring to
meet these needs.

In all health applications, providing security and pri-
vacy to protect users’ data, comply with legal regula-
tions, and increase trust in applications is very impor-
tant. JSON Web Token (JWT) and Open Authoriza-
tion 2 (OAuth 2.0) are used to ensure user privacy and
security within the framework of iFaaSBus. JWT has
weaknesses such as key management, storage and ver-
ification of tokens [9]. However, OAuth 2 has weak-
nesses such as weak authentication and access token
expiration [10]. Therefore, stronger security mecha-
nisms are needed. Therefore, within the framework of
AIBLOCK, Blockchain technology is used to ensure
security, which guarantees the immutability of health
data. On the other hand, in the HealthFaaS framework,
no external method is used to ensure system secu-
rity. Additionally, in both AIBLOCK and HealthFaaS
frameworks, privacy is only provided in the IoT layer.
Therefore, in this article, we propose a new frame-
work called BlockFaaS to offer security and privacy by
deploying the AIBLOCK framework to the HealthFaaS
framework. We have used the XGB model in the Block-
FaaS framework to get better ML prediction results than
HealthFaaS and used the SHA3-224 hash function for
higher-performance energy-sensitive blockchain trans-
actions than AIBLOCK.

1.2 Motivation and Our Contributions

IoT devices are often insufficient in terms of resource
and processing capacity (e.g., memory, processing,
bandwidth and energy) [11]. Therefore, an architecture
that can manage these limited resources is required to
process the large amounts of data they generate [12].
With its high processing capacity and dynamic scal-
ability feature, the serverless paradigm is an inspiring
development for processing the massive amount of data
produced in the IoT [6]. In Serverless, there is no need
to allocate resources that will be needed in advance.
Instead, resources are automatically scaled according
to the needs of the IoT, and with a pay-as-you-go pric-
ing policy, the resources are charged based on their
usage time.

User privacy is critical when integrating a serverless
platform with the IoT. Due to the heterogeneous nature
of IoT, it is difficult to ensure the integrity of data col-
lected from patients, and this will cause a user privacy
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problem [13]. All communication channels between
the serverless platform, the IoT device, and the database
where patient data is stored are vulnerable to attack
[14]. Therefore, in case of any attack on communication
channels, patient data can be altered (immutability).
Moreover, this may lead to severe consequences, such
as misdiagnosis [15]. Security and privacy concerns can
be reduced by using Blockchain and Transport Layer
Security (TLS). Blockchain technologies, which can be
used everywhere, from healthcare to the financial sec-
tor and military technologies, guarantee data integrity
and immutability with their unique architecture [16].

The main contributions of this paper are:

• We propose the BlockFaaS framework, which pro-
vides user privacy, security (data immutability), and
dynamic scalability in a single framework for IoT-
based healthcare applications,

• We implement a Blockchain-based and TLS-based
architecture to guarantee security and privacy in
IoT environments where data integrity is difficult
to ensure due to their heterogeneous nature,

• We observe the effect of cold start delay caused
by the serverless paradigm, which can cause prob-
lems in time-sensitive healthcare applications, and
identify the most effective factors to reduce it,

• We compare the performance of BlockFaaS with
AIBLOCK and HealthFaaS frameworks using the
heart disease risk detection scenario,

• We evaluate the performance of BlockFaaS from
three aspects: Blockchain energy cost and transac-
tion time, ML prediction performance, and Quality
of Service (QoS) parameters for the Serverless plat-
form.

The remainder of the article is organized as fol-
lows: In Section 2, some background information is
explained to the reader. In Section 3, related works are
given and compared with the BlockFaaS framework.
The Section 4 describes the used data set and the archi-
tecture of the BlockFaaS framework. In Section 5, a
comprehensive performance evaluation of the frame-
work is performed. Section 6 summarizes the work and
highlights possible future directions.

2 Background

The reader can better understand the BlockFaaS frame-
work by reading through this section, which exam-
ines some concepts. First, serverless computing and

its advantages are explained, followed by security and
privacy concerns in the IoT, and in the last subsection,
blockchain and TLS protocols are explained.

2.1 Serverless Computing

Modern cloud computing delivery models are termino-
logically examined under three main headings: Infras-
tructure as a Service (IaaS), Platform as a Service
(PaaS), and Function as a Service (FaaS) [17]. As it
moves from IaaS to FaaS, infrastructure and server
management are completely isolated from customers
and undertaken by the cloud provider [18]. Serverless
Computing, or in other words, Function as a Service
(FaaS), does not point to a system where the server is
not at all, contrary to popular belief [19]. Indicates that
server management and other infrastructure operations
are the service provider’s responsibility [20].

