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Abstract

The redundancy in the benchmark suite will increase

the time for computer system performance evaluation

and simulation. The most typical method to solve this

problem is to select subsets based on clustering. How-

ever, it is a challenge to validate benchmark subsetting

results for unlabeled benchmark suites when using the

clustering method, and existing research has not con-

sidered this problem. Also, there is no quantitative

evaluation method for subsetting which can reflect the

universal and the diversity characteristics of the

benchmark suite at the same time. To solve the above

problems, we propose BenchSubset, a framework for

selecting benchmark subsets based on consensus clus-

tering, which includes Group Principal Components

Analysis, consensus clustering, and a new evaluation

method considering the universal and the diversity

characteristics of the benchmark suite. We conducted

SPEC CPU2017 subsetting experiments on Huawei's

Taishan 200, then verified the effectiveness of Bench-

Subset in selecting a benchmark subset. Compared

with the mainstream principal components analysis

with hierarchical clustering (PCA‐H) method, the
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benchmark subset selected by BenchSubset performs

better in representing the universal and the diversity

characteristics of SPEC CPU2017.
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1 | INTRODUCTION

Benchmarking has traditionally been focused on competitive system evaluation and compar-
ison, which are mainly reflected in vendors that sell System under Test (SUT) use benchmarks
to demonstrate the advantages of their products for marketing. However, in the past couple of
decades, the application scenarios of benchmarking have gradually increased. For example,
customers can use benchmarks to compare competing products from different suppliers, and
researchers use benchmarks to evaluate novel system architectures.1 However, the redundancy
in the benchmark suites will increase the evaluation costs of computer system performance
evaluation.2,3 In addition, when developing, deploying, and operating the SUT, benchmarks
can also be used to verify a given hardware and software configuration through simulation, but
the simulation time is can be much slower than the actual execution time,4 for instance, the
microservices can be executed within milliseconds in realistic testbed, while the simulation
toolkit can consume seconds or minutes for execution.

To solve the above problems, the existing research usually selects a benchmark subset from
the benchmark suite to save time, but the randomly selected subset can lead to misleading
conclusions. Therefore, to evaluate the performance of different computer systems more sci-
entifically and efficiently and reduce the time of simulation, it is valuable to investigate how to
select a benchmark subset that can reflect the performance characteristics and potential of the
system from the original benchmark suite. In addition, the investigated approach can not only
select typical subsets for existing benchmark suites but also guide the selection process of
benchmark for constructing a new benchmark suite.

Although a lot of research has been done on the selection of benchmark subsets in recent years,
most of the methods still have certain shortcomings. The benchmark subset selection method based
on P&B design5 costs a large simulation time overhead; the benchmark subset selection method
based on genetic algorithm2,6 has the advantage that the selected subset is relatively objective, but
the initial individual selection of the algorithm has a relatively large impact on the final result. The
most typical method is clustering.7–19 When using the clustering method to extract subsets, the
collected performance data is preprocessed through Principal Component Analysis (PCA) first,
then the optimal size of benchmark subset and the optimal benchmark in each cluster is de-
termined based on principal components (PCs) using cluster algorithm. However, unlike the Server
Efficiency Rating Tool (SERT),20 most of the benchmark suites have no labels. Therefore, it is a
challenge to validate benchmark clustering results and determine the optimal size of the bench-
mark subset. In addition, from the perspective of evaluation methods, existing research mainly
includes machine indicators, SPEC scores, and distance quantification,2,13,15 but the benchmark
subset should reflect the universal and the diversity characteristics of the benchmark suite at the
same time as much as possible, and there is no comprehensive indicator now.
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On the basis of the above research background, we propose the BenchSubset framework,
which mainly addresses benchmark suite subsetting of the unlabeled benchmark suite. To
verify the results of benchmark clustering, we use consensus clustering based on resampling to
process the feature data representing the input benchmark suite, and through the consensus
matrix generated by consensus clustering, we can determine the optimal size of the benchmark
subset and optimal benchmark subset. To make up for the deficiencies of the existing eva-
luation method, we also proposed a new benchmark subset evaluation method. As a case study,
BenchSubset selected the benchmark subsets for the four subsuites of unlabeled SPEC
CPU2017. In general, our work has three main contributions:

1. We propose BenchSubset, a framework for selecting benchmark subsets based on consensus
clustering, which encompasses the entire process of benchmark subset selection and can be
extended to servers of any architecture. To the best of our knowledge, BenchSubset is
the first framework that considers the validation of the benchmark subset selection results of
the unlabeled benchmark suite, then realizes the selection of the benchmark subset based on
consensus clustering, including the optimal size of the benchmark subset and the optimal
benchmark in each cluster.

2. We present a new benchmark subset evaluation method, which can evaluate if the
benchmark subset can reflect the universal and the diversity characteristics of the bench-
mark suite at the same time as much as possible.

3. When preprocessing the feature data, this paper replaces PCA with Group Principal Com-
ponents Analysis (GPCA), which individually performs PCA operations on each group of
feature data. Compared with PCA, it reduces the data dimension of the feature and elim-
inates correlations while retaining the various types of features as completely as possible.

The rest of this paper is organized as follows. Section 2 includes related research and SPEC
CPU2017 introduction; Section 3 introduces our proposed BenchSubset framework workflow
and its detailed design; Section 4 demonstrates the experimental analysis of SPEC CPU2017
subsetting; finally, the summary of the work is concluded in Section 5.

2 | BACKGROUND

In this section, we first analyzed and discovered the problems of the existing benchmark subset
selection methods, then introduced SPEC CPU2017's design.

