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Abstract—City Internet of Things (IoT) applications are becoming increasingly complicated and thus require large amounts of
computational resources and strict latency requirements. Mobile Cloud Computing (MCC) is an effective way to alleviate the limitation
of computation capacity by offloading complex tasks from mobile devices to central clouds. Besides, Mobile Edge Computing (MEC) is
a promising technology to reduce latency during data transmission and save energy by providing services in a timely manner. However,
it is still difficult to solve the task offloading challenges in heterogeneous cloud computing environments, where edge clouds and
central clouds work collaboratively to satisfy requirements of city IoT applications. In this paper, we consider the heterogeneity of edge
and central cloud servers in the offloading destination selection. To jointly optimize the system utility and the bandwidth allocation for
each mobile device, we establish a hybrid offloading model including the collaboration of MCC and MEC. A Distributed Deep
learning-driven Task Offloading (DDTO) algorithm is proposed to generate near-optimal offloading decisions over the mobile devices,
edge cloud server and central cloud server. Experimental results demonstrate the accuracy of the DDTO algorithm, which can
effectively and efficiently generate near-optimal offloading decisions in edge and cloud computing environments. Furthermore, it
achieves high performance and greatly reduces the computational complexity when compared with other offloading schemes that
neglect the collaboration of heterogeneous clouds. More precisely, the DDTO scheme can improve the computational performance by
63%, compared with the local-only scheme.

Index Terms—Mobile cloud computing, Mobile edge computing, City internet of things, Distributed deep learning, Task offloading.

F

1 INTRODUCTION

W ITH the fast development of mobile networks and
the widespread application of city Internet of Things

(IoT) in various fields (e.g., smart transportation, smart
home, smart manufacturing), the demand for Mobile De-
vices (MDs) is increasing drastically. However, MDs such
as smartphones, tablet computers, unmanned aerial vehi-
cles, and wearable devices are usually constrained by lim-
ited resources, e.g., CPU computing power, storage space,
energy capacity, and environmental awareness. Complex
computing tasks, e.g., Optical Character Recognition (OCR),
Face Recognition (FR) and Augmented Reality (AR), are
inefficient to be handled locally. Further, a diversity of city
IoT applications such as delay-sensitive and delay-tolerant
applications can cause a variety of different computation
and communication costs.

To alleviate the limitations of mobile computation capac-
ity, one effective way is to offload complex compute tasks
from the MDs to a central cloud. By taking advantage of
the rich virtual resources and the fast processing speed of
the cloud servers, we can lower the pressure on MDs in
handling tasks locally. Considerable attention has been paid
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to Mobile Cloud Computing (MCC), which has emerged
as a solution to offload task workloads to computation-
rich cloud data centers. However, due to the limitations
of centralized service mode and access bandwidth, this
approach still faces many challenges such as high latency,
low bandwidth, and network congestion.

Always offloading the tasks to the central cloud server,
however, is not suitable, especially for those tasks that
are data-concentrated and latency-sensitive [1]. Recently,
Mobile Edge Computing (MEC) has emerged as a novel
computing paradigm that harnesses computing resources in
the proximity of IoT devices. It has attracted extensive inter-
est [2]. In MEC, IoT devices are connected to edge servers
instead of directly to cloud servers. Around 29 billion IoT
devices are estimated to be connected to the internet by
2022 [3]. Due to their proximity to mobile users the com-
munication cost for task offloading will become very small,
which can greatly reduce the latency of network operations
and service delivery, and further meet the requirements of
the ultra-high bandwidth and ultra-low latency of future
networks [4], [5]. However, the computing power of edge
cloud servers is relatively low and cannot efficiently satisfy
the requirements of the city IoT applications while central
cloud servers have sufficient computing power.

To better serve IoT users with diverse requirements,
heterogeneous clouds composed of edge clouds and central
clouds should be jointly exploited to meet stringent delay
requirements. This will make task execution faster, cheaper,
and more stable. However, if all computing tasks are only
offloaded to the edge or central cloud server, the wireless
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link between the IoT devices and the MCC or MEC servers
can be congested and the latency of the computation can
be unacceptable. In fact, MCC and MEC can cooperate in
terms of computing, storage, and communication facilities
since they are complementary to each other. To reduce the
overall cost of delay and energy consumption, how to make
real-time offloading decisions becomes the most significant
challenge.

Due to the rapid changes of channel conditions, the num-
ber of users and other system parameters, offloading deci-
sions and resource allocation need to be completed within a
few milliseconds. In practical scenarios, however, large-scale
offloading decision-making is often involved since the total
number of possible decisions increases exponentially with
the number of users and tasks and it is very difficult to enu-
merate all possible decisions. Conventional task offloading
techniques usually apply some heuristic algorithms, which
involve difficult to solve and complex problems that require
a large amount of computation, and additional computation
is also needed to execute the offloading decisions. In addi-
tion, the best solution can usually not be calculated in the
face of complex workflows with correlations and only local
optimal solutions can be given. Considering the absence of
the optimal decisions for each task workload of the users,
deep learning becomes a promising method due to its ability
to provide solutions based on labeled data. Deep learning-
driven approaches can facilitate offloading decision making,
dynamic resource allocation and content caching as they
benefit from the growth in volumes of communication and
computation for emerging city IoT applications. However,
how to customize deep learning techniques for task offload-
ing in IoTs is still unknown.