Serverless computing attracts attention with its three
advantages [21]:

• Customers only pay for the resources they use (Pay-
as-you-go),

• Customers do not need to specify the resources they
will use in advance. In case of a need for resources,
the system automatically scales the resources,

• Server infrastructure management is the sole
responsibility of the service provider. So, code
developers only need to focus on business appli-
cations and coding.

2.2 Security & Privacy Concerns in IoT

IoTs usually consist of hardware-constrained devices,
and it is difficult to apply security methods such as
encryption to these devices, which require high pro-
cessing power [22]. That’s why it is vulnerable to many
attacks [23]. The data transmitted in IoT may consist of
various data such as weather, location, health data, and
biometric data, depending on the type of application
used. In case of unauthorized capture or modification
of this data, a Confidentiality, Integrity, and Availabil-
ity (CIA) violation in information security occurs [24].
CIA Triad is a general concept used to explain the core
principles of information security [25]. Figure 1 shows
these three concepts and attacks against the three con-
cepts. These concepts can be explained as follows:
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Fig. 1 CIA triad in
information security
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• Confidentiality: It refers to the fact that only
authorized persons can access sensitive data held
in communication channels and databases [26].
The most common attacks against Confidential-
ity are Eavesdropping, Man-in-the-Middle (MitM)
Attacks, Side Channel Attacks, Data Sniffing, and
Data Leakage. Any threat affecting the system’s
confidentiality will also cause a privacy problem
[27]. Some measures that can be taken to ensure
confidentiality or privacy are encryption of commu-
nication channels and secure communication pro-
tocols (TLS Protocol, etc.) and user authentication
(token, etc.) [28].

• Integrity: It refers to the modification or distor-
tion of data held in communication channels and
databases by unauthorized persons [24]. Data Tam-
pering, Command/Data Injection, Replay Attacks,
and Spoofing are examples of the most common
attacks against Integrity. Some measures that can
be taken to ensure Integrity are Digital signatures
and Blockchain [29].

• Availability: It refers to the constant availabil-
ity of the information technology system [30].
Distributed Denial of Service (DDoS) and Botnet
Attacks are examples of the most common attacks
against Availability. Some measures that can be
taken to ensure availability are the development of
backup systems and infrastructure [31].

2.3 Blockchain & Transport Layer Security (TLS)
Protocol

Blockchain emerged in the 21st century and is one
of the most up-to-date technological innovations used
in many fields, including IoT, Network Management,
food security, and money transfers [32]. Blockchain
working mechanism is given in Fig. 2. The first block
shown in the figure is called Genesis [33], and new
blocks are added on top of Genesis. Blocks contain-
ing transaction date, time, and user data are digitally
signed. After signing, the hash value is added to the
next block. Each new block created is added to the end
of the chain, combining itself and the hash of the block
behind it. For this reason, a change in any of the blocks
will affect the hash value of all blocks. Therefore, it
is promising in providing data immutability of criti-
cal information such as health data in IoT-based health
applications [34].

Blockchain technology can ensure the security of
IoT-based healthcare systems against attacks such as
MiTM by ensuring data integrity [7]. MiTM attacks are
attacks in which data packets can be stolen and mod-
ified by eavesdropping on the communication chan-
nel between two targets [35]. This attack can cause
many security problems in sensitive applications such
as health applications and smart homes. Ahmed et al.
[36] demonstrated that a MiTM attack could cause
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Fig. 2 Blockchain mechanism

deaths in a healthcare scenario where automatic insulin
dosage is adjusted for diabetics.

TLS protocol is a security protocol used to ensure the
privacy of data transmitted in communication channels
[37]. There are several versions still used today in web
browsers and various applications. Figure 3 shows the
working mechanism of the TLS protocol. (i) The client
communicates with the server and receives the server
certificate and the server public key. (ii) On the client
side (internet browser), it checks the certificate received
from the server in a Certificate Authority (CA). (iii)

When this check is completed, the client creates a pri-
vate key. The client’s private key is encrypted with the
server’s public key and sent to the server. (iv) This data
received by the server is decrypted with the server’s
private key. And it obtains the private key of the client.
(v) The server and the client exchange data using the
private key of the client in the communication between
them (as explained in Step (iii)).