2.1 | Related work

Existing research mainly reduces benchmark execution and simulation time from three aspects,
including reducing the input set,4,21 benchmark subset selection, and statistics sampling.22 Among
them, the research on benchmark subset selection is relatively extensive. The current benchmark
subsetting methods are mainly based on the hardware performance counter data of the benchmark
at runtime. However, the more precisely we characterize a benchmark's performance on a given
system, the less usable it is across different microarchitectures. Yi et al.5 used the Plackett–Burman
design matrix to visually show whether the parameters are in the normal range under different
processor configurations, and calculate each parameter's impact on the processor performance.
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The benchmark vector is composed of the influence ranking of all parameters. By calculating the
Euclidean distance of the two benchmark vectors, and comparing it with the user‐defined similarity
threshold, if it is lower than the threshold, then the two benchmarks are similar. The smaller the
distance, the more similar the benchmarks. The advantage of the Plackett–Burman design is that for
a specific component, such as a processor, the computational complexity is linear, but for multiple
components, multiple simulations are required. To save simulation time, the benchmark subset
selection method combining dimensionality reduction and clustering7–19 has gradually been applied,
among which the commonly used cluster algorithm include hierarchical clustering and K‐Means.
When selecting the benchmark subset of SPEC CPU2017 through hierarchical clustering, Panda
et al.15 manually specified the optimal K value, and Limaye and Adegbija16 used the sum of squares
of errors (SSE) to determine the optimally selected benchmark, which is the sum of the Euclidean
distances between the class centroids and the data points in the cluster. As the clusters are merged,
the SSE value will increase. Finally, the number of clusters is selected according to the Pareto
optimal solution of SSE and execution time. However, there is no strategy for selecting the optimal
benchmark in each cluster. When applying K‐Means for subset selection, Ajay Joshi et al.17 used
Bayesian Information Criterion (BIC) to select the optimal K value and selected benchmark close to
the cluster center as a representative benchmark. Jia et al.18 verified that the benchmark far from the
cluster center is better for BigDataBench. On the basis of the fact that the benchmark has no labels
and that it is impossible to judge which clustering method is more effective, Liu et al.13 proposed a
clustering algorithm selector for embedded benchmarks. All the feature data are first processed by
PCA, then Linear Discriminant Analysis (LDA) is used to process the feature data labeled by the
clustering algorithm, and the generated results are fed back to the clustering algorithm set. Finally,
the optimal clustering algorithm and the optimal size of clusters are selected from 10 clustering
algorithms through BIC. The optimal benchmark in each cluster is closest to the cluster center. In
addition to cluster algorithms, genetic algorithms are also used in the selection of benchmark
subsets. The selection method of benchmark subset based on the genetic algorithm needs to define
benchmark characterization representation, benchmark coding method, and fitness function of
evaluating the effect of benchmark subset. Jin et al.2,19 used a vector composed of 29 features
proposed by Phansalkar to represent the benchmark. The fitness function is determined by the
workload space and the execution time. The advantage of this method is that the selected subset is
relatively objective, but the design of the fitness function is not particularly reasonable. It does not
take the score of the benchmark into account, such as the SPEC CPU2017 score, and the selection of
the initial individual of the algorithm has a great impact on the final effect.

The BenchSubset framework proposed in this paper is an improvement on the common
benchmark subset selection method combining dimensionality reduction and clustering.
BenchSubset not only considers the problem of not having a one‐size‐fit‐all clustering algo-
rithm but also determines the optimal size of the benchmark subset and the optimal bench-
mark in each cluster; compared with BenchPrime,13 BenchSubset takes the validation of the
benchmark subset selection results of the unlabeled benchmark suite into account.

2.2 | SPEC CPU2017

As a motivational example, we selected the benchmark subset for the unlabeled SPEC CPU2017
suite. SPEC CPU2017 is the latest version of SPEC CPU, which mainly stresses the performance of
the processor, memory subsystem, and compiler.23 Compared with SPEC CPU2006, SPEC CPU2017
is larger and more complex. First, CPU2017 updates the compiler, adds more functions, and improves
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performance.24 Second, from the perspective of workload, SPEC CPU2017 replaces some benchmarks
in CPU2006 with larger and more complex workloads. It also updates the application domain, such
as adding three‐dimensional (3D) rendering, biomedical imaging, image processing, and other new
areas to the floating point (FP) category, and removing benchmarks in the fields of speech recognition
and electronic automation design. In general, SPEC CPU2017's source code has grown rapidly,23 so
there is greater redundancy compared to SPEC CPU2006. Therefore, to improve the efficiency of its
benchmarking, it is very significant to select a benchmark subset of SPEC CPU2017. SPEC CPU2017
contains 43 benchmarks, including four subsuites, SPECrate 2017 Integer, SPECrate 2017 Floating
Point, SPECspeed 2017 Integer, and SPECspeed 2017 Floating Point (hereinafter referred to as
SPECrate INT, SPECrate FP, SPECspeed INT, and SPECspeed FP), the specific workloads are shown
in Table 1. The test types include integer arithmetic and floating‐point arithmetic, as well as two
modes of rate and speed, respectively. Speed is the calculation speed test for a single workload, and
the rate is the throughput testing for the system to run multiple of the same workload, for these two
modes, threads and copies must be given before running, respectively.

