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a b s t r a c t

Cloud computing offers attractive features for both service providers and customers. Users benefit from
the pay-as-you-go model by saving expenditures and service providers are deploying their services to
cloud data centers to reduce their maintenance efforts. However, due to the fast growth of cloud
data centers, the energy consumed by the data centers can lead to a huge amount of carbon emission
with environmental impacts, and the carbon intensity of different locations are varied among different
power plants according to the sources of energy. Thus, in this paper, to address the carbon emission
problem of data centers, we consider shifting the workloads among multi-cloud located in different
time zones. We also formulate the energy usage and carbon emission of data centers and model
the solar power corresponding to the locations. This helps to reduce the usage of brown energy
and maximize the utilization of renewable energy at different locations. We propose an approach
for managing carbon footprint and renewable energy for multiple data centers at California, Virginia,
and Dublin, which are in different time zones. The results show that our proposed approaches that
apply workload shifting can reduce around 40% carbon emission in comparison to the baseline while
ensuring the average response time of user requests.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

As cloud computing environment is able to provide on-demand
resources to a variety of applications, it emerges as a successful
model for delivering utility-oriented computing services. By pro-
viding on-demand resources across the world, cloud computing
is viewed as a new paradigm in IT industry. Cloud computing
provides the pay-as-you-go model and can reduce the manage-
ment complexity from the users’ perspective. Nowadays, more
and more service providers are migrating their workloads to
clouds. The clouds can consist of multiple data centers across
geographical locations, and each data center can have thousands
of servers. The diversity of geographical locations brings the
benefits of high reliability, disaster resistance and transparency
for users in different time zones.

Although the cloud data centers have attractive features, such
as pay-as-you-go model and low costs for users, the large amount
of energy consumed by them has become a major issue.
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According to [12], the US data center consumed 91 billion kWh
electricity in 2013, which is equivalent to the two years energy
consumption of New York City households. The energy consump-
tion is predicted to grow up to 140 billion kWh in 2020, which
will generate 150 million tons of carbon emission. Since the
underutilization and overloading of resources in infrastructure
(e.g. computing, storage, networking, and cooling), the energy
usage in cloud data centers is not efficient enough. The power is
consumed while some of the resources are idle, which increases
the management costs of data centers.

To relieve the high energy consumption and carbon foot-
print from data centers, a promising approach is improving re-
source utilization. This can reduce the number of active servers
in data centers, thus the total energy consumption can be de-
creased when servicing the same amount of request. One dom-
inant way to improve resource utilization is via virtualization
technique [43]. With virtualization, multiple virtual machines
(VMs) can be allocated to a single physical server. The VMs share
the hardware resources and maximize server utilization. Addi-
tionally, operational costs are reduced by applying VM manage-
ment to optimize cloud resources usage via dynamically
provisioning resources. Resource utilization can also be improved
via microservices [25], which are a set of self-contained
application components and enable the fine-grained control on
resource management.
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Another approach for reducing carbon footprint is taking ad-
vantage of renewable energy (e.g. solar and wind) instead of coal-
based brown energy. By applying renewable energy as another
energy source, the brown energy usage and carbon footprint
can be significantly reduced [29]. Enabling the data center to be
partially or completely powered by renewable energy supports
the cloud provider to reduce their dependency on coal-based
energy sources. In different locations, the carbon intensity and
availability of renewable energy are different, thus, the challenge
is how to manage them in a global view, which is the objective of
this work. We aim to apply the workload shifting to maximize the
usage of renewable energy, however, as the unpredictability in
supply of renewable energy, it is still needed to utilize the hybrid
design of energy supply to support the full availability of cloud
services.

The dominant cloud providers, like Amazon and Google, often
manage geographically distributed data centers. The geographi-
cal distribution not only enhances the availability of the whole
system, but it can also give the service provider more options
to allocate requests based on different preferences to improve
resource utilization for workloads execution. A concept called
‘‘follow the renewable’’ was proposed to encourage cloud providers
to establish their data centers closer to the sources of renewable
energy and the workloads can be distributed geographically [32].
In this work, we consider the preference related to the availability
of renewable energy and impacts of carbon footprint. The prob-
lem is challenging due to the heterogeneous resources, varying
availability of renewable energy and user define QoS. Some issues
are required to be solved to achieve the objective, such as:

(a) How to provision resources for workloads execution in an
energy efficient manner

(b) Where to shift the workloads in geographically distributed
data centers so that renewable energy usage can be maximized

(c) When to shift the workloads thus the brown energy usage
can be reduced while the users’ QoS is ensured

By addressing these issues, this work makes following key
contributions:

• Introduced a system model considering data center energy
consumption, renewable energy and carbon footprint.

• Proposed workload shifting algorithm to manage the renew-
able energy and carbon footprint for data centers.

• Evaluated the impacts of requests distributed and processed
in different time zones via renewable energy usage.