To minimize the weighted sum of the task completion
delay and energy consumption while maintaining the Qual-
ity of Service (QoS) for MDs, more intelligent technologies
and effective parallel algorithms are required to address
such complicated offloading scenarios limited by high di-
mensionality. In this paper, the motivation of designing a
Distributed Deep learning-driven Task Offloading (DDTO)
algorithm is to find a way to proceed with optimal learn-
ing in MEC and MCC heterogeneous environments, and
to further solve computationally expensive problems in
offloading decision-making. Considering the characteristics
of the abundant computing resources in MCC and the low
transmission delay in MEC comprehensively, we integrate
MCC and MEC for task offloading.

The contributions of this paper can be summarized as
follows:

• We formalize the MCC and MEC hybrid task place-
ment problem as a multi-objective optimization
problem. To jointly minimize the system utility and
the bandwidth allocation for each MD, we propose
an effective and efficient offloading framework with
intelligent decision-making capabilities.

• We design a Distributed Deep learning-driven Task
Offloading (DDTO) algorithm, where multiple par-
allel Deep Neural Networks (DNNs) are adopted to
effectively and efficiently generate offloading deci-
sions over the MDs, edge cloud server and central
cloud server.

• We conduct experiments in distinct situations to
evaluate the effectiveness of DDTO. When compared
with several offloading schemes without the coop-
eration of MEC and MCC, our proposed DDTO
algorithm can achieve superior performance.

The remainder of this paper is organized as follows. In
Section 2, we review the related work. The system model
and problem formulation are described in Section 3. The
proposed algorithm based on deep learning to generate
the optimal binary offloading decisions is presented in Sec-
tion 4. The numerical and comparison results are shown in
Section 5. Finally, the paper is concluded in Section 6.

2 RELATED WORK

MCC and MEC have become important solutions to satisfy
the requirements of applications running on IoT devices, es-
pecially for latency-sensitive applications and those running
on energy-constrained IoT devices. A significant number of
offloading decision schemes in MCC and MEC are provided
in the literature, which can be classified as follows:

2.1 Markov-based Offloading Decisions
The Markov decision process is a well-known discrete-
time mathematical framework applied for modeling deci-
sion making with uncertainty. It models a system based
on Markov chains during the time which experiences the
transition from one state to another according to certain
probabilistic rules.

Numerous stochastic offloading schemes via modeling
the task offloading procedure as Markov decision processes
have been proposed in the literature to help them in making
better offloading decisions [6]. Several queueing models
were applied in [7], [8] to mitigate the weighted sum of
power usage and performance expressed in different met-
rics. Various offloading decision policies have been taken
into account, where arriving tasks are either processed
locally in the MDs or offloaded to the remote cloud via
a WLAN or cellular network. Moreover, a Markov-based
offloading strategy was developed, which solved the prob-
lem of where to offload the tasks based on an M/G/1-
FCFS queue model [7]. The offloading approach proposed
in [8] supports two delayed offloading policies, a partial
offloading model where jobs can leave the slow offloading to
be executed locally, and a full offloading model, where jobs
can be offloaded directly via the cellular network. Alasmari
et al. [6] proposed a mobile edge offloading method based
on a Markov decision process to generate offloading deci-
sions, which used a numbering scheme (1, 2, 3) to denote
executing the tasks in local devices, at the edge and cloud,
respectively. Considering the clock frequency configuration,
transmission power allocation, channel rate scheduling and
offloading strategy selection, a distributed algorithm was
derived in [11], where an M/M/n queue model was also
used to optimize the offloading decision.

2.2 Graph-based Offloading Decisions
It is important to note that city IoT applications can be
viewed as heterogeneous workflows with a different num-
ber of tasks and data flows. To make offloading decisions
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TABLE 1: Comparison of different offloading decision schemes

Categories
Offloading
Schemes

Offloading
Mode

Task
Number

Architectural Properties Decision Objectives
MCC MEC MCC & MEC Time Energy Weighted

Markov-based
offloading decisions

Scheme in [6] Partial Multiple × X × X X ×
Scheme in [7] Partial Multiple X × × X X X

Scheme in [8] Partial Multiple X × × X X X

MCOWA [9] Partial Multiple × X × X X ×
Unit-slot [10] Partial Single X × × X × ×

Scheme in [11] Partial Multiple × X × X X ×

Graph-based
offloading decisions

K-M-LARAC [12] Partial Multiple X × × X X ×
Scheme in [13] Partial Multiple × X × × X ×
Scheme in [14] Partial Multiple X × × X × ×

One-climb policy [15] Partial Multiple X × × × X ×
MCOP [16] Partial Multiple X × × X X X