To ensure the fairness of the benchmark, the SPEC CPU benchmark suite uses speed and
throughput indicators across different architectures to measure and compare performance. The
performance ratio of a benchmark i in speed mode and rate mode is calculated as

Ratio i threads
time ref

time SUT threads
( , ) =

( , 1)

( , )
,speed (1)








Ratio i copies copies

time ref

time SUT copies
( , ) =

( , 1)

( , )
,rate (2)

where time(ref, 1) is the running time on the reference machine. The reference machine se-
lected in this article is Sun Fire V490, and the number of concurrent threads and copies in

TABLE 1 SPEC CPU2017

SPECrate 2017
Integer

SPECrate 2017 Floating
Point

SPECspeed 2017
Integer

SPECspeed 2017
Floating Point

500.perlbench_r 503.bwaves_r 600.perlbench_s 603.bwaves_s

502.gcc_r 507.cactuBSSN_r 602.gcc_s 607.cactuBSSN_s

505.mcf_r 508.namd_r 605.mcf_s 619.lbm_s

520.omnetpp_r 510.parest_r 620.omnetpp_s 621.wrf_s

523.xalancbmk_r 511.povray_r 623.xalancbmk_s 627.cam4_s

525.x264_r 519.lbm_r 625.x264_s 628.pop2_s

531.deepsjeng_r 521.wrf_r 631.deepsjing_s 638.imagick_s

541.leela_r 526.blender_r 641.leela_s 644.nab_s

548.exchange2_s 527.cam4_r 648.exchange2_s 649.fotonik3d_s

557.xz_r 538.imagick_r 657.xz_s 654.roms_s

544.nab_r

549.fotonik3d_r

554.roms_r
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speed and rate modes are both 1.25 For the benchmark i, time(SUT, threads) is the running time
of the SUT when the number of concurrent threads is the threads in speed mode, and time
(SUT, copies) is the running time of the SUT when the number of copies is the copies in the rate
mode. Finally, the performance score calculation method of CPU2017 is shown in formula (3),
where N is the number of benchmarks of CPU2017:




















SCORE Ratio i i SPEC= ( ) .

i

N

=1

N
1

(3)

3 | BENCHSUBSET

In this section, we first introduced the workflow of the proposed BenchSubset
framework, and then introduced the major methods in BenchSubset in detail, including
group PCA, benchmark subset selection based on consensus clustering, and new evaluation
method.

3.1 | BenchSubset overview

The goal of BenchSubset is to provide its users with a framework for selecting a benchmark subset.
Figure 1 shows the workflow of the proposed BenchSubset framework. For a given benchmark
suite BenchSet bech bech bech= { , , …, }full n1 2 , the purpose of this framework is to select the most
representative benchmark subset BenchSet bech bech= { , …, }sub k1 best

, where n is the number of
benchmarks in the benchmark suite, kbest is the number of benchmarks in the benchmark subset.

BenchSubset takes a set of input performance counter data that summarize the char-
acteristics of a given benchmark suite. For example, SPEC CPU2017 emphasizes the per-
formance of processor, memory, and compilers, so we mainly consider the feature related to
the processor and memory, including CPI, cache miss rate, memory behavior, and so forth.
All the feature data are first processed by GPCA to lower their dimensions and eliminate
their correlation with the principal components while keeping each type of feature as
complete as possible. In GPA, the feature data are first divided into groups based on
computer components, including CPU group, Cache group, and so forth, then each group of
data is processed by PCA separately. Considering that it is impossible to directly select the

FIGURE 1 BenchSubset framework. GPCA, Group Principal Components Analysis;
PCs, principal components
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best built‐in clustering algorithm in consensus clustering, we provide a clustering algorithm
set and select a benchmark subset based on the consensus clustering with multiple clus-
tering algorithms. For a specific consensus clustering and a possible number of the
benchmark subset k, the optimized size of the benchmark subset chooser first generates the
corresponding consensus matrix which takes the principal components (PCs) as inputs
based on consensus clustering. Then, BenchSubset uses the consensus distribution of the
consensus matrix and elbow method to determine the optimized number of benchmark
subsets. Once the optimal size of the benchmark subset is chosen, the optimized benchmark
subset chooser establishes the clusters' boundaries by using the corresponding consensus
matrix as a similarity measure to feed to hierarchical clustering with average linkage. In
each cluster, BenchSubset chooses the best benchmark based on stability. Finally, the op-
timized benchmark subset is selected based on our proposed evaluation method by com-
paring the subsetting result of the cluster in the clustering algorithm set.

3.2 | Design of BenchSubset

3.2.1 | Group PCA

We collected feature data from the system's hardware performance counters by running SPEC
CPU2017 on a real system. However, there are some problems to feed the raw measurement
data into BenchSubset directly. On the one hand, the number of dimensions in collected feature
data is too high. On the other hand, there are correlations between feature data. First, there are
many‐to‐many correlations between functional unit and hardware performance counters, so it
is difficult to completely reflect their work through a single performance counter. For example,
read access to the memory means that the cache has been accessed. Second, there are complex
correlations between the events represented by the performance counters. when a performance
counter changes, the performance counters related to it also change accordingly. For example,
a hit in the L3 cache means that the performance counter value of the L1/2 cache miss
increases. Existing research generally uses PCA to solve these problems, which aims at redu-
cing the dimensionality of features and eliminating the correlation between the features.
However, it is too rough to perform PCA processing on all types of feature data directly while
each benchmark performs differently in different types of feature data.

To overcome the above difficulties, we propose GPCA based on PCA, which individually
performs PCA operations on each group of feature data. In this way, GPCA can reduce the data
dimension and eliminate correlations while retaining the various types of feature data as
completely as possible. we divide the overall collected feature data into five types as follows,
then perform PCA processing on these five groups of data, respectively:

• CPU group: Processor‐related performance events, including CPU utilization, IPC, and so
forth.

• Cache group: Performance events related to the cache, can be subdivided into four groups: L1
cache, L2 cache, L3 cache, and TLB.

• Branch group: Branch prediction error rate.
• Memory group: Performance events related to memory read and write.
• Power group: The power data of the server, including the average power, standard deviation,
first quartile, median, third quartile, and maximum and minimum values.
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3.2.2 | Benchmark subset selection based on consensus clustering

1. Consensus clustering
While many criteria are used to determine the optimal size of benchmark subset based on

the cluster algorithm, that is, the K value, the general clustering algorithm does not consider the
validation of the clustering results. On the basis of the assumption that the more the attained
clusters are robust to sampling variability, the more we can confident that these clusters re-
present the real structure, consensus clustering26 simulates the perturbations of the original data
by resampling techniques to verify the clustering results. Consensus clustering represents and
quantifies the agreement among the clustering runs over the perturbed data sets using con-
sensus matrix, which stores, for each pair of benchmarks, the proportion of clustering runs in
which two benchmarks are clustered together.