The rest of the paper is organized as follows. In Section 2, the re-
lated work are discussed. Section 3 introduces our system model,
constraints and optimization objective. Our proposed workload
shifting approach is presented in Section 4. The simulation config-
urations and results are demonstrated in Section 5. The summary
and future directions are concluded in Section 6.

2. Related work

There has been extensive research on improving energy effi-
ciency in cloud data centers. There are three levels of
optimization that can be investigated for energy efficiency pur-
poses, including software level, hardware level, and intermediate
level [32]. Previously, the dominant energy efficient approaches
can be mainly categorized as Dynamic Voltage Frequency Scal-
ing (DVFS) [20] and VM consolidation [5]. However, both these
approaches cannot function well when the whole data center
is overloaded. Therefore, some complementary approaches, like
brownout [34] have been proposed.

2.1. DVFS

DVFS is an energy efficient power management technique,
which dynamically adjusts the frequency and voltage of ma-
chine components, e.g CPU, memory and storage. The DVFS-based
approaches are designed to manage the energy according to
operational frequency and voltage scaling, which can save power
when the system is at the idle state and has less load. Wu
et al. [39] proposed a DVFS-based approach to improve resource
utilization and reduce energy consumption while ensuring sys-
tem performance. The scheduled jobs are prioritized based on
resource demand and specific SLA requirement. Wang et al. [38]
introduced an approach in DVFS-enable cluster for precedence-
constrained parallel tasks. The proposed approach can reduce
energy consumption without increasing task processing time.
Guerout et al. [16] introduced a methodology to simulate the
DVFS process for energy efficiency purpose and applied a scien-
tific application as a use case. Although DVFS-based approaches
can reduce energy consumption, generally response time and ser-
vice delay can be increased due to the switch between different
frequency modes.

2.2. VM consolidation

Resource usage can be harnessed by VM consolidation, which
aims to consolidate VMs to fewer machines, thus more active
machines can be turned into the low power mode. With VM
consolidation, data can also be transferred from one server to the
other. Beloglazov et al. [7] proposed an energy efficient system
based on OpenStack via VM consolidations to save power usage
while ensuring QoS, which implemented several heuristics based
on VM consolidation. Rossi et al. [30] presented an energy effi-
cient cloud orchestrator combining VM consolidation and DVFS
to improve the trade-offs between power savings and application
performance. The proposed orchestrator has been validated under
real testbed, and the results showed that energy consumption can
be saved significantly while only leading to small portion extra
costs. When applying energy efficient VM consolidation, generally
there are trade-offs between energy and migration time, espe-
cially for the migration among geographically distributed data
centers.

Nguyen et al. [26] introduced a virtual machine consolida-
tion algorithm with multiple usage prediction based on local
history to improve the energy efficiency of cloud data centers.
The current and predicted resource usage are used to identify
the overloaded or underloaded servers to find the best place for
VM consolidation. Chen et al. [10] presented workload placement
and migration approach under a distributed cloud computing en-
vironment, which considers the availability of renewable energy
to maximize the throughput of the whole system. Different from
our work, it applies for batch workloads and does not consider
the carbon emission.

Virtual Graphics Processing Units (GPUs) are used in data
centers to improve the resource utilization and reduce the energy
consumption of Clouds [33]. Iserte et al. [18] analyzed the cluster
equipped with remote virtual GPUs and the results showed that
virtual GPUs can improve resource utilization while ensuring
energy constraints. Varghese et al. [37] investigated virtual GPUs
for financial application, which showed that the application effi-
ciency can benefit from GPUs. Prades et al. [27] applied remote
GPU virtualization framework to accelerate scientific applica-
tions executed on VMs. A task migration approach for virtual
GPUs was proposed to demonstrate the possibilities to improve
resource utilization [28]. Unlike these work, we consider to dis-
tribute workloads among data centers located in different time
zones. Our CPU based scheduling can be extended easily to such
heterogeneous architectures.
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Table 1
Comparison of related work.

Approach
Technique Environment Metrics

DVFS VM
consolidation

Brownout Green
energy

Workload
shift

Multiple clouds Energy Electricity
costs

SLA Carbon
footprint

Wu et al. [39] ✓ ✓
Wang et al. [38] ✓ ✓ ✓
Guerout et al. [16] ✓ ✓ ✓
Beloglazov et al. [7] ✓ ✓ ✓
Rossi et al. [30] ✓ ✓ ✓ ✓
Nguyen et al. [26] ✓ ✓ ✓
Xu et al. [42] ✓ ✓ ✓ ✓
Hasan et al. [17] ✓ ✓ ✓ ✓
Liu et al. [22] ✓ ✓ ✓ ✓
Toosi et al. [36] ✓ ✓ ✓ ✓
Chen et al. [9] ✓ ✓ ✓ ✓
Adnan et al. [2] ✓ ✓ ✓ ✓ ✓
Neglia et al. [24] ✓ ✓ ✓ ✓ ✓
Khosravi et al. [19] ✓ ✓ ✓ ✓ ✓ ✓
Chen et al. [10] ✓ ✓ ✓ ✓ ✓
Goiri et al. [15] ✓ ✓ ✓ ✓
Our Approach ✓ ✓ ✓ ✓ ✓ ✓ ✓