Optimization-based
offloading decisions

MAPCloud [17] Partial Multiple X × × X X ×
Scheme in [18] Partial Single × X × × X ×

SDTO [19] Full Multiple × X × X X ×
COM [20] Partial Multiple X × × X X ×

F-SGA&C-SGA [21] Partial Multiple × X × X × ×
EEDOA [22] Full Multiple × X × × X ×

Scheme in [23] Partial Multiple X × × X X ×
HGPCA [24] Full Multiple × X × × X ×

Deep learning-based
offloading decisions

Scheme in [25] Partial Multiple × X × × X ×
DDLO [26] Partial Multiple × X × × × X

DROO [27] Partial Multiple × X × × X ×
DRLO [28] Partial Multiple × X × × X ×

Scheme in [29] Partial Multiple × X × × X ×
Scheme in [30] Partial Multiple × X × X X X

MCCG [31] Partial Multiple × × X X X ×
Proposed DDTO scheme Partial Multiple X X X X X X

based on optimizing the response time or energy consump-
tion, many research efforts have been devoted to computa-
tion partitioning in mobile computing. Automatic applica-
tion partitioning has attracted more and more attention.

The offloading operation can be modeled via a cost
graph, where finding the optimal solution for offloading is
equivalent to finding the constrained shortest path in this
graph [12], [32], [33]. Zhang et al. [15] modeled a mobile
application as a general topology, which consists of a set of
fine-grained tasks. Each task within the application can be
either executed on the mobile device or on the cloud. By
using arbitrary topographical consumption graphs, Wu et
al. [16] proposed a graph-cut-based partitioning algorithm,
which determines whether the parts of the tasks run locally
or offload to the cloud server. The decision engine in this
proposal is placed at the mobile device aiming at finding a
group of tasks for offloading, by which the execution time
of a mobile application and the energy consumption of a
mobile device are reduced.

Preferably the graph partitioning between IoT devices
and cloud/edge servers should be dynamic and the offload-
ing decisions should be made adaptively at runtime. How-
ever, only homogeneous resources are considered in these
studies, and unlike them, we consider the edge and cloud
computing to be heterogeneous environments to support
the IoT applications running on diverse devices in a better
manner.

2.3 Optimization-based Offloading Decisions
A diversity of platforms and algorithms have been proposed
to solve the problems of offloading binary decisions for
MCC and MEC.

An offloading platform named MAPCloud was pro-
posed in [17], which consists of a local cloud and a com-
mon cloud. MAPCloud determined the optimal location
of tasks according to multiple QoS factors of users. Haber
et al. [18] proposed a successive convex approximation
method, which approximately optimizes the computational
cost and figures out the energy-efficient task offloading
strategy mathematically. A computational offloading algo-
rithm based on the NSGA-III is presented in [20], where
big data methods have been used for IoT-enabled cloud-
edge computing. In addition, computation offloading game
theory has been discussed in [21], which proposed C-SGA
and F-SGA algorithms to solve the problem.

Energy-efficient task offloading algorithms in MEC or
MCC based on Lyapunov optimization theory have been
widely investigated [22], [23]. The authors derived adaptive
offloading decision algorithms when taking advantage of
Lyapunov optimization techniques. The algorithm deter-
mined when and on which network, and where to perform
each application task (i.e., IoT device, edge server or cloud
server) such that the overall energy consumption is mini-
mized while guaranteeing the average queue length.

Many optimization-based algorithms, e.g., traversal or
linear programming, can only obtain results after mul-
tiple iterations, which often involve too many complex
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calculation operations, e.g., matrix inversion and singular
value decomposition, resulting in high running time cost in
offloading decision-making. Moreover, these optimization
methods that only take advantage of MEC or MCC struggle
to balance the complexity and optimality. Thus, it is neces-
sary to develop an algorithm that can be used for real-time
offloading decisions with MEC and MCC collaboration.

2.4 Deep Learning-based Offloading Decisions
Deep learning is very promising for solving complicated
real-world scenarios, e.g., Internet of Vehicles (IoVs) [29],
Unmanned Aerial Vehicles (UAVs) [30] and industrial IoTs
[31]. Recently, deep learning-driven offloading schemes play
an increasingly important role in dealing with task of-
floading decisions for MEC and/or MCC, i.e., intelligent
offloading [27].

A model-free reinforcement learning offloading mecha-
nism was proposed in [25], which uses a gaming framework
and reaches 87.87% payoff compared to the optimal condi-
tion. In order to solve the offloading decision problem in
the MEC environment, a distributed deep learning-based
offloading algorithm has been proposed in [26], where par-
allel computing is utilized to speed up the computation.
Apart from that, Min et al. [28] proposed a reinforcement
learning-based solution to solve the task offload decision
of IoT devices with energy-harvesting functions, which en-
ables IoT devices to optimize the offloading strategy without
knowing the MEC model, energy consumption model and
delay model.