The TLS protocol can ensure the privacy of IoT-
based healthcare systems against privacy attacks such
as Eavesdropping [38]. Eavesdropping is an attack in
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123



   63 Page 6 of 19 Journal of Grid Computing            (2023) 21:63 

which data is stolen by eavesdropping on communica-
tions between two devices. In healthcare applications
where biometric data is used, this sensitive data can be
stolen through Eavesdropping attacks. Biometric data
are unique features of a person, such as fingerprints
and facial recognition, and are used in various scenar-
ios, from healthcare systems to authentication methods
[8,39]. Since these data are personal and unchangeable,
they will cause privacy problems if stolen [40].

Since the BlockFaaS framework provides encrypted
protection with the TLS protocol on all communication
channels, it is protected against external interventions.
Thus, it guarantees to protect Internet of Things-based
healthcare systems against privacy (confidentiality)
attacks such as Eavesdropping, Side Channel Attacks,
and Data Leakage. Additionally, the Blockchain mod-
ule integrated into BlockFaaS ensures the integrity of
patient data in transmission channels and databases.
Thus, it guarantees to protect Internet of Things-based
healthcare systems against security (Integrity) attacks
such as MiTM, Data Tampering, Replay Attacks, and
Spoofing.

3 Related Works

Taloba et al. [41] proposed a Blockchain-based archi-
tecture for multimedia data processing in IoT-Health-
care. In the study, they committed to protecting patients’
security in real-time by integrating Blockchain and
IoT. The proposed system against IoT attacks such
as falsified assault and wormhole intrusion achieved
a higher success rate of 86% compared to other stud-
ies. The authors of [42] presented an application
that provides the security of healthcare documents
using a Blockchain-based system. This application
uses the Proof of Work (PoW) consensus algorithm
to prevent fraudulent activity in the healthcare sys-
tem. In their proposed study, Gupta et al. [43] detected
patients’ falls using the Convolutional Neural Network
(CNN) model. Unlike other reviewed studies, they use
Edge Computing, which has advantages such as lower
latency and higher bandwidth than IoT. Balasundaram
et al. [44] proposed a new Smart Healthcare System
that detects health abnormalities using the U-Net and
LSTM models. Multiple critical health data such as
ECG and X-Ray are collected from patients via Multi-
Model IoT (MMIoT) devices and transmitted to the
server fastest with the 5G network. Golec et al. [6]

proposed a new IoT-based healthcare system using K-
Nearest Neighbor (KNN) to perform early COVID
diagnosis. In this context, health data collected from
users is sent to an ML model deployed on a server-
less platform using JWT. According to the prediction
results obtained in the ML model, it was aimed to
reduce the spread of the disease and mortality rates
by notifying the nearest health institution. The authors
used the OAuth-2.0 authorization protocol to ensure
user privacy. Cloud federations provide improved flex-
ibility and performance by freeing users from depen-
dence on a specific cloud provider. Doyle et al. [45]
proposed a new framework that enables secure Vir-
tual Machines (VM) in cloud federations to increase
this flexibility and performance. The migration of VMs
from one cloud provider to another is recorded using
blockchain and HyperLedger solutions. In this way,
it is aimed to prevent possible security breaches by
guaranteeing data immutability. Additionally, in this
study, the authors also ensure that SLA violations are
recorded and charged. Golec et al. [7] proposed a new
IoT-based framework that performs early COVID diag-
nosis in patients. They compared five ML models to
identify the most successful ML model in diagnosing
COVID. As a result of the comparison, they identi-
fied the ML model Decision Trees with the highest
accuracy rate and deployed it on a serverless platform.
The authors provided the processing power and storage
required for IoT thanks to the dynamic scalability fea-
ture of the serverless platform. Additionally, the authors
used a Blockchain module to secure the framework.
Apostolopoulos et al. [46] introduced a new resource-
sharing paradigm for social cloud computing that offers
both VM and serverless functions. In this paradigm,
a high-yield, low-complexity algorithm is introduced
that observes Pure Nash Equilibrium and considers
user satisfaction. The authors demonstrated the perfor-
mance of the framework they introduced using simula-
tion. In [47], the authors proposed a hyperledger-based
framework called BIoMT. This framework ensures
effective resource consumption and security in Internet
of Medical Things (IoMT) environments. At the same
time, the NuCypher Re-Encryption method is used to
ensure user privacy. Golec et al. [8] proposed a new
IoT-based framework to reduce heart disease, one of
the world’s deadliest diseases, and the economic dam-
age it causes. For this, they deployed the LightGBM
model on Google Cloud Functions, a serverless plat-
form. They used well-known feature selection methods
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Table 1 Comparison of this paper with existing works

Study Diagnosis Collection
Type

Dynamic
Scalability

Security Privacy AI

Taloba et al. [41] × IoT × Blockchain × ×
Sharma et al. [42] × IoT NO Blockchain × ×
Gupta et al. [43] Patients’ Falls IoT and Edge × × × CNN

