
Distributed File Systems

(DFS)

Dr. Minxian Xu

Associate Professor

Research Center for Cloud Computing

Shenzhen Institute of Advanced Technology, CAS

http://www.minxianxu.info/dcp

Most concepts are
drawn from Chapter 12

1

人间岁月堂堂去，劝君快上青云路。圣处一灯传，工夫萤雪边。
——（宋）辛弃疾

http://www.minxianxu.info/dcp

Q1: What is a digital certificate and why do we need it?

Review

2

Review

3

Certificates

4

Public Key Certificate

5

Review

Q2: What is the process to obtain a digital certificate?

6

Review

7

Review

Q3: What is a certificate chain?

8

Review

9

Q4: Assuming that Bob has a public/private key pair, how can Alice and Bob
establish a shared key to communicate secretly using a Key Distribution Service?

Review

10

Learning objectives

 Understand the requirements that affect the design

of distributed services

 NFS: understand how a relatively simple, widely-

used service is designed
– Obtain a knowledge of file systems, both local and networked

– Caching as an essential design technique

– Remote interfaces are not the same as APIs

– Security requires special consideration

 Recent advances: appreciate the ongoing research

that often leads to major advances (creation of a

widely used storage infrastructures like DropBox).

11

Introduction

 Why do we need a DFS?
– Primary purpose of a Distributed System…

– Resources…

 … can be inherently distributed

 … can actually be data (files, databases, …) and…

 … their availability becomes a crucial issue for the performance of a

Distributed System and applications.

Connecting Users and Resources

12

 A case for DFS

Introduction

I want to store

my thesis on the

server!

I need to have my

book always

available..

I need to

store my

analysis and

reports

safely…I need

storage for

my reports

My boss

wants…

Server A

Uhm… perhaps time

has come to buy a rack

of servers….

13

Introduction

 A Case for DFS

Server A

Server B

Server C

Wow… now I can

store a lot more

documents…

Hey… but

where did I

put my docs?

Same here…

I don’t

remember..

I am not sure whether

server A, or B, or C…

Uhm… … maybe we

need a DFS?... Well

after the paper and a

nap…

14

 A Case for DFS

Introduction

Server C

Server B
Server A

Good… I can access my

folders from anywhere..
Wow! I do not have

to remember which

server I stored the

data into…

Nice… my

boss will

promote me!

It is reliable, fault tolerant,

highly available, location

transparent…. I hope I can

finish my newspaper

now…

Distributed File System

15

Storage systems and their properties

 In first generation of distributed systems

(1974-95), file systems (e.g. NFS) were

the only networked storage systems.

 With the advent of distributed object

systems (CORBA, Java) and the web,

the picture has become more complex.

 Current focus is on large scale, scalable

storage.
– Google File System (GFS)

– Amazon S3 (Simple Storage Service)

– Cloud Storage (e.g., DropBox,

Google Drive, Microsoft OneDrive)

1974 - 1995

1995 - 2010

2010 - now

16

Storage systems and their properties

Sharing Persis-
tence

Distributed
cache/replicas

Consistency
maintenance

Example

Main memory RAM

File system UNIX file system

Distributed file system Sun NFS

Web Web server

Distributed shared memory Ivy (Ch. 16)

Remote objects (RMI/ORB) CORBA

Persistent object store 1 CORBA Persistent
Object Service

Peer-to-peer storage store OceanStore

1

1

1

2

Types of consistency between copies: 1 - strict one-copy consistency

√ - approximate/slightly weaker guarantees

X - no automatic consistency

2 – considerably weaker guarantees

17

 Persistent stored data sets

 Hierarchic name space visible to all processes

 API with the following characteristics:
– access and update operations on persistently stored data sets

– Sequential access model (with additional random facilities)

 Sharing of data between users, with access control

 Concurrent access:
– certainly for read-only access

– what about updates?

 Other features:
– mountable file stores

– more? ...

USERS

18

What is a file system?

filedes = open(name, mode)
filedes = creat(name, mode)

Opens an existing file with the given name.
Creates a new file with the given name.
Both operations deliver a file descriptor referencing the open
file. The mode is read, write or both.

status = close(filedes) Closes the open file filedes.

count = read(filedes, buffer, n)

count = write(filedes, buffer, n)

Transfers n bytes from the file referenced by filedes to buffer.
Transfers n bytes to the file referenced by filedes from buffer.
Both operations deliver the number of bytes actually transferred
and advance the read-write pointer.

pos = lseek(filedes, offset,
whence)

Moves the read-write pointer to offset (relative or absolute,
depending on whence).

status = unlink(name) Removes the file name from the directory structure. If the file
has no other names, it is deleted.

status = link(name1, name2) Adds a new name (name2) for a file (name1).

status = stat(name, buffer) Gets the file attributes for file name into buffer.