Many existing deep learning-based offloading schemes,
however, optimize all system parameters simultaneously,
which will eventually identify infeasible solutions as the
optimal offloading decision. Moreover, the heterogeneity
of the servers is still ignored in the selection of the of-
floading destination and the definition of the convergence
in these works is not clear. Inspired by recent advantages
of deep learning in handling offloading decision problems
with large search spaces, we take advantage of parallel
computing of DNNs, meanwhile, the convergence of the
deep learning-based decision algorithm is clearly defined
and improved. In addition, the heterogeneity of servers
and devices is also considered in the MEC and MCC en-
vironment. Once the IoT environment changes, the use of
deep learning methods requires new labeled data, and the
offloading decision for complex tasks required by different
services should have long-term programming and contin-
uous learning capabilities to meet the requirements of city
IoT applications.

2.5 A Qualitative Comparison
As listed in Table 1, we identify and compare key elements
of related work with ours in terms of their offloading modes,
architectural properties, and decision objectives. To summa-
rize, the literature above only concentrates on local devices
and edge clouds, or ignores the possibly high dimensions of
the problem.

In fact, there can be multiple offloading destinations
and targets for task placement [34]. Due to the different
speeds of heterogeneous cloud servers, offloading the same
application to different places may complete a different

amount of computation within the same time interval. It
may incur different communication costs due to the specific
connectivity and cloud availability [35].

As shown in Table 2, compared to cloud servers, edge
servers are closer to the mobile devices and thus have lower
latency. However, the edge server has low computing power
as compared to the cloud server, which has relatively suffi-
cient computing power [36]. Therefore, MEC can be treated
as an extension of traditional MCC, but not an alternative to
MCC.

TABLE 2: Comparison of MCC and MEC [36]

Technical Aspect MCC MEC

Deployment centralized distributed
Distance to IoT device high low
Latency high low
Delay jitter high low
Computational power ample limited
Storage capacity ample limited
Mobility support ample limited
Privacy protect low high

Few recent studies have focused on identifying and ad-
dressing important challenges of task offloading in hetero-
geneous edge and cloud computing environments, where
edge clouds and central clouds work collaboratively to sat-
isfy the city IoT application requirements. Here, we consider
the heterogeneity of different edge and cloud servers in
the offloading destination selection. To jointly optimize the
system utility and the bandwidth allocation for each MD,
we establish a hybrid offloading model with the collabo-
ration of MCC and MEC. In addition, a distributed deep
learning-driven algorithm is proposed to generate optimal
offloading decisions for heterogeneous clouds. To the best of
knowledge, our work is the first that adopts deep learning
with the collaboration of MCC and MEC for heterogeneous
servers.

3 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we consider a framework of hybrid
task offloading with heterogeneous clouds, in which mo-
bile devices can execute their workflows locally or com-
pletely/partially offload them to the central cloud and/or
to the edge cloud for execution.

3.1 System Model
Figure 1 presents an overview of our system model. We con-
sider one edge cloud, one central cloud and multiple MDs,
where each MD can choose to offload its computation tasks
either to the edge cloud server or to the central cloud server.
We aim at effectively integrating heterogeneous computing
resources in the MEC and MCC collaborative computing en-
vironment, where the edge cloud and the central cloud can
be interconnected. The mobile application is divided into
multiple tasks by the application partitioning algorithm. The
tasks can then be offloaded to cloud servers. Offloading is
performed according to the complexity of the tasks and the
present network environment, i.e., offloading the compute-
intensive task to the central cloud server and offloading
the data-intensive task to the edge cloud server, thereby
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alleviating the difficulties of load bottlenecks, delays, and
ensuring fault tolerance.

Fig. 1: System model of task offloading with heterogeneous
clouds

The system model consists of one central cloud server,
one edge cloud server, one wireless Access Point (AP),
multiple Mobile Devices (MDs), denoted by a set N =
{1, 2, · · · , N}, and some independent computational tasks,
denoted by a set M = {1, 2, · · · ,M}. We denote the size
of the mth task of the nth MD by w(n,m), since each MD
has several tasks to cope with. In addition, each MD can
either execute their tasks locally or offload them to the cloud
servers for further execution. Once the decision is taken
that a task will be offloaded to the cloud server, it can be
offloaded either to the central cloud server or to the edge
cloud server. We define two binary variables named x1(n,m)

and x2(n,m) to represent the offloading decisions.
On one hand, x1(n,m) ∈ {0, 1} stands for the offloading

decision for the mth task, which is measured as:

x1(n,m) =

{
1, if task is executed on the nth MD,
0, if task is offloaded to the cloud server, (1)

where x1(n,m) = 1 denotes the mth task is processed locally
on the nth MD, and x1(n,m) = 0 indicates the mth task is
offloaded to the cloud server.

On the other hand, once the mth task is decided to be
offloaded to the cloud server, we further define x2(n,m) ∈
{0, 1} to represent the offloading destination selection for
the mth task, which is measured as:

x2(n,m) =

{
1, if offloaded to edge cloud & x1

(n,m) = 0

0, if offloaded to central cloud & x1
(n,m) = 0

(2)

where x2(n,m) = 1 indicates that the mth task is offloaded to
the edge cloud server, and x2(n,m) = 0 denotes that the mth

task is offloaded to the central cloud server.
For convenience, all parameters used in this paper are

listed in Table 3. The detailed operations of local computing,
edge cloud computing and central cloud computing models
are illustrated as follows, respectively.