BenchSubset uses subsampling techniques, whereby a subset of benchmarks is sampled
without replacement from the benchmark suite. Let BenchSet (1)，BenchSet (2),…, BenchSet H( )

be the list of H perturbed data sets obtained by subsampling the original benchmark data sets
BenchSet bech bech bech= { , , …, }full n1 2 , D ,(1) D D, …, H(2) ( ) is the corresponding feature data after
the GPCA processing. M h( ) represents the consensus matrix of BenchSet h( ), that is, the result of
processing D h( ) through consensus clustering. The entries ofM h( ) are defined as the formula (4).
Due to the use of subsampling, the benchmarks in the benchmark suite are not always included
in the subsampled data set. Therefore, it is necessary to record the benchmarks when sub-
sampling. Consensus clustering uses indicator matrix I h( ) to record it, the entries of I h( ) are
equal to 1 if both bechi and bechj are present in the data set D h( ), and 0 otherwise. Finally, the
consensus matrix can be defined as a properly normalized sum of the connection matrices of all
the perturbed data sets as shown in formula (5):




M i j
bench and bench

( , ) =
1 cluster together,

0 otherwise,
h i j( ) (4)


C i j
M i j

i j
( , ) =

( , )

I ( , )
.k h

h

h
h

( )
( )

( ) (5)

(2) Clustering algorithm candidate
Consensus clustering requires a built‐in clustering algorithm (the Cluster in Algorithm

1), in addition, there is no one‐size‐fit‐all clustering algorithm, the optimal clustering
algorithm varies depending on different benchmark suites. For this purpose, BenchSubset
considers three clustering algorithms in sklearn.cluster27 (the Clusters in Algorithm 1):
(i) Hierarchical clustering, and (ii) K‐means, and (iii) Spectral, then determines three
algorithms, including consensus clustering with hierarchical clustering CC( )HC , consensus
clustering with K‐means CC( )Kmeans , consensus clustering with Spectral CC( )spectral .

(3) Determining the optimal size of the benchmark subset
On the basis of the consensus matrix generated by the consensus clustering, Bench-

Subset can determine the optimal size of the benchmark subset. Algorithm 1 details how to
perform this process taking a GPCA generated data set D. BenchSubset first loops all the
initial built‐in clustering algorithm of consensus clustering, then loops each possible
number of benchmark subsets k to find the optimal size of benchmark subset for each built‐
in consensus clustering. The range of k k[2, max] is affected by the subsampling rate and the
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size of the input benchmark suite, for example, for the case study in Section 4, SPECrate
INT contains 10. When the subsampling rate is 80%, then the value of kmax cannot exceed 8.
For a given k, BenchSubset first loops the current iteration h and resamples the benchmark
suite data D until the number of iterations reaches the given H. On the basis of the
resampled data D h( ), the connection matrix M h( ) and the indicator data I h( ) are obtained.
Finally, we can obtain the consensus matrix C k( ).

Algorithm 1. Determining the optimal number of benchmark subset

Input: GPCA generated data set D; clustering algorithms set Clusters; max number of benchmark
subset kmax; number of iterations H.

Ouput: kbest , best number of benchmark subset.

1: function FINDBESTK

2: for Cluster in Clusters do

3: for  ,k k[ ]2 max do

4: M←
5: I←
6: for h = 1, 2,…,H do

7: D h( ) ← Resample D( )

8: I h( ) ←D h( )

9: M h( ) ← Cluster(D k,h( ) )

10: M← M M h( )

11: I← II h( )

12: end for

13: C k( ) ← compute from M Iandh h( ) ( )

14: end for

15: kbest ← compute based on consensus distribution

16: end for

17: end function

Once the consensus matrix for each possible number of benchmark subset k is obtained,
BenchSubset uses the consensus distribution, and the proportion change in the area under the
consensus Cumulative Distribution Function (CDF) to determine the optimal size of benchmark
subset. If the distribution of the consensus matrix is skewed towards 0 and 1, then it can be
decided that the k value is the optimal size of the benchmark subset kbest . For the case of no
obvious skew, it is necessary to calculate the CDF and its area, then evaluate the optimal size of
the benchmark subset by comparing the change of the CDF area with the increase of k. The
calculation of the CDF and its area change are shown in the formulas (6) and (7):


CDF c

C i j c
( ) =

1{ ( , ) }
,

i j

n n

<

( − 1)

2

(6)

A k x x CDF x( ) = [ − ] ( ),
i

M

i i i

=2

−1 (7)

where C i j c1{ ( , ) } is the indicator function that is equal to 1 when C i j c( , ) is true, and 0
otherwise. The set x x x{ , , …, }M1 2 is the sorted set entries of the consensus matrix C k( ) (with
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M= n(n− 1)/2). When the built‐in clustering algorithm is hierarchical clustering, the CDF
area change of the consensus matrix is shown in the formula (8):

△







k

A k k

A k A k

A k
k

( ) =

( ) if = 2,

( + 1) − ( )

( )
if > 2, (8)

where A(k) is the CDF area corresponding to the value of k. When the built‐in algorithm is
not hierarchical clustering, replace A(k) with A k A kˆ ( ) = max ( ′)k k′ϵ{2, …, } to solve. When the
CDF area change tends to be stable, the point is deemed to be kbest of the input benchmark
suite, which can be judged by the elbow method.