UNIX file system operations

19

What is a file system?

Class Exercise A
Write a simple C program to copy a file using the UNIX

file system operations:

copyfile(char * oldfile, * newfile)

{

<you write this part, using open(), creat(), read(),

write()>

}

Note: remember that read() returns 0 when you attempt

to read beyond the end of the file.

20

What is a file system?

A code in C – Copy File program

Write a simple C program to copy a file using the UNIX file system operations.

#define BUFSIZE 1024

#define READ 0

#define FILEMODE 0644

void copyfile(char* oldfile, char* newfile)

{ char buf[BUFSIZE]; int i,n=1, fdold, fdnew;

if((fdold = open(oldfile, READ))>=0) {

fdnew = creat(newfile, FILEMODE);

while (n>0) {

n = read(fdold, buf, BUFSIZE);

if(write(fdnew, buf, n) < 0) break;

}

close(fdold); close(fdnew);

}

else printf("Copyfile: couldn't open file: %s \n", oldfile);

}

main(int argc, char **argv) {

copyfile(argv[1], argv[2]);

}

21

Directory module: relates file names to file IDs

File module: relates file IDs to particular files

Access control module: checks permission for operation requested

File access module: reads or writes file data or attributes

Block module: accesses and allocates disk blocks

Device module: disk I/O and bufferi ng

File system modules

What is a file system?
(a typical module structure for implementation of non-DFS)

Files
Device

Blocks

Directories

22

updated

by system:

File length

Creation timestamp

Read timestamp

Write timestamp

Attribute timestamp

Reference count

Owner

File type

Access control list

E.g. for UNIX: rw-rw-r--

File attribute record structure

updated

by owner:

23

What is a file system?

Tranparencies

Access: Same operations (client programs are

unaware of distribution of files)

Location: Same name space after relocation of

files or processes (client programs

should see a uniform file name space)

Mobility: Automatic relocation of files is possible

(neither client programs nor system

admin tables in client nodes need to be

changed when files are moved).

Performance: Satisfactory performance across a

specified range of system loads

Scaling: Service can be expanded to meet

additional loads or growth.

Changes to a file by one client should not interfere

with the operation of other clients

simultaneously accessing or changing

the same file.

Concurrency properties

Isolation

File-level or record-level locking

Other forms of concurrency control to minimise

contention

Replication properties

File service maintains multiple identical copies of

files

• Load-sharing between servers makes service

more scalable

• Local access has better response (lower latency)

• Fault tolerance

Full replication is difficult to implement.

Caching (of all or part of a file) gives most of the

benefits (except fault tolerance)

Heterogeneity properties

Service can be accessed by clients running on

(almost) any OS or hardware platform.

Design must be compatible with the file systems of

different OSes

Service interfaces must be open - precise

specifications of APIs are published.

Fault tolerance

Service must continue to operate even when clients

make errors or crash.

Service must resume after a server machine

crashes.

If the service is replicated, it can continue to

operate even during a server crash.

Consistency

Unix offers one-copy update semantics for

operations on local files - caching is completely

transparent.

Difficult to achieve the same for distributed file

systems while maintaining good performance

and scalability.

Security

Must maintain access control and privacy as for

local files.

•based on identity of user making request

•identities of remote users must be authenticated

•privacy requires secure communication

Service interfaces are open to all processes not

excluded by a firewall.

•vulnerable to impersonation and other

attacks

Efficiency

Goal for distributed file systems is usually

performance comparable to local file system.

Distributed File system/service requirements

 Transparency

 Concurrency

 Replication

 Heterogeneity

 Fault tolerance

 Consistency

 Security

 Efficiency..

*

File service is most heavily loaded

service in an intranet, so its

functionality and performance

are critical

24

File Service Architecture

 An architecture that offers a clear separation of the

main concerns in providing access to files is

obtained by structuring the file service as three

components:
– A flat file service

– A directory service

– A client module.