3.1.1 Local Computing Model
We first introduce the local computing model when the
MDs decide to execute their tasks locally. Due to limited

resources such as battery capacity, MDs can only perform
fundamental tasks.

Let c(n,m) denote the total CPU cycles of computing the
mth task of the nth MD. Considering that the CPU cycles
are proportional to the workloads, which is given by:

c(n,m) = δw(n,m), (3)

where δ denotes the positive coefficient of proportionality.
The energy used while executing the mth task at the nth

local device can be expressed as:

El(n,m) = θlc(n,m) = θlδw(n,m), (4)

where θl denotes the energy consumption on the local
device per unit of workloads.

The execution time of the local device can be calculated
as:

T l(n,m) =
c(n,m)

fl
=
δw(n,m)

fl
, (5)

where fl denotes the task processing rate of the MDs.
Therefore, the total computation time of the nth MD can

be derived as:

T l(n) =
M∑
m=1

x1(n,m)T l(n,m). (6)

3.1.2 Edge Cloud Computing Model
Edge cloud servers are close to the MDs and communicate
with them via different wireless communication technolo-
gies such as Bluetooth or WiFi. Edge cloud servers provide
a low-latency computing service to MDs because they form
a local area network (LAN) with the MDs.

The transmission time for offloading the workload to the
edge cloud server via the access point can be given by:

Tt(n,m) =
w(n,m)

bn
, (7)

where bn denotes the bandwidth of the nth MD.
The energy consumption for the transmission can be

expressed as:
Et(n,m) = σw(n,m), (8)

where σ denotes the positive coefficient of proportionality.
After transmitting the tasks to the edge cloud, they will

be executed by the edge cloud server. The completion delay
of the whole progress can be formulated as:

Te(n,m) = Tt(n,m) +
c(n,m)

fe
, (9)

where fe indicates the task processing rate of the edge cloud
server. Then the total time delay of the nth MD can be
formulated as:

Te(n) =
M∑
m=1

(
1− x1(n,m)

)
x2(n,m)Te(n,m). (10)

The energy consumption during all steps can be com-
puted as:

Ee(n,m) = Et(n,m) + θec(n,m), (11)

where θe denotes the energy consumption per unit of work-
load at the edge cloud server.
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TABLE 3: Summary of notations

Notation Description

w(n,m) The mth task workload of the nth MD
δ The positive proportion coefficient
c(n,m) The total CPU cycles of computing the mth task of the nth MD
x1
(n,m)

x1
(n,m)

= 1 if computing the mth task at local, x1
(n,m)

= 0 if computing the mth task at the cloud
x2
(n,m)

When x1
(n,m)

= 0, x2
(n,m)

= 0 if computing the task at the central cloud, x2
(n,m)

= 1 if computing the task at the edge cloud
El(n,m) The energy consumption of the mth task of the nth MD
θl The local device energy consumption per unit of workloads
T l(n,m) The execution time of the nth MD
fl The task processing rate of the MD
T l(n) The total execution time of the nth MD
Tt(n,m) The transmission time of offloading the mth task to the edge cloud server via the access point
bn The bandwidth of the nth MD
B The total available bandwidth of all users
Te(n,m) The time delay of offloading the mth task of the nth MD to the edge cloud server
fe The task processing rate of the edge cloud server
Te(n) The total time delay of offloading all the tasks of the nth MD to the edge cloud server
Ee(n,m) The energy consumption of offloading the mth tasks of the nth MD to the edge cloud server
θe The edge cloud energy consumption per unit of workloads
Tc(n,m) The time delay of offloading the mth task of the nth MD to the central cloud server
fc The task processing rate of the central cloud server
Ec(n,m) The energy consumption of offloading the mth task of the nth MD to the central cloud server
θc The central cloud energy consumption per unit of workloads
Tc(n) The total time delay of offloading all the tasks of the nth MD to the central cloud server

3.1.3 Central Cloud Computing Model
Central cloud servers can provide the most powerful com-
puting capacity and can be a private cloud or public cloud
offered by cloud service providers.

Similarly to the edge cloud computing model, we as-
sume that the transmission time and the energy consump-
tion from the local device to the central cloud server are
approximately equal to Tt(n,m) and Et(n,m), respectively.
Then, the total execution time and the energy consumption
can be given by:

Tc(n,m) = Tt(n,m) +
c(n,m)

fc
, (12)

Ec(n,m) = Et(n,m) + θcc(n,m), (13)

where θc denotes the energy consumption per unit of work-
load of the central cloud. fc denotes the task processing rate
of the central cloud server.

In general, the computing power of MDs, edge cloud
server and cloud server satisfy the following: fl < fe < fc,
which means that the central cloud server has the strongest
computing power, followed by the edge cloud server and
then the MDs [37].