2.3. Brownout

Brownout-based approach manages resource usage by dy-
namically controlling the running status of optional parts of ap-
plications in the cloud computing system [41]. Brownout can
also be applied to microservices for fine-grained control on re-
sources. Hasan et al. [17] investigated an adaptive application
management approach based on dynamically switching appli-
cation modes to improve the trade-offs among multiple opti-
mization objectives. The optimization objectives include multiple
metrics such as energy, user experience and performance for the
interactive cloud application. In our previous work [40,42,44], we
have proposed brownout-based approaches to manage applica-
tion components in the system to reduce energy consumption
while satisfying QoS. However, brownout approach has not been
investigated in geographical data centers and the carbon emission
is not considered yet.

2.4. Multi-cloud management

Some existing research has proposed approaches for manag-
ing resources in multi-cloud environments. Liu et al. [22] pro-
posed geographical load balancing method by using renewable
energy, and the method can reduce the brown energy usage.
Toosi et al. [36] proposed a framework to balance loads of web
application among multiple data centers based on the availability
of renewable energy and aimed to reduced total electricity costs.
Chen et al. [9] introduced a workload and energy management
mechanism to reduce the network operational cost and energy
costs. Adnan et al. [2] presented a dynamic workloads deferral
algorithm for multi-cloud to fit into the dynamic electricity prices
in different locations while ensuring the workloads deadline.
Neglia et al. [24] proposed a workload scheduling approach based
on Markov Chain to dispatch workloads to geographical data
centers with renewable energy. In these articles, they focused on
reducing the total electricity costs while the carbon emission was
not considered. Our work takes advantage of brownout-based
methodology and aims to reduce the carbon emission.

2.5. Carbon footprint

There are also some works combining energy consumption
and carbon footprint for cloud data centers. Khosravi et al. [19]
proposed a VM placement approach for reducing energy and
carbon costs in geographically distributed cloud data centers,
while all the locations are in the same country. Doyle et al. [13]

presented a method for managing carbon emissions, while its
objective is load balancing and renewable energy is not con-
sidered. Goiri et al. [15] proposed Parasol and GreenSwitch as
the prototype system, which enables to dynamically schedule
workloads and select different sources of energy. Unlike our work,
all the servers in this work are in the same site.

Table 1 shows the comparison of the related work. Com-
pared to existing works, we apply our proposed workload shift-
ing approach to schedule workloads to different data centers,
and our objective is minimizing the total carbon emission while
ensuring the average response time of requests. Moreover, we
consider geographically distributed data centers in different time
zones (e.g. US and Europe) with different carbon intensities and
availability of renewable energy.

3. System model

In this section, we present the system model of our proposed
approach. Table 2 defines the symbols that are used throughout
this paper.

The target system is demonstrated in Fig. 1. Multiple data
centers are located geographically and are connected via the
network. The main entities in this system contain User, Cloud
Scheduler and Data centers.

• User: The users are from different locations (e.g. Europe,
US and etc.) and submit their requests to the cloud for
execution.

• Cloud Scheduler: The cloud scheduler is responsible for
assigning the received requests to different data centers
for execution based on scheduling policies. The scheduling
process falls into the MAPE-K [3] loop, which has resource
monitoring (Monitor), resource analysis (Analyze), schedul-
ing plan (Plan) and policy execution (Execute) phases. The
modeling and policies are managed by the Knowledge mod-
ule.

• Data Centers: The data centers are providing the physical
and virtualization resources for the system, and they can be
distributed at different locations.

3.1. Data centers

The whole system consists of n data centers that are lo-
cated at different locations with different time zones, denoted as
D = d1, d2, . . . , dn. Each data center has multiple servers, e.g. m
servers, S = s1, s2, . . . , sm. The data center can use two energy
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Table 2
Symbols and definitions.

Symbol Definition

D The set of data centers
dj The nth data center in D
S Physical machine list in a data center
si The ith physical machine in the list
B The brown energy
G The green energy
Pidle Power consumption when physical machine is idle
Pmax Maximum power when physical machine is running
RG
E Carbon intensity of green energy source

RB
E Carbon intensity of brown energy source

CT Total cost for executing all requests
W The set of requests
rk The kth request in W
Ck, i, j The cost to execute request rk on physical host si in data center dj
CF Total carbon footprint
CR Total cost of response time
Edj Energy consumption of data center dj
t Time interval
T Total time intervals
Ps(t) Server power at time interval t
Pc (t) Cooling power at time interval t
usi (t) Utilization of physical machine si at time interval t
vml The lth Virtual machine
Vsi The list of virtual machines on si
uvml (t) The utilization of vml at time interval t
Avml The set of microservices on vml

mso The oth microservices
umso (t) The utilization of mso at time interval t
CoP The function to calculate the cooling efficiency of cold air
Tsup Cooling air supply temperature
EB
dj