Balasundaram et
al. [44]

Health
Anomalies

MMIoT × × × U-Net
LSTM

Doyle et al. [45] × VM Logs YES Blockchain × ×
Golec et al. [6] COVID IoT YES JSON Web

Token
OAuth 2.0 KNN

Golec et al.[7] COVID IoT YES Blockchain × DTs

Benedict [46] × × YES × × ×
Ayub Khan et al.
[47]

× IoMT × Blockchain NuCypher
Re-
Encryption

×

Golec et al. [8] Heart Disease
Risk

IoT YES × × LightGBM

BlockFaaS (this
paper)

Heart Disease
Risk

IoT YES Blockchain TLS LightGBM

×:= method does not support the property

in the literature to increase the prediction performance
of the risk of developing heart disease. Additionally,
they identified the cold start latency occurring in the
serverless paradigm for latency-sensitive applications
and the parameters affecting this time. They compared
the performance of serverless and non-serverless plat-
forms against the increasing number of users.

Table 1 clearly shows the differences between the
existing literature and our proposed BlockFaaS frame-
work. None of the existing works have considered
dynamic scalability, security, and privacy in IoT-based
healthcare applications simultaneously except iFaaS-
Bus framework [6], which used JWT to provide secu-
rity, however, iFaaSBus framework has several weak-
nesses, such as key management and storage and veri-
fication of tokens. To solve these issues, we propose a
new framework called BlockFaaS to improve security
using blockchain.

4 Methodology

This section explains the equations used when calculat-
ing energy cost and the cold start latency in Section 4.1.
Then, in Sections 4.2 & 4.3, BlockFaaS framework,
including AI and Blockchain modules in the frame-

work, are discussed in detail by showing them with
pseudocodes. The flowchart describes different inter-
actions in BlockFaaS and is given in Section 4.4. In the
Section 4.5, the dataset used in the heart disease risk
scenario to be integrated into BlockFaaS is explained.

4.1 Problem Formulation

In this subsection, we explain the formulas that we
use for calculating the performance and energy cost
of Blockchain’s hash functions [48] and the cold start
latency equation.

The following equation is used to calculate the
energy cost (εcost ) of the hash functions used in the
Blockchain module.

εcost = ρ × t (1)

Here ρ represents the power drawn by the pro-
cessor. The actual power consumed by CPUs under
load is not stable due to variables such as workload,
processor operating mode, etc., and is therefore dif-
ficult to determine. Therefore, a suitable power tar-
get can be achieved using Thermal Design Power

123



   63 Page 8 of 19 Journal of Grid Computing            (2023) 21:63 

IoT Layer Gateway Layer

Serverless Layer

Dynamic Scalability

Gateway DB

Serverless DB

Blockchain Module

Health Data

ML Predic�on Result

Hash Values

1

3

2

6 4 5

7

8

9

Check

Fig. 4 BlockFaaS framework

(TDP)1. TDP measures the amount of heat produced
by components such as the CPU and GPU, expressed
in Watts [49]. The TDP values drawn by the platforms
can be accessed from the references2. Platforms to
simulate serverless instance environments will be
explained in detail later in Section 5.1. The time t in
the equation represents the time spent on the hashing
process.

The following formula is used to calculate the cold
start latency (CLatency)occurring on the serverless plat-
form. Here, ι f irst is the latency calculated for the first
request, and ιsecond is the latency calculated for the sec-
ond request. The initial request sent in sequence from
the client to the server is referred to as the first request,
while the subsequent request is denoted as the second.

CLatency = ι f irst − ιsecond (2)

1 https://www.intel.com/content/www/us/en/support/ar-
ticles/000055611/processors.html
2 https://ark.intel.com/content/www/us/
en/ark/products/208921/intel-core-i71165g7-process-
or-12m-cache-up-to-4-70-ghz-with-ipu.html,
https://www.intel.com/content/www/us/en/products/
sku/201837/intel-core-i710750h-processor-12m-cach-
e-up-to-5-00-ghz/specifications.html