Therefore, the total execution time of the nth MD can be
derived as:

Tc(n) =
M∑
m=1

(
1− x1(n,m)

)(
1− x2(n,m)

)
Tc(n,m). (14)

3.2 Problem Formulation
In order to minimize both, the execution time of all the
tasks and the energy consumption of MDs, we introduce
a function Q (w,x, b), which is the weighted sum of the
execution time and the energy consumption. The weighted
sum is related to the workload, the offloading decision and
the bandwidth allocated to the task.

The total energy consumption consumed in the whole
hybrid offloading model can be expressed by:

E =
N∑
n=1

M∑
m=1

[
x1(n,m)El(n,m) + (1− x1(n,m))

(
x2(n,m)Ee(n,m)

+(1− x2(n,m))Ec(n,m)

)]
. (15)

Meanwhile, the total execution time required to execute
all the tasks can be given by:

T =
N∑
n=1

max
{
T l(n,m), T e(n,m), T c(n,m)

}
. (16)

Then, the function Q(w,x, b) can be calculated as:

Q(w,x, b) = ψ × E + (1− ψ)× T, (17)

where w =
{
w(n,m)|n ∈ N ,m ∈M

}
, b = {bn|n ∈ N},

and x =
{
x1(n,m), x

2
(n,m)|n ∈ N ,m ∈M

}
. The parameter

ψ with 0 ≤ ψ ≤ 1 is a weighting parameter that represents
the relative significance of the energy consumption and
the execution time, by which the weighted cost model can
be adjusted according to the users’ requirements. To focus
more on improving the performance, ψ should be less than
0.5; to focus more on reducing the energy consumption, ψ
should be greater than 0.5. We only consider the execution
time in the case ψ = 0, and we only consider the energy
consumption at MDs when ψ = 1.

Next, we formulate an optimization problem (P ) to
minimize the Q(w,x, b) by jointly optimizing offloading
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decisions and bandwidth allocation, which is expressed as:

(P ) : Q(w) = min
x,b

Q(w,x, b), (18a)

s.t. : bn ≥ 0,∀n ∈ N , (18b)
N∑
n=1

bn ≤ B, (18c)

x1(n,m), x
2
(n,m) ∈ {0, 1} , (18d)

where B denotes the total available bandwidth of N users.
The constraint in (18b) indicates that the allocation of the
bandwidth should not be negative. In addition, the sum
of bn cannot exceed the maximum bandwidth B, which is
given in (18c). The binary offloading decisions x1(n,m) and
x2(n,m) are defined in (1) and (2), respectively. Studies on
efficiently solving the bandwidth allocation problem have
been shown in [38], [39], where the bandwidth allocation is
a convex problem that can be solved by an optimizer. Here,
we just consider the given workloads w and the offloading
decision x to optimize the function Q(w,x).

This is a Mixed-Integer Programming (MIP) problem
with high-dimensional state space. In order to tackle such
a complex problem, one needs to find an optimal offloading
decision in MEC and MCC heterogeneous environments. In
this problem, there are a total of 3NM possible offloading
decisions to select from. Due to the exponentially large
search space, the optimization problem is difficult to be
solved in conventional ways such as with heuristic search
algorithms. To solve the problem (P ) in an effective and
efficient way, we will in the next section introduce a deep
learning-driven algorithm to generate offloading decisions.

4 DDTO ALGORITHM

In this section, we propose a distributed deep learning-
driven task offloading (DDTO) algorithm for the MCC and
MEC hybrid offloading model, which is based on multiple
parallel deep neural networks. The architecture of DDTO
algorithm is as depicted in Fig. 2.

When all users’ task workloads are given by
w = [w(1,1), w(1,2), · · · , w(N,M)], our target is to
figure out the optimal offloading decision x =
[x1(1,1), x

2
(1,2), x

1
(1,2), · · · , x1(N,M), x

2
(N,M)]. We assume that

all users have the same number of tasks because the appli-
cation can be divided into multiple tasks and the workloads
of extra tasks can be treated as zeros. Furthermore, since we
cannot get the optimal decisions directly, it is an unsuper-
vised learning problem which is difficult to solve. Therefore,
we propose a method to obtain the offloading decisions and
turn it into a supervised learning problem.

We regard the workloads w as the input to the neural
networks and the optimal offloading decisions x as our
output. Importantly, we store w, the best decisions x and
the minimum value of the function Q(w,x) into a database
together. We then use these labeled data to train our mul-
tiple parallel deep neural networks (DNNs) and generate
new data to replace the old data in the database. Thus we
can update the database and train the DNNs to solve the
NP-hard problem well.