Brown energy usage of data center dj
EG
dj

Green energy usage of data center dj
CU
dj

Carbon intensity of data center dj
C F
dj

Carbon emission of data center dj
Tk,dj VM Response time of rk allocated to dj
Tdj,d′

j
Extra response time when request is forwarded from dj to d

′

j

CR
rk Response time of rk

M The size of data centers
N The maximum number of physical machines in all data centers

sources, brown energy and green energy to supply for servers,
network devices, cooling systems, and other devices. The brown
energy B comes from the coal-based facility and green energy G
comes from renewable energy, like solar or wind. We denote the
energy sources as E = {B,G}.

3.2. Cloud scheduler

Cloud Scheduler is connecting the physical resources in data
centers and requests submitted by users. It receives user requests
and dispatches them to different data centers for processing. The
cloud scheduler makes decisions based on resource requirement
of requests, energy consumption, and carbon footprint to achieve
an optimized objective. The cloud scheduler fits into the MAPE-K
model as below:

Cloud Users submit their requests to cloud scheduler. The
requests can have arrival time and execution time. The requests
should be executed within a required time. In the Monitor phase,
the Cloud Scheduler monitors the requests and system run-
ning status, then provides the collected information to Analyze
phase for analysis. After analyzing, the Cloud Scheduler plans

the scheduling policies based on optimization objectives. In the
Execute phase, the scheduling policies are executed to adjust
system status.

3.3. Data center energy consumption

Energy consumption is the dominant factor that has an im-
pact on carbon footprint. In our data center energy consumption
model, we mainly consider server power consumption and cool-
ing consumption. As noted in [31,32], these two parts can make
up to 60% energy consumption of the data center.

3.3.1. Server power model
We adopt the server power model derived from [45], which

includes Pidle and Pmax. The utilization comes from the virtual ma-
chines deployed on physical machines. And we mainly consider
the utilization as CPU utilization. The power consumption of the
server is linear to server utilization.

At time interval t , the power from the server side is

Ps(t) =

{
Pidle + usi (t) × (Pmax − Pidle), usi (t) > 0
0, usi (t) = 0

(1)
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Fig. 1. Target system.

where usi (t) is the utilization of server si at time interval t , which
is equal to the sum of the utilization of VMs running on si, and
can be represented as:

usi (t) =

∑
vml∈Vsi

uvml (t) (2)

where Vsi is the set of VMs assigned on si, and the utilization
of vml at time interval t is uvml (t) that is represented as the
utilization sum of microservices composed of the application,
thus,

uvml (t) =

∑
mso∈Avml

umso (t) (3)

where Avml is the set of microservices on vml.

3.3.2. Cooling power model
For cooling power Pc , we use the model from HP lab data

center [23] as follows:

CoP(Tsup) = 0.0068T 2
sup + 0.0008Tsup + 0.458 (4)

The CoP (Coefficient of Performance) is a method to calculate
the cooling efficiency based on cold air supply temperature Tsup
maintained by cooling equipment.

We consider the data center thermal control is managed by
Computer Room Air Condition (CRAC) system [21], which can
contain multiple CRAC units to transfer cold air to the hosts to
reduce hotspots. Based on server power consumption and cool-
ing efficiency, we can calculate the power consumed by cooling
equipment Pc(t) as:

Pc(t) =
Ps(t)

CoP(Tsup)
(5)

Total energy consumption Esi (t) of a single server si consists
of server power Ps(t) and cooling power Pc(t), which can be
represented as:

Esi (t) =

∫ t+∆t

t
(Ps(t) + Pc(t))∆t (6)

Then the total energy consumption Edj of data center dj can be
represented as the sum of energy from all the servers and cooling
equipments:

Edj =

∑
t∈T

∑
si∈S

Esi (t) (7)

3.4. Renewable availability

In different locations, the availability of renewable energy can
vary significantly. For instance, in some locations, the solar irradi-
ance is quite sufficient, while in some other locations, winds are
the main renewable energy sources. As renewable energy avail-
ability is dependent on the weather, at the same moment while
in different time zones, the availability can be quite different. We
aim to coordinate the available renewable energy to handle the
users’ requests, thus, the total carbon footprint can be reduced.
In this paper, we consider solar energy as renewable energy to
power the data centers. We also consider that renewable energy
is used with higher priority than brown energy, which means as
long as renewable energy is available, it will be used first.