 The relevant modules and their relationship is

(shown next).

 The Client module implements exported interfaces

by flat file and directory services on server side.

25

Model file service architecture

Client computer Server computer

Application
program

Application
program

Client module

Flat file service

Directory service

Lookup

AddName

UnName

GetNames

Read

Write

Create

Delete

GetAttributes

SetAttributes

26

Responsibilities of various modules

 Flat file service:
– Concerned with the implementation of operations on the contents of file.

Unique File Identifiers (UFIDs) are used to refer to files in all requests for flat
file service operations. UFIDs are long sequences of bits chosen so that each
file has a unique among all of the files in a distributed system.

 Directory Service:
– Provides mapping between text names for the files and their UFIDs. Clients

may obtain the UFID of a file by quoting its text name to directory service.
Directory service supports functions needed to generate directories and to add
new files to directories.

 Client Module:
– It runs on each computer and provides integrated service (flat file and

directory) as a single API to application programs. For example, in UNIX
hosts, a client module emulates the full set of Unix file operations.

– It holds information about the network locations of flat-file and directory server
processes; and achieve better performance through implementation of a
cache of recently used file blocks at the client.

27

FileId

A unique identifier for files anywhere in the

network. Similar to the remote object

references described in Section 4.3.3.

Server operations/interfaces for the model file
service

Flat file service

Read(FileId, i, n) -> Data

Write(FileId, i, Data)

Create() -> FileId

Delete(FileId)

GetAttributes(FileId) -> Attr

SetAttributes(FileId, Attr)

Directory service

Lookup(Dir, Name) -> FileId

AddName(Dir, Name, File)

UnName(Dir, Name)

GetNames(Dir, Pattern) -> NameSeq

Pathname lookup

Pathnames such as '/usr/bin/tar' are resolved

by iterative calls to lookup(), one call for

each component of the path, starting with

the ID of the root directory '/' which is

known in every client.

position of first byte

position of first byte FileId

28

File Group

A collection of files that can be

located on any server or moved

between servers while

maintaining the same names.

– Similar to a UNIX filesystem

– Helps with distributing the load of file

serving between several servers.

– File groups have identifiers which are

unique throughout the system (and

hence for an open system, they must

be globally unique).

 Used to refer to file groups and files

To construct a globally unique

ID we use some unique

attribute of the machine on

which it is created, e.g. IP

number, even though the file

group may move subsequently.

IP address date

32 bits 16 bits

File Group ID:

29

DFS: Case Studies

 NFS (Network File System)
– Developed by Sun Microsystems (in 1985)

– Most popular, open, and widely used.

– NFS protocol standardised through IETF (RFC 1813)

 AFS (Andrew File System)
– Developed by Carnegie Mellon University as part of Andrew

distributed computing environments (in 1986)

– A research project to create campus wide file system.

– Public domain implementation is available on Linux (LinuxAFS)

– It was adopted as a basis for the DCE/DFS file system in the Open

Software Foundation (OSF, www.opengroup.org) DEC (Distributed

Computing Environment)

30

Case Study: Sun NFS

 An industry standard for file sharing on local networks since the 1980s

 An open standard with clear and simple interfaces

 Closely follows the abstract file service model defined above

 Supports many of the design requirements already mentioned:

– transparency

– heterogeneity

– efficiency

– fault tolerance

 Limited achievement of:

– concurrency

– replication

– consistency

– security

31

NFS - History

 1985: Original Version (in-house use)

 1989: NFSv2 (RFC 1094)
– Operated entirely over UDP

– Stateless protocol (the core)

– Support for 2GB files

 1995: NFSv3 (RFC 1813)
– Support for 64 bit (> 2GB files)

– Support for asynchronous writes

– Support for TCP

– Support for additional attributes

– Other improvements

 2000-2003: NFSv4 (RFC 3010, RFC 3530)
– Collaboration with IETF

– Sun hands over the development of NFS

 2010: NFSv4.1
– Adds Parallel NFS (pNFS) for parallel data access

 2015
– RFC 7530 – NFS Version 4 Protocol

– Unlike earlier versions, it supports traditional file access while integrating support for file locking and the MOUNT protocol. It

makes NFS operate well in an Internet environment.