Fig. 2: The procedure of the DDTO algorithm

4.1 Offloading Decision Generation
In this section, we propose a method to obtain the approx-
imate optimal offloading decisions. The mean square error
(MSE) function is applied to obtain the optimal offloading
decision by minimizing the loss function in deep learning.
The MSE function is formulated by:

MSE =
1

n

n∑
t=1

|logitst − outputst|2, (19)

where logits and outputs denote the label and the predicted
value, respectively. As each element of the decision is binary,
the logits can only be 0 or 1. It is straight forward to prove
that if the output is larger than 1/2, the logits will be 1,
otherwise 0. In this way, the MSE function is minimized,
which means the precision of the model is highest.

As depicted in Fig. 3, the generation process of the
offloading decisions can be expressed as follows: when the
inputs w are given, we first use the DNNs to get the outputs.
Then we use the method described above to generate the
offloading decision as our logits. This is how we create the
labeled database and then the problem can be solved by
deep learning.

4.2 Training
We decide to train S parallel DNNs to solve the optimization
problem. Each of the DNNs consists of one input layer, two
hidden layers and one output layer.

Once the best offloading decision x∗ is obtained, we save
the workloads w, the best offloading decision x∗, and the
value of the function Q(w,x∗) together in a database. The
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Fig. 3: The process of generating the offloading decisions

size of the database is limited and can be set to an arbitrary
value. The database works in a round-robin fashion, i.e.
when the database is full, the oldest data will be abandoned
and new data will replace the old one. In addition, the
labeled data from the structure can be used to train all
DNNs. One issue we considered here is that it will take
too long if all DNNs are trained by all labeled data from the
database. Therefore, the relay technology is used in this part
[40]. More specifically, the database is shared by all DNNs
and each of them can extract a batch of data randomly from
the database to train the neural network. As the database
is constantly updated, and the newly generated data will
be more precise than the older one, the efficiency will be
improved by this database.

This is a classification problem, we determine to perform
the cross-entropy as the loss function, which is given by:

L(λk) = −xT log fλk
(w)− (1−x)T log(1− fλk

(w)), (20)

where λk is the parameter value of the DNN. We employ
the gradient descent method to minimize the cross-entropy
loss, and then update the parameters of all DNNs.

4.3 Testing
We generate offloading decisions as our logits, and up-
date the database structure continuously, thus we define
the convergence as the process of approaching towards
a defined value, i.e., the extremum. More specifically, we
denote the minimum value of the function Q(w,x) during
the process of generating offloading decisions as Q1. When
we randomly select a batch of data from the database and
repeat the previous procedure, we obtain another optimal
value of Q(w,x), denoted as Q2. Then the ratio R1 can be
formulated as:

R1 =
min(Q1, Q2)

max(Q1, Q2)
, (21)

where the ratio R1 can be interpreted as the convergence of
the DDTO algorithm.

We cannot treat the extremum as the true minimum
or maximum value, so we decide to enumerate all cases
to find the true minimum value of Q(w,x) expressed as
Q∗

1 and compare the result with our optimal value Q∗
2.

We find Q∗
1 by using a time-consuming greedy algorithm,

where we enumerate all offloading decision combinations
and identify the true optimal one. Then we compute a ratio
of the minimum value to the optimal value. We defined it
as R2, which can be given by:

R2 =
Q∗

1

Q∗
2

, (22)

where 0 < R2 ≤ 1 indicates how close the solution found by
our algorithm comes to the true optimal solution achieved
by the greedy algorithm. When R2 = 1, it means that we
have found the true optimal solution and we call it relative
optimality.

The whole progress of the DDTO algorithm for the MCC
and MEC hybrid offloading model is displayed in Algo-
rithm 1. The database structure is initially empty and mul-
tiple DNNs are initialized with random parameter values
λk. The proposed DDTO framework learns from the past
offloading experiences in MEC and MCC heterogeneous en-
vironments and then automatically adjusts the parameters
to generate near-optimal offloading decisions. In this way,
it eliminates the need for solving complex MIP problems
and then avoids the curse of dimensionality with a high-
dimensional search space. The DDTO algorithm only needs
to choose from a few candidate offloading decisions each
time and thus the computational complexity will not in-
crease dramatically with the growth in the numbers of users
and tasks. Good convergence performance can be achieved
because of the high diversity in the generated offloading
decisions.

ALGORITHM 1: Distributed Deep learning-driven
Task Offloading (DDTO) algorithm

Input: Workloads w of local MDs
Output: Optimal offloading decisions

1 Initialization:
2 Initialize S DNNs with random parameter λj
3 Empty the database
4 for i = 1, 2, · · · , N do
5 Replicate ith offloading decision candidate xi

from the ith DNN
6 Select the optimal offloading decision x∗ by

minimizing Q(w,x) and calculate Q(w,x∗) as
Q∗

7 if database is not full then
8 Store (wi, x

∗, Q∗) into the database
9 else

10 Discard the oldest data and save the new one
11 end
12 end
13 for j = 1, 2, · · · , S do
14 Randomly choose a batch of data from database
15 Train the DNNs and update the parameter λj
16 end

5 PERFORMANCE EVALUATION

In this section, we demonstrate the experimental results
of our proposed DDTO algorithm for solving the problem
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(P ) and evaluate the performance of different offloading
strategies.