(4) Determining optimal benchmark in each cluster
For the selected consensus clustering algorithm (such as CCHC), once the optimal size of

the benchmark subset kbest is determined, BenchSubset takes the consensus matrixC k( )best as
a similarity measure to feed to a hierarchical clustering with average linkage, then the
benchmark suite is divided into kbest clusters. For the benchmark cluster P P P= { , …, }k1 best

,
the optimal benchmark selection strategy in the cluster Pk is: when there is only one
benchmark, it is obvious that the benchmark is the optimal benchmark; when there are
two benchmarks, the benchmark with a shorter running time is selected; when the number
of benchmarks in the cluster is greater than 2, we can select the optimal benchmark by
comparing the consensus index. The calculation of the consensus index of the benchmark i
in the cluster Pk is shown in formula (9):

 


m P
N i I

C i j( ) =
1

− 1{ }
( , ),i k

k k i I

j i
k (9)

where Ik is the benchmark set belonging to Pk, and Nk is the number of benchmark in Pk.
When benchmark i Ik, the value of i I1{ }k is 1, and 0 otherwise. The benchmark with the
largest consensus index in the cluster Pk is the optimal benchmark in the cluster. The set of
the optimal benchmark in all clusters BenchSet bech bech= { , …, }sub

cluster
k

( )
1

i
best

is the benchmark
subset of selected consensus clustering.

3.2.3 | Evaluation method

A representative benchmark subset should reflect the universal feature of the benchmark suite
first, but the redundant benchmarks in the benchmark suite have similar performance, which
may skew the general characteristics towards the redundant benchmark, so the benchmark
program in a representative benchmark subset also should reflect the diverse characteristics.
Overall, a representative benchmark subset should be able to reflect not only the universal but
also the diversity characteristics of the benchmark suite as much as possible. On the basis of
the analysis of References [2,13,15], we proposed a new benchmark subset evaluation
method‐representativeness score (RS), which combines the universality score (US) similarity
and diversity score (DS) similarity.
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We regard each benchmark in the benchmark suite (denoted as BenchSet) as a point in a
multidimensional space, which can be represented by the vector bench e e e= ( , , …, )T

m
T

1 2 ,
where ei represents a specific basic feature, and m is the number of basic feature. This paper
selects the basic features belonging to six categories, including cycle instructions, cache, branch
prediction, and memory read and write which reflect the processor architecture, and average
power, SPEC CPU score which with regard to performance and energy consumption. For a
BenchSet, we use the mean vector of all benchmarks in BenchSet to express the universality,
and the standard deviation vector expresses the diversity, as shown in the following formulas
(10) and (11):

BenchSet e e e= ( , , …, ) ,T
m

T
1 2 (10)

BenchSet σ σ σ= ( , , …, ) ,T
m

T
1 2stddev (11)

where ei is the mean value of the basic feature ei of the benchmarks in BenchSet, σi
corresponds to the standard deviation, and the calculation of ei and σi are as follows
(N represents the number of benchmark in the BenchSet, eij is the ei value of the benchmark
j in the BenchSet):


e

e

N
= ,i

j
N

ij=1 (12)


σ

e e

N
=

( − )
.

i
j
N

ij i=1
2

(13)

To measure the similarity of universality and diversity between BenchSet and its subset,
we use the mean vector's cosine similarity of them to measure the similarity of the
universality, and standard deviation's cosine similarity of them to measure the diversity,
the calculations are shown in the following formulas (14) and (15). The closer the cosine
value is to 1, the more similar the two vectors are, and the greater the difference otherwise.
To evaluate the representativeness of the benchmark subset, this paper uses the geometric
mean of the similarity of universality and diversity as the final evaluation index, as shown
in formula (16). The closer the value is to 1, the better the representativeness of the subset,
the worse otherwise.

US
BenchSet BenchSet

BenchSet BenchSet
=

·

‖ ‖ × ‖ ‖
,

full sub
T

full sub
(14)

DS
BenchSet · BenchSet

BenchSet BenchSet
=
‖ ‖ × ‖ ‖

,
stddev stddev

T

stddev stddev

full sub

full sub

(15)

RS US DS= , (16)

where BenchSetfull is the universality of the benchmark suite, while BenchSetsub
T is the uni-

versality of its subset, BenchSetstddevfull is the diversity of the benchmark suite, while
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BenchSetstddevsub is the diversity of its subset. By comparing the RS values of the benchmark
subsets selected by three specific consensus clustering algorithms, that is, CCHC, CCkmeans,
CCspectral, we can choose the benchmark subset closest to 1 as the optimal benchmark sub-
set BenchSet bech bech= { , …, }sub k1 best

.

4 | SUBSETTING SPEC CPU2017

As a case study, we use BenchSubset to select subsets for SPEC CPU2017. We first determined
the experimental environment and the variable settings in the consensus clustering. Second, we
verified the effectiveness of the GPCA and evaluation method. Finally, based on the evaluation
method in Section 3.2.3, we compared the subsetting results of BenchSubset and principal
component analysis with hierarchical clustering (PCA‐H) method.

4.1 | Experimental setup

4.1.1 | Hardware and software setup

To verify the effectiveness of the benchmark subset selection and evaluation method we pro-
posed, we conducted SPEC CPU2017 subsetting experiments on Huawei's Taishan 200. As
ARM servers are gradually emerging in high‐performance computing (HPC),28,29 the applica-
tion of SPEC CPU2017 on the arm server will be more and more extensive. The hardware and
software configurations of Taishan 200 are shown in Table 2. The number of copies of the Rate
suite and the number of threads of the Speed suite in SPEC CPU2017 are uniformly set to 96.