4.2 BlockFaaS Framework

Figure 4 shows the general working mechanism of
BlockFaaS. The steps are numbered sequentially to
make it easier for the reader to follow the mecha-
nism diagram. Using sensors and actuators, BlockFaaS
sends 13 variables collected from patients via IoT to the
gateway (1) and keeps copies of them in the gateway
database (DB) (2). The gateway node is the layer that
provides the connection between the cloud and the IoT
device, and it is assumed to be a mobile device in this
study. The health data collected at the gateway is sent
to the AI model in the Serverless layer, and it is deter-
mined whether the patient has a risk of heart disease
(3). A hash value is obtained by sending the prediction
result from the AI and the patient health data to the
Blockchain module (4). This hash value is stored in the
serverless platform’s DB (5). In the next step, the result
from the AI model is sent to the gateway (6). The data
previously stored in the gateway DB and the predic-
tion result from the serverless module are sent to the
blockchain module, and a new hash value is obtained
(7, 8). This newly obtained hash value is compared with
the hash value in the serverless module (9). If the two
hashes are incompatible, the data has been tampered
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with. These steps continue for each patient. The newly
created hash values are added to each other and stored in
the DB of the serverless module. Further, every newly
created hash value is subject to the same control mech-
anism, ensuring data immutability and user privacy.
Because, if any health data is changed, all hash val-
ues will be affected following the working logic of the
Blockchain. The Blockchain module used within the
BlockFaaS framework is the SHA-3 Keccak version
[50], which is accepted as the crypto standard in the
USA and is also used in Ethereum. SHA-3 Keccak has
advantages such as being resistant to length extension
attacks and faster hashing (performance) than SHA-
256 [51]. XGB ML model is used in the BlockFaaS
framework AI module. To decide on the ML model to
be used, four different models are compared by perfor-
mance. More details are given in Section 5.

4.3 Algorithms and Complexity Analysis

Algorithms 1 and 2 show the pseudo-codes of the
AI module and Blockchain modules deployed on the
serverless platform, respectively. First (Algorithm 1),
health data (HD) to be sent to the AI module is col-
lected via an IoT device and sensors. The collected
HD is transmitted to the gateway node that acts as the
middle layer. The gateway node can be used as a user
interface to display AI results to the user for new studies
in the future. A copy of HD transmitted to the gateway
node is stored in the gateway device’s DB. HD is sent
to the AI module, that is, to the ML model deployed
on the serverless platform, with the API created using
Python Flask. The prediction result (PR) and HD cre-
ated in the ML model are sent to the Blockchain mod-
ule. In the second stage (Algorithm 2), PR and HD

data are sent to the Blockchain module. These two
data are combined (Data). First, the first block of the
blockchain, Genesis, is created. Then, for each element
of the combined Data, a new node (N) is obtained by
using the time step (Ts), data, and the hash value of
the previous block, respectively. The blockchain is cre-
ated (C f ) by adding theNvalues obtained for each data
to the end of the block. The same process is repeated
using HD stored in the DB of the gateway device to
obtain a new blockchain (Cs). In the control phase,
these two blockchain values are checked by compar-
ing them. In this way, integrity (security) is ensured for

HD . It should be noted that TLS protocol is used in all
communication channels to ensure patients’ privacy.

Algorithm 1 The BlockFaaS AI module.
1: Input: HDi
2: Output: PR
3:
4: Begin
5: ↼ IoT Layer ⇀

6: Send HDi
7:
8: ↼ Gateway Layer ⇀

9:
∑i

0 HDi ↪→ HD
10: Send HD
11:
12: ↼ AI Module ⇀

13: Return PR
14: End

Algorithm 2 The BlockFaaS blockchain module.
1: Input: Data = HDi + PR
2: Output: H
3:
4: Begin
5: #Blockchain Creation Phase#
6: Create genesisBlock
7: C f = genesisBlock
8: for data in Data:
9: N = Block(Ts , data, C f [-1].hash)
10: C f .append(N)
11: #Control Phase#
12: if C f == Cs :
13: Return Matched
14: End

Time Complexity Analysis Since there is no loop
for Algorithm 1 and it only consists of commands such
as send and return, the time complexity is O(1). In Algo-
rithm 2, the time complexity value is O(n) because the
for loop is used to obtain the hash value for each health
data.

4.4 Flowchart

Figure 5 describes different interactions in BlockFaaS.
First, preparation steps are applied for the dataset to
be used in heart disease risk detection. In the second
step, four ML algorithms are trained. In the third step,
ML prediction results and ML performance results are
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compared. In the last step, performance evaluation is
made by measuring the additional load that Blockchain
brings to the system.

4.5 Data Description

A dataset showing the risk of heart disease with 14
variables are used in this paper [52]. The dataset con-
tains the following data for 303 patients: ”age”, ”sex”,
”cp”, ”trestbps”, ”chol”, ”fbs”, ”restecg”, ”thalach”,
”exang”, ”oldpeak”, ”slope”, ”ca”, ”thal”, and ”tar-
get”. These data represent, respectively, the patient’s
age, gender, chest pain symptom, blood pressure, blood
glucose, cardiac electrocardiogram (ECG), heart rate,
cardiac muscle ischemia, ST depression of the heart,
slope ratio of the heart, number of blood vessels, thal-
lium test result, and heart disease risk.