32

https://tools.ietf.org/html/rfc7530

NFS architecture

Client computer Server computer

UNIX
file

system

NFS
client

NFS
server

UNIX
file

system

Application
program

Application
program

Virtual file systemVirtual file system

O
th

e
r

fi
le

 s
y
s
te

m

UNIX kernel

system calls

NFS
protocol

(remote operations)

UNIX

Operations

on local files

Operations

on

remote files

Application
program

NFS

Client

Kernel
Application

program

NFS

Client

Client computer

33

NFS architecture:
does the implementation have to be in the system kernel?

No:
– there are examples of NFS clients and servers that run at application-

level as libraries or processes (e.g. early Windows and MacOS

implementations, current PocketPC, etc.)

But, for a Unix implementation there are advantages:
– Binary code compatible - no need to recompile applications

 Standard system calls that access remote files can be routed through the

NFS client module by the kernel

– Shared cache of recently-used blocks at client

– Kernel-level server can access i-nodes and file blocks directly

 but a privileged (root) application program could do almost the same.

– Security of the encryption key used for authentication.

34

• read(fh, offset, count) -> attr, data

• write(fh, offset, count, data) -> attr

• create(dirfh, name, attr) -> newfh, attr

• remove(dirfh, name) status

• getattr(fh) -> attr

• setattr(fh, attr) -> attr

• lookup(dirfh, name) -> fh, attr

• rename(dirfh, name, todirfh, toname)

• link(newdirfh, newname, dirfh, name)

• readdir(dirfh, cookie, count) -> entries

• symlink(newdirfh, newname, string) -> status

• readlink(fh) -> string

• mkdir(dirfh, name, attr) -> newfh, attr

• rmdir(dirfh, name) -> status

• statfs(fh) -> fsstats

NFS server operations (simplified)

fh = file handle:

Filesystem identifier i-node number i-node generation

Model flat file service

Read(FileId, i, n) -> Data

Write(FileId, i, Data)

Create() -> FileId

Delete(FileId)

GetAttributes(FileId) -> Attr

SetAttributes(FileId, Attr)

Model directory service

Lookup(Dir, Name) -> FileId

AddName(Dir, Name, File)

UnName(Dir, Name)

GetNames(Dir, Pattern)

->NameSeq

35

NFS access control and authentication

 Stateless server, so the user's identity and access rights must

be checked by the server on each request.
– In the local file system they are checked only on open()

 Every client request is accompanied by the userID and groupID
– which are inserted by the RPC system

 Server is exposed to imposter attacks unless the userID and

groupID are protected by encryption

 Kerberos has been integrated with NFS to provide a stronger

and more comprehensive security solution

36

Architecture Components (UNIX / Linux)

 Server:
– nfsd: NFS server daemon that services requests from clients.

– mountd: NFS mount daemon that carries out the mount request

passed on by nfsd.

– rpcbind: RPC port mapper used to locate the nfsd daemon.

– /etc/exports: configuration file that defines which portion of the file

systems are exported through NFS and how.

 Client:
– mount: standard file system mount command.

– /etc/fstab: file system table file.

– nfsiod: (optional) local asynchronous NFS I/O server.

37

Mount service

 Mount operation:

mount(remotehost, remotedirectory, localdirectory)

 Server maintains a table of clients who have

mounted filesystems at that server

 Each client maintains a table of mounted file

systems holding:

< IP address, port number, file handle>

 Hard versus soft mounts

38

Local and remote file systems accessible on an
NFS client

jim jane joeann

usersstudents

usrvmunix

Client Server 2

. . . nfs

Remote

mount
staff

big bobjon

people

Server 1

export

(root)

Remote

mount

. . .

x

(root) (root)

Note: The file system mounted at /usr/students in the client is actually the sub-tree located at /export/people in Server 1;

the file system mounted at /usr/staff in the client is actually the sub-tree located at /nfs/users in Server 2.

39

Automounter

NFS client catches attempts to access 'empty' mount

points and routes them to the Automounter
– Automounter has a table of mount points and multiple candidate

serves for each

– it sends a probe message to each candidate server and then uses the

mount service to mount the filesystem at the first server to respond

 Keeps the mount table small

 Provides a simple form of replication for read-only

filesystems
– E.g. if there are several servers with identical copies of /usr/lib then

each server will have a chance of being mounted at some clients.