To reduce the overhead of data collection,30 we choose Linux kernel tool perf to collect
performance data, and Taishan 200's iBMC to collect power data. We started from the two
aspects of the processor and the memory subsystem, combined with the armv8‐A white paper30

and the kernel code of Taishan 20032,33 to select the performance events. The selection results
are shown in Table 3, where k= 1, 2, for example, l<k>d_cache_rd includes l1d_cache_rd and

TABLE 2 Taishan 200's Configuration

Processors

Taishan 200 (Model 2280)—Kunpeng 920 processor,
Dual socket armv8 architecture 48 cores‐can
execute 48 threads (per processor)

L1d cache 64K (per core)

L1i cache 64K (per core)

L2 cache 512K (per core)

L3 cache 32768K (four cores)

OS CentOS Linux release 7.9.2009

Linux kernel: 4.18.0‐193.1.2.el7.aarch64

perf version: 4.18.0‐193.1.2.el7.aarch64

GCC: 8.2.0

12 | ZHAN ET AL.



l2d_cache_rd, o represents instruction and data, for example, <o>TLB‐loads includes iTLB‐
loads and dTLB‐loads. For ×86 servers, we only need to select performance events of the
corresponding category according to the performance counter parameters provided by perf. The
performance events used in the evaluation method are shown in Table 4.

4.1.2 | Consensus clustering setup

Consensus clustering requires iterations H and subsampling rate R, but the existing research
has not analyzed the determination of these two parameters. Therefore, we take CCHC as an
example, for each k, we run H from 1000 to 7000, at each iteration, the perturbed benchmarks
are obtained by subsampling R from 60% to 90%, and we compared the result using the
evaluation method proposed in Section 3.2.3. Figure 2A–D shows the comparison results of
SPECrate INT, SPECrate FP, SPECspeed INT, and SPECspeed FP, respectively. For SPECrate
INT, when H= 4000, the overall performance of the subset selected by SPECrate INT is the
best; when R= 60% or 70%, regardless of the number of iterations, the subset selection results
are better. For SPECrate FP, when H= 7000 and R= 60%, the selected subset can best represent
the benchmark suite; when R= 60%, it performs best under most iterations, except for the case
of H= 2000. When H= 7000, the subset selected of SPECspeed INT performs best overall, and
the best performance is when R= 90%. When H= 3000, the overall performance of the subset
selected by SPECspeed FP is the best; among them, when R= 60% or 70% is relatively better
while R= 60% performs better only when H= 3000; for other subsampling rates, performance
stability is better in any number of iterations. On the whole, for different CPU2017 subsuite,

TABLE 3 Performance events

Component Type Performance

Processor CPU instructions, cycles, task‐clock, context‐switches, CPU‐migrations, stalled‐
cycles‐backend, stalled‐cycles‐frontend

Cache L1‐dcache‐loads, L1‐dcache‐load‐misses, L1‐icache‐loads, L1‐icahce‐load‐
misses, l<k>d_cache_rd, l<k>d_cache_wr, l<k>d_cache_refill_rd,
l<k>d_cache_refill_wr, l<k>d_cache_wb_victim,
l<k>d_cache_wb_clean, l<k>d_cache_inval armv8_pmuv3_0/
l<k><o>_cache_refill/, armv8_pmuv3_0/l<k><o>_cache/,
l1i_cache_prf, l1i_cache_prf_refill

TLB <o>TLB‐loads, <o>TLB‐load‐misses, l1d_tlb_rd, l1d_tlb_wr,
l1d_tlb_refill_rd, l1d_tlb_refill_wr, armv8_pmuv3_0/l<k><o>_tlb_refill/,
armv8_pmuv3_0/l<k><o>_tlb/, armv8_pmuv3_0/<o>tlb_walk/

Branch branch‐misses, armv8_pmuv3_0/br_mis_pred/, armv8_pmuv3_0/br_pred/

Memory DDRC/
HHA

uncore_hisi_ddrc.act_cmd, uncore_hisi_hha.rd_ddr_128b,
uncore_hisi_hha.rd_ddr_64b, uncore_hisi_hha.rx_ops_num,
uncore_hisi_hha.rx_outer, uncore_hisi_hha.rx_sccl,
uncore_hisi_hha.wr_ddr_128b, uncore_hisi_hha.wr_dr_64b

NUMA armv8_pmuv3_0/remote_access_rd/, armv8_pmuv3_0/remote_access/,
armv8_pmuv3_0/bus_access/, armv8_pmuv3_0/bus_cycles/,
armv8_pmuv3_0/mem_access/
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TABLE 4 Performance events in evaluation method

Performance events Type

SPEC CPU Score SPEC CPU score

IPC IPC

L1 cache miss Cache

L2 cache miss

L3 cache miss

TLB miss

Branch prediction miss Branch

hha_rd_ddr Memory read and write

hha_wr_ddr

scoket_rd_hits

Bus access per cycle

Mean power Power

FIGURE 2 Consensus clustering setup's comparison results [Color figure can be viewed at
wileyonlinelibrary.com]
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neither the number of iterations nor the subsampling rate has an absolute relationship with the
quality of the benchmark subset selection result. To ensure the consistency of the experimental
environment, we unified the consensus clustering parameters to the number of iterations
H= 6000 and the R= 80%.

4.2 | Effectiveness analysis of GPCA

To verify the effectiveness of the GPCA in Section 3.2.1, We used Pycharm to perform the
GPCA on the 43 benchmarks of CPU2017, and reduced our data dimensionality from
[43 × 64] to [43 × 18], covering over 95% of the variance, where the CPU group di-
mensionality is reduced from [43 × 7] to [43 × 2], the L1 cache group dimensionality is
reduced from [43 × 8] to [48 × 3], the TLB group dimensionality is reduced from [43 × 9] to
[43 × 2], and the memory group dimensionality is reduced from [43 × 5] to [43 × 2].
Figure 3A–D shows the scatter plots of the first two PC values of CPU group, L1 cache
group, TLB group, and Memory group, respectively. We use square boxes to highlight
benchmarks which PC values close together in Figure 3. The benchmarks with similar PC
values will show similar performance characteristics, but it is obvious that the performance
characteristics of benchmarks are not consistent in different groups. As seen in Figure 3,
628.pop2_s is isolated in the CPU group and L1 cache group, but it is close to other
benchmarks in the other two groups. 620.omnetpp_s and 623.xalancbmk_s are close to-
gether in the CPU group but are isolated in the L1 cache group. Therefore, we can conclude
that the benchmarks have different performance characteristics in different categories, and
the GPCA can reduce the feature dimension and eliminate correlations while retaining the
characteristics of each category.