5 Performance Evaluation

In this section, we evaluate the performance of the
BlockFaaS framework from three different aspects. In
the first part, we measure the external load that the
Blockchain module brings to the framework. Next, we

benchmark the Blockchain modules used in the Block-
FaaS and AIBLOCK frameworks in terms of perfor-
mance and energy consumption. In the second part, we
compare four different ML models to find the most
effective ML model for the heart disease risk determi-
nation scenario. We compare HealthFaaS and Block-
FaaS frameworks based on AUC in the heart disease
risk determination scenario to extend the experiments
and make more accurate performance comparisons. In
the last part, we measure the QoS parameters of the
serverless platform used in the BlockFaaS framework.
We examine the factors that affect the cold start latency
that occurs in serverless.

5.1 Experimental Setup

We use two different system configurations through-
out the paper to simulate serverless instance envi-
ronments and perform performance experiments. The
system configurations are shown in Table 2. In Block-
FaaS, Google Cloud Platform is used as a serverless
platform [53] and the environment information for the
GCP-Cloud Functions is as follows: Region: ”europe-
west1”, Runtime: ”Python 3.11” and RAM allocated:
”512 MB”.

Table 2 System
configurations

Specifications Platform 1 Platform 2

CPU Intel Core i7-10750H Intel Core i7-1165G7

Clock speed 12M Cache, up to 5.00 GHz 12M Cache, up to 4.70 GHz

RAM 16 GB 32 GB

OS Windows 10 Pro Windows 11 Pro

TDP (W) 45 28

123



Journal of Grid Computing            (2023) 21:63 Page 11 of 19    63 

0

1

2

3

4

5

6

Pla�orm 1 Pla�orm 2

)S
m(

e
miT

gnissecorP
hsaH

BlockFaaS AIBLOCK

Fig. 6 Hash performances of SHA functions on two different platforms

5.2 Workloads

Platform 1 and Platform 2 are used to perform per-
formance experiments of The Blockchain module
(Hash functions). Our purpose in experimenting using
two different platforms is to observe the load that
Blockchain brings to the system under different system
configurations. We use Platform 1 as only one system
will be sufficient to evaluate the performance of The AI
module. We create a workload using Apache-JMeter
to measure the performance of the serverless platform
on which The BlockFaaS framework is deployed3. To
measure the response of the serverless platform under
different workloads and to simulate an increasing num-
ber of users, we send different numbers of concurrent
requests (100,200,..,1000) using JMeter.

5.3 Performance Metrics

While evaluating the performance of the BlockFaaS
framework, the following metrics are used respectively.

• Throughput: It calculates the number of bits trans-
mitted per second. It is expressed in units of
kbit/second or bit/second.

3 https://jmeter.apache.org/

• Cold Start Latency: In serverless computing, idle
resources are terminated (Scale to Zero) to avoid
unnecessary resource waste [14]. There is a certain
delay in getting these resources ready for reuse in
case of need. This delay is called cold start latency.
Cold start is an undesirable delay in IoT-based
healthcare systems such as patient monitoring.

• Average Response Rate (ARR): It is known as the
average response time between the Client-Server.
It is one of the metrics used to measure cloud per-
formance.

• Blockchain Load: Instant CPU-RAM usage per-
centage and processing times are used to measure
the amount of additional load that the Blockchain
module brings to the system.

• Performance of AI Models: Accuracy, Precision,
Recall and F-Score are be used to measure the per-
formance of AI models, respectively.

5.4 Experimental Results

In this section, all experiments and test results for the
BlockFaaS framework are explained.
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5.4.1 Measuring the Impact of Blockchain

In this subsection, we compare the performance and
energy consumption of Blockchain modules used
in proposed BlockFaaS and baseline AIBLOCK [7]
frameworks. Figure 6 shows the performance results
of two different SHA functions on two different plat-
forms. Each experiment is performed 10 times, and the
resulting average processing time is calculated using
(1). As can be seen from the figure, the SHA3 (Kec-
cak) function works much faster than SHA2.

Figure 7 shows the energy cost results of two dif-
ferent SHA functions on two different platforms. Each
experiment is performed 10 times, and the amount of
energy consumed per byte is shown using (2). It can be
seen that the SHA3-256 function consumes less energy
than SHA256. As a result, it is seen that the Blockchain
Module used in the BlockFaaS framework works with
higher performance and lower energy.