3.5. Carbon intensity

Carbon intensity can also vary vitally according to the source
of power. We denote RG

E , R
B
E as the sources of green energy and

brown energy, which is evaluated as grams per kilowatt-hour
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Fig. 2. An example of data centers and sources of requests.

used electricity (g/kWh). This value is related to the type of coal-
based fuel to generate the electricity, while for the green energy,
the value is 0. Also, in different locations, the carbon intensity
can be different, for example, in Norway, its carbon intensity is
6 g/kWh, while in Australia, the value is 870 g/kWh [35]. We
aim to dispatch requests to the data center with more renewable
energy, however, the response time of requests can be increased.
Thus, the average time is taken into consideration when designing
scheduling policies. According to [13], the average response time
can be increased if requests are routed from a data center region
to a geographical region.

As shown in Fig. 2, we consider the data center and source of
requests are as a undirected graph. The data centers and sources
of requests are considered as nodes, and the edge is the connec-
tion between request and data center. In our model, the requests
from a source will be initially assigned to the data center based
on response time, which means the requests are processed by the
nearest data center. To enable the requests to be forwarded when
green energy is not enough, the data center nodes are connected.

3.6. Objective function

The objective function is minimizing the combination of aver-
age response time and carbon footprint. The total cost to execute
the requests is:

CT =

∑
rk∈W

∑
si∈Dj

Ck,i,j (8)

where rk is the request, and W is the total number of requests.
This objective function can be divided into two parts: the

carbon footprint CF and the response time CR.

CT = CF + CR (9)

The carbon footprint is related to the brown energy used for exe-
cuting the requests and the carbon intensity at the site. Therefore,
we need to calculate the total energy consumption of data cen-
ters, including the energy from servers and cooling equipment.

The brown energy usage is defined as:

EB
dj = max(Edj − EG

dj , 0) (10)

if the required energy is more than the available green energy EG
dj
,

the brown energy EB
dj

usage will be a positive value, otherwise, if
green energy is enough, then brown energy usage is 0.

Total carbon emission of data center dj is calculated as:

C F
dj = EB

dj × C I
dj (11)

where C I
dj

is the carbon intensity at data center dj
Total carbon emission is the sum of the carbon emission from

all the data centers in D:

CF =

∑
dj∈D

C F
dj (12)

As for the response time, the request k allocated to dj is denoted
as Tk,dj , however, if the request needs to be forward to another
data center d′

j , there is incurred response time as Tdj,d′
j
, thus

the response time is CR
rk = Tk,dj + Tdj,d′

j
, and the average response

time is:

CR =
1

|W |

∑
rk∈W

CR
rk (13)

The following constraints should be satisfied:
The total VM utilization for executing requests should not

exceed the capacity of physical machines. We consider the full
capacity of a single physical machine is 1.0.∑
vml∈Vsi

uvml ≤ 1.0, ∀si ∈ dj (14)

The total running microservices on a single VM should not exceed
the capacity of the VM.∑
mso∈Avml

mso ≤ 1.0, ∀vml ∈ si (15)

Finally, the optimization problem becomes to minimize the total
costs while satisfying the physical machine and VM capacity
requirements.

min CT

s.t. constraints (14)–(15)
(16)

4. Workload shifting algorithm

In this section, we propose a workload shifting algorithm with
green energy usage to optimize our objective in Eq. (16). Then
we derive another two algorithms by changing the priorities
of different parameters to investigate their impacts on brown
energy usage, carbon emission and average response time.

4.1. Workload shifting with green-energy (WSG)

Algorithm 1 shows the pseudocode of our proposed workload
shifting algorithm. The objective the algorithm is shifting the
workloads to the data center with sufficient green energy while
ensuring the average response time. The algorithmmainly has the
following steps:

(1) Assign request rk ∈ W to the nearest data center dj to
reduce the response time of the request (lines 2–3). The source
of the request has been assigned a default data center with the
lowest latency.2 The default data center is considered as the
nearest one for the requests from a specific source.

(2) Calculate the increased energy if rk is allocated to the si in
dj (line 4). For si, it should be the physical machine which has the

2 In this work, latency and response time are used interchangeably.
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Algorithm 1: Workload Shifting Algorithm.

Input: the set of data center D with size n, host list in each data
center S, virtual machine list V , microservices list A, request
list W , time interval t , response time threshold Tr

Output: request allocated destination
1: At time interval t , collect data center information (energy con-

sumption, carbon intensity and renewable energy amount)
from cloud scheduler

2: for rk in W do
3: Allocate the rk to the nearest data center dj
4: Assign rk to the si that has the least increased energy

consumption E∆
rk

5: Check the amount of available renewable energy ER
dj
of data

center dj
6: if ER

dj
> EB

dj
+ E∆

rk then
7: Allocate rk to dj
8: Update EB

dj
= EB

dj
+ E∆

rk
9: Update CR, CF , CT

10: else
11: Sort all the data centers in data center set based on

available green energy in descending order
12: Check the increased response time ∆CR
13: Find the data center that can increase the least response

time while ensuring CR + ∆CR < Tr
14: if data center dj is found then
15: Allocate rk to dj
16: Update CR, CF , CT
17: else
18: Trigger brownout by deactivating lowest utilization

component
19: Allocate rk to current data center
20: Update CR, CF , CT
21: end if
22: end if
23: end for
24: return destination

least increased energy consumption. The idea is based on the Best
Fit Decreasing algorithm in [6], in this way, the increased energy
consumption of the data center can be minimized.