4.3 | Result of SPEC CPU2017 subsetting

Considering that there might be deviations in data collection using perf, we use the ar-
ithmetic average of the collected data as the formal experimental data. We conduct
benchmark subset selection experiments for SPECrate INT, SPECrate FP, SPECspeed INT,
and SPECspeed FP of SPEC CPU2017 on the Taishan 200 server. For SPECrate FP, when
consensus clustering is CCHC with H = 6000, and the R = 80%, consensus matrix's dis-
tributions of k = 2 and k= 3 are as shown in Figure 4A,B: It can be seen that compared to
k= 3, the consensus distribution of k= 2 is skewed towards 0 and 1, so the optimal size of
SPECrate FP's subset is 2. But for the case where there is no skew to the consensus dis-
tribution, as shown in Figure 4C,D is the consensus distribution of SPECrate INT (the
conditions are the same as SPECrate FP), it needs to be judged according to the CDF area
change of the consensus matrix distribution, the optimal benchmark subset size determined
by the elbow rule is 3 as shown in Figure 5.

The analysis of other subsuites of SPEC CPU2017 is the same and the final result is shown
in Table 5 (omitting the suffix of the benchmark). From the perspective of the optimal size of
the benchmark subset, the decision results of CCHC and CCkmeans are the same first while
CCspectral is 3 for all the subsuites. Judging from the decision results of subsetting, there are
differences between the three algorithms, but there are also overlapping parts. For example,
602.gcc_s and 519.lbm_r are selected in all three algorithms.
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4.4 | Comparison with ratio‐based evaluation

To verify the effectiveness of the evaluation method proposed in Section 3.2.3, we compare it
with the ratio‐based method used in paper 15 which is determined by the usefulness of a subset
by comparing the SPEC scores of the benchmark suite and subset. The results are shown in
Table 6, where SCOREfull is the SPEC score of the input benchmark suite, SCOREsub is the SPEC
score of the benchmark subset.

Taking the subset selection of SPECrate INT under the CCHC as an example, from the
evaluation method proposed in this paper, the selection results ofCCkmeans have the best overall
performance while the selected subset of CCHC performs best according to the ratio‐based
method among the three consensus algorithms. To verify the correctness of the two evaluation
methods, we observe the performance of the benchmark subset relative to the benchmark suite
from specific performance events, such as IPC, L1 cache miss rate, and so forth, as shown in
Figure 6. The subset selection result of CCkmeans is 520.omnetpp_r, 523.xalancbmk_r,
531.deepsjeng_r while the subset selection result of CCHC is 505.mcf_r, 500.perlbench_r,

FIGURE 3 Scatter plot of CPU2017's PC value [Color figure can be viewed at wileyonlinelibrary.com]
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531.deepsjeng_r. Figure 6A is the IPC distribution of the benchmark in SPECrate INT. It can be
observed that the selection results of CCkmeans are relatively evenly distributed in the whole, but
the values of 500.perlbench_r and 531.deepsjeng_r in the selection results of CCHC are similar,
so its selection diversity on IPC is not good. As shown in Figure 6B, THE results of the two
algorithms have diversity in the branch prediction error rate. In terms of L1 cache miss rate, the
selection diversity of CCHC is not enough, and the values of 500.perlbench_r and 531.deeps-
jeng_r are similar (as shown in Figure 6C). As shown in Figure 6D, 520.omnetpp_r is very
different from other benchmarks in the iTLB miss rate, but the benchmark subset selected by
the CCHC algorithm does not include it. Therefore, starting from the specific distribution of
performance events, compared with the ratio‐based evaluation method, the evaluation method
proposed in this paper obviously takes the diversity into account. The analysis of the other
three subsuites is similar.

FIGURE 4 Consensus distribution of subsuites: SPECrate FP, (A) k= 2 and (B) k= 3; SPECrate INT,
(C) k= 2 and (D) k= 3 [Color figure can be viewed at wileyonlinelibrary.com]
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4.5 | Comparison with PCA‐H subsetting

To prove the effectiveness of BenchSubset, we conducted a comparative experiment with the
PCA‐H method based on the evaluation method proposed in Section 3.2.3. Panda et al.15 used
the PCA‐H method to select the benchmark subsets of the four subsuites of SPEC CPU2017,
based on the benchmark subset size of 3, for a cluster with more than two benchmarks, Panda
et al. selected the benchmark with the smallest link distance, but they ignored the selection of
benchmark with the same link distance. Figure 7A–D is the dendrograms of SPECrate INT,
SPECrate FP, SPECspeed INT, and SPECspeed FP by PCA‐H method, respectively, which can
represent the similarity between benchmarks. According to the selection strategy, taking

FIGURE 5 the proportion change in the area under Cumulative Distribution Function (CDF) [Color figure
can be viewed at wileyonlinelibrary.com]

TABLE 5 subsetting results of consensus clusterings

CCHC CCKmeans CCSpectral

kbest Subset kbest Subset kbest Subset

SPECrate INT 3 505, 500, 531 3 520, 523, 531 3 505, 541, 502

SPECrate FP 2 510, 519 2 527, 519 3 521, 519, 511

SPECspeed INT 2 602, 641 2 623, 602 3 605, 631, 602

SPECspeed FP 3 621, 619, 644 3 649, 638, 621 3 654, 621, 638

TABLE 6 Comparison with ratio‐based evaluation

SCOREfull

CCHC CCKmeans CCSpectral

RS SCOREsub RS SCOREsub RS SCOREsub

SPECrate INT 81.33373 0.97028 82.09279 0.99118 66.01479 0.99002 69.53008

SPECrate FP 62.78908 0.99915 28.69329 0.99897 36.32031 0.9989 51.26534

SPECspeed INT 4.34710 0.92038 3.94950 0.81076 4.46222 0.94519 4.16834

SPECspeed FP 35.30240 0.89994 28.56895 0.84808 28.83916 0.84193 38.06775
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SPECrate INT as an example, the selected subset is 531.deepsjeng_r, 505.mcf_r/557.xz_r,
500.perlben‐ch_r/525.x264_s, the subset selection results of the four subsuites are shown in
Table 7 (the suffixes of the benchmarks are omitted below).