40

Kerberized NFS

 Kerberos protocol is too costly to apply on each file access

request

 Kerberos is used in the mount service:
– to authenticate the user's identity

– User's UserID and GroupID are stored at the server with the client's IP address

 For each file request:
– The UserID and GroupID sent must match those stored at the server

– IP addresses must also match

 This approach has some problems
– can't accommodate multiple users sharing the same client computer

– all remote filestores must be mounted each time a user logs in

41

New design approaches

Distribute file data across several servers
– Exploits high-speed networks (InfiniBand, Gigabit Ethernet)

– Layered approach, lowest level is like a 'distributed virtual disk'

– Achieves scalability even for a single heavily-used file

'Serverless' architecture
– Exploits processing and disk resources in all available network nodes

– Service is distributed at the level of individual files

Examples:
xFS : Experimental implementation demonstrated a substantial performance gain

over NFS and AFS

Peer-to-peer systems: Napster, OceanStore (UCB), Farsite (MSR), Publius (AT&T

research) - see web for documentation on these very recent systems

Cloud-based File Systems: DropBox

42

Dropbox Folder

Dropbox Folder Dropbox Folder

Automatic

synchronization

DropBox Cloud Storage Architecture

43

Case study：Hadoop Distributed File System
(HDFS)

 HDFS is designed for:
– Very large files

– Stream data access

– Commodity hardware

 But not for：
– Low-latency data access

– Lots of small files

– Multiple writers, arbitrary file modifications

44

HDFS: Hadoop Distributed File System

 HDFS contains the following key components:

 NameNode:
– HDFS master node process

– manages the filesystem metadata

– does not store a file itself

 SecondaryNameNode and Standby NameNode
– SecondaryNameNode expedites the filesystem metadata recovery

– Standby NameNode (optional) provides high availability

 DataNode
– runs HDFS slave node process

– manages block storage and access for reading or writing of data,

block replication

45

Architecture of HDFS

46

HDFS: Hadoop Distributed File System

 HDFS is a virtual filesystem
– appears to a client as one file system, but the data is stored in multiple

different locations

– deployed on the top of the native filesystems (such as ext3, ext4 and

xfs in Linux)

 Each file in HDFS consists of blocks
– The size of each block defaults to 128MB but is configurable

– The default number of replicates for blocks is 3, but it is also

configurable

47

Logic view of data storage

48

Physical Implementation of data file storage

49

Summary

 Distributed File systems provide illusion of a local file system and hide complexity

from end users.

 Sun NFS is an excellent example of a distributed service designed to meet many

important design requirements

 Effective client caching can produce file service performance equal to or better than

local file systems

 Consistency versus update semantics versus fault tolerance remains an issue

 Most client and server failures can be masked

 Superior scalability can be achieved with whole-file serving (Andrew FS) or the

distributed virtual disk approach

 Modern DFSs are Cloud-based Files Systems (..Dropbox, GoogleDrive, OneDrive,..)

Advanced Features:

– support for mobile users, disconnected operation, automatic re-integration

– support for data streaming and quality of service (Tiger file system, Content Delivery

Networks)

50

Demo

 Git

Configuration Management

(Version Control)

51

So what is Git?

 Version Control System

 Made by Linus Torvalds! (developer of the Linux

kernel)

52

Git Advantages

 Distributed (everyone has their own code

repository local to them!)

 Open Source (everyone likes open source code

:))

53

General Git Workflow

1. git init

2. git add filename

3. git commit -m “Initial commit”
4. git push origin master

54

Git Concept: Init

What does it do: Initializes a Git repository locally

Example command:

git init

55

Git Concept: Clone

What does it do: Clones an entire Git repository,

similar to svn checkout but you get the whole copy,

so for a Git repository with a lot of history, this

operation can potentially take a while

Example command:

git clone URL

56

Git Concept: Status

What does it do: Shows you the status of your

current repository which shows files to be added,

modified and untracked files as well.

Example command:

git status

57

Git Concept: Add / Remove

What does it do: As you can probably tell from the

name, it adds or removes a file!

Example command:

git add filename OR git rm filename

58

Git Concept: Commit

What does it do: This commits your changes to

the repository. If you don’t do this, your changes

will not be saved!

Example command:

git commit -m “Some Message!”

59

Git Concept: Log

What does it do: Shows the history of commits

into the system.

Example command:

git log

60

Git Concept: Branching

61

And Many More!

References:

https://www.atlassian.com/git/tutorials

https://git-scm.com/

62

https://www.atlassian.com/git/tutorials
https://git-scm.com/