(3) Check the availability of green energy in the allocated data
center (line 5). The algorithm would allocate the request to the
data center with sufficient green energy with higher priority.

(3a) If renewable energy is sufficient, allocate it. The best
destination for this request has been found. Go to step 5.

(3b) If green energy is not sufficient, forward it to another data
center with available green energy. Go to Step 4.

(4) Find another suitable data center with enough renewable
energy, while the average response time is not exceeding the
threshold (lines 11–13). The data centers are sorted based on
available green energy.

(4a) If the data center is found, allocate request to the data
center. The destination for this request has been found. Go to
step 5.

(4b) If no suitable data center, which means the response time
constraint will be violated or no data center has sufficient green
energy. In this situation, the brownout mechanism is triggered
(deactivating some microservices temporarily) to reduce energy
and carbon footprint. The request will not be forwarded. Go to
step 5.

(5) Update data center information, including carbon emission
and available green energy.

(6) Return the allocated destination of the request.

Algorithm Complexity Analysis: We assume the number of
data centers as N and the maximum number of physical machine
in all the data centers as M . The time to find a host in the nearest
data center with sufficient renewable energy is Θ(NlogN), which
can be found by a sorting algorithm. Then the time to find the
physical machine with the least increased energy is Θ(MlogM),
which can also be searched by sorting algorithm. Thus, the time to
find a physical machine in a data center with sufficient renewable
energy is Θ(NlogN)+Θ(MlogM). While if the nearest data center
does not have sufficient renewable energy, this process will be
executed for other data centers, and the maximum execution
is the number of data center M . Therefore, the final algorithm
complexity is M × (Θ(NlogN) + Θ(MlogM)), which is equal to
Θ(MNlogN + M2logM).

4.2. Workload shifting non brownout (WSNB)

WSNB is very similar to WSG, the only difference compared
with WSG is that WSNB omits the line 18 in Algorithm 1, which
represents that brownout mechanism is not applied, thus al-
though another suitable data center is not found, the optional
components are not deactivated to reduce brown energy usage.
This algorithm can be applied to the applications that have no op-
tional components. Due to the minor modification, the algorithm
complexity of WSNB is as same as WSG.

4.3. Workload shifting with time (WST)

The WST algorithm differs from WSG in the way that WST
cares more about average response time rather than green energy
usage. Compared with Algorithm 1, in line 11, the candidate data
centers are sorted based on latencies in ascending order, and in
line 13, the algorithm will find the first data center with sufficient
green energy. In this case, the workloads are shifted to the data
center with the lowest latency and green energy is sufficient.
Although the priority of data center selection is changed, the
complexity of WST remains the same as WSG.

5. Performance evaluation

In this section, we evaluate our proposed workload shifting
algorithms in Section 4 to investigate the impacts on brown
energy usage and carbon emissions. To make the simulations as
realistic as possible, we consider the data centers located at US
and Europe, and the workload is derived from Facebook. We use
CloudSim [8] simulation toolkit to evaluate the performance of
proposed algorithm.

5.1. Experimental settings

5.1.1. Data center and source of requests
To simulate the multi-cloud environment with data centers

in different time zone, we select 3 locations (California, Dublin,
and Virginia) as data centers (square symbols) and 10 locations
as the sources of requests (circle symbols). These locations are
distributed in the US and Europe and in different time zones.
The reason why we choose the three locations as data centers is
that we simulate the Amazon deployment, which has data centers
in these locations. Each source can be connected to three data
centers, which is demonstrated in Fig. 3. We use the same color
of data center and source of requests to represent that the latency
between them is the lowest.

The average latency between the data centers and sources is
listed in Table 3. This data comes from [13], which is collected via
a real cluster within two days and the interval is 15 min. In our
algorithm, we use the latency data to find the nearest data center
and calculate the extra latency when requests are forwarded to
another data center. For example, for requests from Miami, the
California data center has the lowest latency.
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Fig. 3. Locations of data centers and request sources in simulation settings.