Because the PCA‐H method does not have the strategy of selecting the optimal benchmark
from the two benchmarks with the same link distance, to prove the effectiveness of the optimal
benchmark selection method in this paper, for the selection of the benchmark of PCA‐H in a
cluster should be different from the subset selected by BenchSubset as much as possible. The
comparison results of CCHC, CCKmeans, CCSpectral with PCA‐H method are shown in Tables 8–10.
From the perspective of the benchmark subsuite, all the consensus clustering methods have a
poorer subset selection effect on the SPECspeed FP comparing to other subsuites. The sub-
setting result of CCHC is always better than the PCA‐H method, the selection effect of CCKmeans
in speed suite is poor, and the selection effect of CCSpectral in a floating‐point suite is relatively
poor.

Combining the selection results ofCCHC,CCKmeans,CCSpectral, the benchmark subset selection
results of BenchSubset are shown in Table 11. The optimal benchmark subset of SPECrate INT
is 520.omnetpp_r, 523.xalancbmk_r, 531.deepsjeng_r, the optimal benchmark subset of SPE-
Crate FP is 510.parest_r, 519.lbm_r, the optimal benchmark subset of SPECspeed INT is
605.mcf_s, 631.deepsjing_s, 602.gcc_s, the optimal benchmark subset of SPECspeed FP is
621.wrf_s, 619.lbm_s, 644.nab_s. Judging from the evaluation results, the selection result of

FIGURE 6 performance events distribution of SPECrate [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 7 Dendrogram showing similarity [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 7 Subsetting result of PCA‐H method

SPECrate INT 531, 505/557, 500/525

SPECrate FP 519/549, 511/544, 507/510

SPECspeed INT 602, 657, 648/625

SPECspeed FP 621/628, 603/619, 649/654

TABLE 8 Subsetting result comparison of PCA‐H method and CCHC

PCA‐H CCHC

SPECrate INT 525, 557, 531 0.96881 505, 500, 531 0.97028

SPECrate FP 549, 511, 507 0.99895 510, 519 0.99915

SPECspeed INT 602, 657, 648 0.90993 602, 641 092038

SPECspeed FP 628, 603, 649 0.89512 621, 619, 644 0.89994
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BenchSubset is always better than the PCA‐H method, the specific comparison is shown in
Figure 8. In summary, the benchmark subset selected by BenchSubset proposed in this paper is
more representative, which reflects the universal and the diversity characteristics of the
benchmark suite at the same time as much as possible.

5 | CONCLUSION AND FUTURE WORK

Modern benchmarks have been evolved to cover many application scenarios. The redundancy
in the benchmark suite leads to time‐consuming when evaluating system architectures or
simulating. In recent years, researchers usually select subsets based on clustering to solve this
problem. However, it is a challenge to validate benchmark clustering results for unlabeled
benchmark suites. And existing evaluation methods for subsetting results have not considered
both the universal and the diversity characteristics of the benchmark suite. In this paper, we
proposed a framework based on consensus clustering called BenchSubset which takes the
above problems into account. In BenchSubset, all the feature data representing the char-
acteristics of the given benchmark suite is processed based on the GPCA first, then consensus
clustering and a new evaluation method are used to achieve the optimal size of the benchmark

TABLE 9 Subsetting result comparison of PCA‐H method and CCKmeans

PCA‐H CCKmeans

SPECrate INT 531, 505, 500 0.9702 520, 523, 531 0.99118

SPECrate FP 549, 511, 507 0.99895 527, 519 0.99897

SPECspeed INT 602, 657, 648 0.90993 623, 602 0.81076

SPECspeed FP 628, 603, 654 0.89517 649, 638, 621 0.84808

TABLE 10 Subsetting result comparison of PCA‐H method and CCSpectral

PCA‐H CCSpectral

SPECrate INT 531, 557, 500 0.97405 505, 541, 502 0.99002

SPECrate FP 549, 544, 507 0.99913 521, 519, 511 0.9989

SPECspeed INT 602, 657, 648 0.90993 605, 631, 602 0.94519

SPECspeed FP 628, 603, 649 0.89512 654, 621, 638 0.84193

TABLE 11 Subsetting result comparison of PCA‐H method and BenchSubset

PCA‐H BenchSubset

SPECrate INT 531, 505, 500 0.9702 520, 523, 531 0.99118

SPECrate FP 549, 511, 507 0.99895 510, 519 0.99915

SPECspeed INT 602, 657, 648 0.90993 605, 631, 602 0.94519

SPECspeed FP 628, 603, 649 0.89512 621, 619, 644 0.89994
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subset and the optimal subset decision. In the experimental part, we first verified the effec-
tiveness of the GPCA and evaluation method. Second, as a case study, we selected benchmark
subsets based on Huawei's Taishan 200 for SPEC CPU2017. Compared with the mainstream
PCA‐H method, BenchSubset's selected benchmark subset is more representative.

Although BenchSubset can effectively make decisions about the optimal size of the
benchmark subset and the optimal benchmark in each cluster, there is still room for im-
provement in the framework. In future work, we will comprehensively consider accuracy and
reusability34 when collecting feature data, and we will consider extending Chauffeur provided
by the SPEC organization to add the function of benchmark subset selection.
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