Three different parameters were used to calculate
the overhead that the Blockchain module brings to
the BlockFaaS framework. These are the CPU and
RAM usage percentage of Platform 1, where the mod-
ule is installed, and the processing time required for
the blocks to be linked together. Only the Blockchain
module is taken into account during our measurement,
not the AI module. Table 3 shows the results. Block

Table 3 Blockchain module external load for BlockFaaS

Block size CPU (%) RAM (%) Process Time (s)

100 4 44.00 0.056

300 6 44.40 0.212

500 7 44.40 0.385

1000 10 44.40 0.791

2000 14 44.50 1.44

Size represents patients’ health data, i.e. the number
of patients using the framework. The Platform’s CPU
and RAM usage percentages while idle are 1% and
44.10% respectively. While CPU usage and processing
time increase in direct proportion to the block size, the
increase in RAM usage is negligible.

5.4.2 Measuring the Impact of AI-based Prediction

In the BlockFaaS framework, we compare LR, KNN,
XGB and CART using the units Accuracy, Precision,
Recall, and F-Score, to find the most effective ML
model in heart disease risk prediction. In the first step,
we subjected the dataset to pre-processing for a bet-
ter accuracy rate. First, variables whose correlation
relationship with the target variable was less than 0.1
were removed from the dataset (”chol”, ”fbs”). Then,
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Fig. 7 Energy cost of SHA functions on two different platforms
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Table 4 Comparison of AI
performances using
BlockFaaS

Model Accuracy (%) Precision (%) Recall (%) F-Score (%)

LR (BlockFaaS V.1) 85.24 83.8 91.2 87.3

KNN (BlockFaaS V.2) 83.6 81.6 91.2 86.1

XGB (BlockFaaS V.3) 80.32 82.4 82.4 82.4

CART (BlockFaaS V.4) 72.13 77.4 70.6 73.8

the dataset was normalized. This process is important
for ML algorithms to achieve better convergence and
higher performance. The first nine variables with the
highest correlation were determined using the Inova
feature selection method. Four different AI models,
compared depending on Accuracy, Precision, Recall,
and F-score parameters, are given in Table 4, respec-
tively. The results showed that the most successful
model was LR, with an Accuracy rate of 85.24%, and
the most unsuccessful model was CART, with an accu-
racy rate of 72.13%.

In addition to using the above performance metrics
when evaluating ML models, Area Under Curve (AUC)
should also be taken into account. Because, while accu-
racy rates only explain the overall performance of a
model, the AUC value explains the performance of the
same model at different thresholds (positive and nega-
tive classes). Therefore, the AUC is resistant to imbal-
ances between majority and minority classes. We use
the AUC curve to determine the ML model used in
proposed BlockFaaS’s AI module and to make a more
accurate comparison with baseline HealthFaaS [8]. For
BlockFaaS, we selected all the above ML models, while

for HealthFaaS, we chose only the LightGBM model
with the highest accuracy. Figure 8 shows the perfor-
mance comparison for different ML models in terms of
AUC. As can be seen, the model with the highest AUC
is XGB with 86.71%. Therefore, the XGB model is
used in the BlockFaaS model to obtain more accurate
prediction results. AUC results show that BlockFaaS
has better performance than HealthFaaS in terms of
AUC.

5.4.3 Measuring the Scalability Performance

We used GCP Cloud Functions, a serverless platform
within the BlockFaaS framework, and environment
configuration in Section 5.1. GCP Cloud Functions
delivers the resources needed in IoT-based healthcare
applications with dynamic scalability for growing num-
bers of users and large computing operations. To test
the scalability performance, we use QoS parameters
such as Throughput, Average Response Rate (ARR),
and Cold Start Latency in the heart disease risk sce-
nario mentioned earlier. Then, we determine the cold
start latency that occurs on the serverless platform and

Fig. 8 Performance
comparison for different
ML models in terms of AUC
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Fig. 9 The scalability
performance of serverless
platform

the ML model with the lowest cold start latency to mini-
mize this latency. In the last experiment, we determined
the factors that affect the cold start delay in Serverless
computing.