Table 3
Average latency between data center and sources of requests and daily number of requests at sources.
Region California, US (ms) Dublin, Ireland (ms) Virginia, US (ms) Number of Requests (Millions) Time Zone (GMT)

Miami, US 54.26 171.87 98.21 1.97 −5
Paris, France 192.44 21.24 184.75 9.14 +1
Berlin, Germany 177.74 40.89 157.68 0.68 +1
Chicago, US 63.81 142.78 102.08 1.62 −6
Milan, Italy 188.71 44.71 167.3 0.94 +1
New York, US 96.45 78.71 134.11 14.108 −5
Los Angeles, US 27.66 213.48 153.28 7.14 −8
Barcelona, Spain 194.55 35.83 172.47 2.61 +1
Houston, US 37.61 151.93 98.96 0.99 −6
London, UK 175.59 17.62 163.25 8.53 0

5.1.2. Workload pattern
To simulate the number of requests, we also estimate the

daily active users from different locations based on Facebook
data [14]. Facebook data is used because it provides a wide range
of applications and has users from various locations. We assume
each user submits 1 request daily, and the number of request
per day from the sources is shown in Table 3. For instance, New
York is the most active city with 14.108 million active users while
Berlin is the least active city among all sources with 0.66 million
active users.

After we obtain the total number of daily requests, we need to
convert it to follow a typical pattern that represents the fluctua-
tions in a day. It has been analyzed that the realistic workloads
follow the diurnal cycle that has peak and bottom during the day
and night. We partitioned the daily data into 24-hour time inter-
vals based on the Facebook workloads pattern analyzed in [4], and
adjusted the time zones to match all the 10 sources of requests.
The change of the number of requests from different sources is
shown in Fig. 4. For example, Miami city has the larger number of
requests compared to other cities, its requests reach the bottom
and peak at hours 4 and 13 respectively.

5.1.3. Carbon intensity
We also obtain the one-day carbon intensity of the three data

center from [35],3 which contains the hourly carbon intensity
data as depicted in Fig. 5. The figure shows that the carbon inten-
sity varies slightly during the observed time and there are some
differences between the three data centers. The carbon intensity
of California ranges from 254 g/kWhr to 333 g/kWhr, and Virginia
has carbon intensity from 338 g/kWhr to 375 g/kWhr. Ireland has
a higher carbon intensity between 391 g/kWhr and 433 g/kWhr.

3 The data was obtained on 9 Jan, 2019

Table 4
Host/VM types and capacity.
Name CPU Cores Memory Bandwidth Storage

Host Type 1 1.86 GHz 2 4 GB 1 Gbit/s 100 GB
Host Type 2 2.66 GHz 2 4 GB 1 Gbit/s 100 GB
VM Type 1 2.5 GHz 1 870 MB 100 Mbit/s 1 GB
VM Type 2 2.0 GHz 1 1740 MB 100 Mbit/s 1 GB
VM Type 3 1.0 GHz 1 1740 MB 100 Mbit/s 1 GB
VM Type 4 0.5 GHz 1 613 MB 100 Mbit/s 1 GB

5.1.4. Solar power
We consider solar power as renewable energy. Fig. 6 shows

the solar power data obtained from [11], which has been adjusted
based on time zones. In the night time, the solar power is 0,
and during the day time, different locations have different solar
power. California has more powerful solar energy i.e. about 1000
W/m2 compared with the other two sites. We can also notice
from Fig. 6, by taking advantage of multi-cloud at different time
zones, the duration of green energy availability can be extended.
In most time periods, the green energy can be utilized except for
time period from hour 4 to hour 5.

5.2. Compared algorithms

To evaluate the effects of workload shifting, we use cloud
simulation toolkit CloudSim [8]. 450 physical machines in total
are used, and each data center contains 150 physical machines.
As summarized in Table 4, we use two types of physical ma-
chines and four types of VMs according to the offering from
EC2. The power model of physical machines is based on IBM
System x3550 M3 with CPU Intel Xeon X5670 and X5675 [1].
The different utilization levels with the corresponding power are
shown in Table 5. As for the utilization of VMs that are allocated
on physical machines, it can be simulated via the utilization of
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Fig. 4. Number of requests from different sources.

Fig. 5. Carbon intensity of three data centers in one-day time.

Fig. 6. Solar energy of three data centers in one-day time.

Table 5
Power consumption of servers in Watts.
Servers 0%

(sleep mode)
10% 20% 30% 40% 50%

IBM x3550 M3 (Intel Xeon X5670 CPU) 66 107 120 131 143 156
IBM x3550 M3 (Intel Xeon X5675 CPU) 58.4 98 109 118 128 140

Servers 60% 70% 80% 90% 100%
(max)

IBM x3550 M3 (Intel Xeon X5670 CPU) 173 191 211 229 247
IBM x3550 M3 (Intel Xeon X5675 CPU) 153 170 189 205 222

application components (microservices) that are running on the
VMs as shown in Eq. (3).

We also implement four algorithms for performance compar-
ison as below:

• NWS (Non Workload Shifting): the algorithm does not
apply the workload shifting. The requests are processed by
the nearest data center based on average response time.

• WSNB(Workload Shifting Non Brownout): the algorithm
that applies workload shifting in Algorithm 1 while the
brownout mechanism is not applied.

• WSG (Workload Shifting with Green-energy): the algo-
rithm we proposed in Algorithm 1, which aims to maximize
the green energy usage while ensuring the average response
time.

• WST (Workload Shifting with Time): the algorithm is very
similar to WSG only with the change of data center se-
lection. This algorithm cares more about average response
time than carbon emission. When workloads are needed to
be shifted, the algorithm finds the first data center with
sufficient green energy and the lowest average response
time to execute the workloads.

To support the brownout feature for applications, we extend the
cloudlet model in CloudSim to model web application with op-
tional components, e.g. the online shopping application with rec-
ommendation engine as an optional component. Each component
has its CPU utilization, and when the component is deactivated
based on brownout, the amount of corresponding CPU utiliza-
tion is reduced. For WSG and WST, we configure the amount of
optional utilization of application as 20%, which represents how
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Fig. 7. Comparison of brown energy usage.

Fig. 8. Comparison of carbon emission.

much utilization can be deactivated in application. We configure
this utilization ratio as it has been evaluated in [42] and shows
to be effective for the brownout-based approach.

5.3. Results

To evaluate the performance of compared algorithms, we
conducted experiments to evaluate brown energy usage, carbon
emission and average response time for all three data centers in
24 h. The experiments were repeated 7 times.

Fig. 7 shows the comparison of brown energy usage for the
compared algorithms. In NWS, the green energy is not applied,
therefore it has the highest brown energy usage compared to
other algorithms. The brown energy usage of NWS is 1276.8 KWh
with 95% confident interval (CI): (1237.4, 1316.2). By applying
workload shifting, in WSNB reduces the brown energy usage to
869.9 kWh with 95% CI: (835.4, 904.3). By using the brownout
mechanism in WSG and WST while with different priorities in
carbon emission and average response time, both of these al-
gorithms decrease the brown energy usage. WSG reduces 43%
to 735.6 kWh with 95% CI: (719.9, 751.3), and WST lowers 40%
to 774.2 kWh with 95% CI: (760.6, 787.8). Since the results of
WSG and WST are quite close, we conduct the paired t-test, the
p < 0.05, which means there are significant differences between
the two algorithms. Based on the results, we can see the workload
shifting can vitally reduce brown energy usage.

Fig. 9. Comparison of average response time.

Fig. 10. Comparison of cost (algorithm efficiency).

In Fig. 8, we compare the carbon emission resulted from the
compared algorithms. As NWS consumes the largest amount of
brown energy, it also leads to more carbon emission than other
algorithms. NWS has the carbon emission as 383.6 kg with 95% CI
(371.7, 395.4). For other algorithms that apply workload shifting,
WSNB has 255.1 kg carbon emission with 95% CI (244.8, 265.4) by
33.5% reduction, WSG reduces 44% carbon emission to 215.1 kg
with 95% CI (210.5, 219.8), and WST decreases the carbon emis-
sion to 226.6 kg with 95% CI (222.5, 230.6). We also conduct the
paired t-test for WSG and WST, where the p < 0.05 and it means
there are significant differences between the WSG and WST. WSG
outperforms other algorithms in carbon emission.

Fig. 9 demonstrates the comparison of average response time,
different from the above comparison, as workload shifting is not
applied, NWS has the shortest average response time as 45.2 ms.
WSNB has the longest average response time as 189.3 ms, with
brownout, WSG, and WST slightly reduce the average response
time to 158.3 ms and 148.4 ms respectively. Although the algo-
rithms with workload shifting have longer average response time
than NWS, the average response time are in the acceptable range,
which are less than 1 s.

As the carbon emission and average response time are in dif-
ferent units, we normalize the values for comparison to measure
the total cost in Eq. (9). We set the carbon emission of NWS as the
baseline and 1000 ms as the baseline of average response time.
Then we calculate the algorithm efficiency (the ratio compared
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with baseline) of total cost as demonstrated in Fig. 10. NWS has
the cost as the average of 1.045, and WSG achieves the best
algorithm efficiency as an average of 0.719.

As a result, we can conclude that our proposed algorithm
based on workload shifting and brownout performs better in
terms of brown energy and carbon emission than baselines, while
the average response time can be optimized within the acceptable
range.

6. Conclusions and future work

In this paper, we investigated the approach to reduce brown
energy and carbon emission in cloud data centers by utilizing
green energy. To maximize green energy usage, we consider ap-
plying workload shifting among the multiple data centers located
in different time zones. Through the modeling of carbon intensity
and solar energy, we propose the workload shifting algorithm to
balance the total carbon emission and the average response time
of requests. By modeling the data centers located at California,
Virginia, and Dublin, we conduct the simulation-based experi-
ments, and the results demonstrate that our approach can sig-
nificantly reduce the carbon emission while ensuring the average
response time.

As future work, we plan to consider to apply this approach
with other application models, such as Map-reduce and bag-
of-task applications. We would also like to consider delaying
workload execution to maximize renewable energy usage if QoS
permits. In addition, the network impact on workload shifting
can be modeled with a more comprehensive model. For the
renewable energy sources, we would like to explore the wind
mills as the complementary of solar power.
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