Figure 9 shows the change in throughput (Server-
less_Throughput) and average response rate (Server-
less_ARR) of the serverless platform in response to
the increasing number of users. An increasing num-
ber of concurrent requests (NCR) were sent to the ML
model on the server via JMeter to represent the number
of users using the system. Each HTTP request con-
tains 11 health data used in the heart disease risk sce-
nario. In direct proportion to the increasing amount
of NCR, the bit/s rates in the transmission channels
also increase. Therefore, the throughput value tends to
increase continuously. When the NCR reaches 477, the

Throughput value reaches its maximum and gradually
decreases. This is because of resource contention that
can occur when using the server’s common resources
(RAM, cache, etc.). When the ARR, another evaluation
criterion, is examined, it is seen that the ARR increases
with the increase in NCR. However, an exception is
when 100 NCRs sent to the server have an ARR higher
than 200 NCRs. The reason for this exception is the cold
boot delay due to the serverless paradigm. This delay
was measured as 30 milliseconds. Cold start latency
is often an undesirable problem in time-sensitive IoT-
based healthcare applications. To minimize this prob-
lem, it is important to identify the AI model with the
lowest cold start latency. In our scenario, we deployed
four different AI models to the server. And the cold
start latency obtained for each is given in Fig. 10. The

Fig. 10 Cold start latency
for different ML models
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results showed that the model with the highest cold start
latency was XGB with 1324 mS, while the model with
the least cold start latency was CART with 1197 mS.

5.4.4 Measuring the Impact of Cold Start Latency

Three experiments were conducted to observe the fac-
tors affecting cold start latency in serverless computing.
These experiments are the cold start latency rates corre-
sponding to the RAM amount, software language, and
package amount change. In the first experiment, we run
a simple code script that returns ”Hello World” to the
screen using the Python 3.11 version. To observe the
effect of the amount of RAM on a cold start, we use
function instances with 256, 512, and 1024 RAM. As
seen in Fig. 11, the cold start latency rate also decreases
as the amount of RAM increases. We repeat the same
script in the second experiment using Python 3.11, Java
17 and Go language. It should be noted that the function
instance in all three programming languages has 256
RAM. Figure 12 shows the cold start latency change
according to the software languages. Since the Go lan-
guage is a compiled language, it is much faster than
interpreted languages such as Python and Javascript
and, therefore has a lower cold start latency (0.66 sec-
onds). The reason why Javascript (1.18 seconds) is
faster than Python (1.60) may be that it has highly
optimized engines. As a result, we found that each soft-

ware language has a different cold start latency. In the
last experiment, we sent packets of varying sizes to
a script written in Python. These package sizes are 1
kb, 15 Mb, and 40 Mb, respectively. Figure 13 shows
the cold start latency change according to the varying
sizes of packets. The cold start latency times obtained
for each package are 1.70 s, 2.66, and 4.78 seconds,
respectively. The results show that dependencies such
as libraries and external files required for the execution
of functions affect the cold start latency time.

6 Conclusions and Future Work

With the emerging use of IoT-based healthcare applica-
tions, resource-constrained IoT devices may be insuf-
ficient to process user-generated data. In addition,
due to the heterogeneous nature of IoT devices, data
integrity may limit a user’s trust in decisions made
using such data. This study proposes BlockFaaS, a
framework designed with these vulnerabilities of IoT in
mind. BlockFaaS automatically scales resources using
a serverless platform and provides the external pro-
cessing power required for IoT-based healthcare appli-
cations. In the BlockFaaS framework, a Blockchain
module has been developed to address concerns such
as user trust in IoT-based healthcare applications. This
is ensured by guaranteeing data integration in transmis-
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Fig. 11 The impact of different main memory capacity (RAM) on cold start latency
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sion channels and databases. We have tested BlockFaaS
from three aspects of a healthcare application scenario
that detects heart disease risk. We tested BlockFaaS
in three aspects of a healthcare application scenario
detecting heart disease risk. First, the most successful
model is determined by comparing the performances
of 4 different artificial intelligence models in the heart

disease risk detection scenario. Additionally, its pre-
diction performance has been compared with the lit-
erature work HealthFaaS. Secondly, the performance
and energy cost values of the Blockchain module used
in BlockFaaS are compared with the literature study
AIBLOCK. The last experiment measures QoS param-
eters such as throughput and cold start for the Google
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Fig. 13 The impact of uploading different file sizes (MB) on cold start latency
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Cloud Functions serverless platform used in Block-
FaaS. Additionally, factors affecting cold start latency
are identified.

6.1 Promising Future Directions

In the BlockFaaS framework, it was assumed that
health data was obtained through sensors and an IoT
device. The study can be extended in the future by
using a real IoT device, such as a wearable device
[34]. Additionally, users can be informed by writing
a mobile application for the BlockFaaS framework
in the following studies [19]. Accuracy rates can be
increased using advanced ML/DL models for the heart
disease risk detection scenario [23]. Eliminating cold
start latency in the BlockFaaS framework is critical for
time-sensitive IoT healthcare applications, an aspect
that we aim to improve in future versions of Block-
FaaS.
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