5.1 Parameter Setting

In our experiments, the proposed DDTO algorithm and
other offloading decision algorithms are implemented and
evaluated in Python using the ML library Tensorflow. An
edge and cloud computing heterogeneous environment is
built. We set the number of users or MDs N = 3, and each
of them has M = 3 independent computation tasks at the
same time.

Apart from that, we set the parameter θc = 1, the central
cloud energy consumption per unit of workloads, since the
energy consumption at the central cloud server is the lowest.
Then we set the edge cloud energy consumption per unit of
workloads θe = 1.5 J/MB and the local energy consumption
per unit of workloads θl = 3 J/MB, respectively [41].

There are two kinds of energy profilers that can be used
to estimate the energy consumption of MDs, namely, soft-
ware and hardware monitors. Although the measurement
results provided by the former are not as accurate as those
provided by the latter, they are more convenient to use and
the result is still reasonable [16]. Similarly, we set the task
processing rate fl = 1 and the processing rates of the edge
cloud server and the central cloud server are fe = 800
MHz and fc = 1200 MHz, respectively. The parameters
satisfy: fl < fe < fc. In addition, we suppose that the input
workloads of all tasks are randomly distributed between 0
and 30 MB. In all simulations, the set value of the bandwidth
limit bn of each user is 50 Mbps. The weighting parameter ψ
is set to 0.5, indicating that our focus is on both, balancing
performance and reducing power consumption. We train
DNNs using batches of size 500 of the labeled data from
the database. The summary of our evaluation parameters
and their respective values are presented in Table 4.

TABLE 4: Evaluation Parameters

Evaluation Parameters Values
The number of users or mobile devices N = 3
The number of independent computational tasks M = 3
The local energy consumption per unit θl = 3 J/MB
The edge cloud energy consumption per unit θe = 1.5 J/MB
The central cloud energy consumption per unit θc = 1 J/MB
The processing rate of the local device fl = 100 MHz
The processing rate of the edge cloud server fe = 800 MHz
The processing rate of the central cloud server fc = 1200 MHz
The input workloads of all tasks [0− 30] MB
The bandwidth limit bn = 50 Mbps
The weighting parameter of time and energy ψ = 0.5

5.2 Convergence Performance

We demonstrate the convergence of the DDTO algorithm
in distinct situations, where it converges to the optimal
solution under a wide range of parameter settings. The con-
vergence performance of the DDTO algorithm is analyzed
on the basis of the number of DNNs, the size of the database
and the learning rate, respectively.

We observe from Fig. 4(a) that R1 converges to 1 as
the learning step increases when S ≥ 2. According to the

definition of R1, when S = 1 the neural network cannot be
trained very well and the result will not converge. However,
when S ≥ 2 the convergence performs very well after
10, 000 learning steps. It illustrates that as the number of
DNNs increases, the function of the DDTO algorithm will
be improved. However, the computation time will also in-
crease. Therefore, we set the number of DNNs to S = 6 as a
compromise between the best configurations to optimize the
time consumption of running the code and the performance
of the convergence.

As depicted in Fig. 4(b), the ratio R1 increases with the
learning step. Importantly, when the size of the database
equals 1400, the convergence performs best. This is because
the data will be updated at a low rate when the size of the
database is too large. Meanwhile, the data that is randomly
selected from the database will not be acceptable when
it is too small. Therefore, the size of the database has a
considerable influence on the gain ratio, because it alters
the speed of updates.

As shown in Fig. 4(c), the best performance is achieved
when α0=0.01. We analyze that when α0 is too small, the
convergence rate is low. Simultaneously, when α0 is too
large, it will converge to another extremum, thus the ratio
R1 will be very low. Therefore, the learning rate α0 also has
an influence on the convergence.

5.3 The Performance of the relative optimality R2

We demonstrate that the relative optimality, the ratio R2, is
affected by the number of DNNs, the learning rate and the
size of the database, respectively.

Figure 5(a) depicts the impact of the number of DNNs
on the relative optimality R2. It can be seen that the value
of R2 is increasing when the DNN number increases and
the value of R2 reaches its maximum value approximately
when the number of DNNs is larger than 5. We selected
S = 6 before, thus the figure indicates that this was a good
choice.

Figure 5(b) shows the performance of the relative opti-
mality R2 under different sizes of the database. The value
of R2 is fluctuating when the size is increasing. It is visible
that when the size of database reaches 1400, the R2 gets
the vertex, which is greater than 0.925. We previously chose
1400 as the size of the database, and this figure supports this
selection.

Figure 5(c) shows the performance of the relative opti-
mality R2 with different learning rates. The value of R2 is
up to maximum when the learning rate is 0.01. It indicates
that the previous choice is the optimal one since when the
learning rate is larger or smaller, R2 is decreasing.

Figures 5(a)-5(c) demonstrate that the former selection of
the DNN number, the size of the database and the learning
rate are all reasonable. In addition, the value of R2 exceeds
0.92 under our choice.

5.4 Comparison Analysis

To gain some insights and analyze the efficiency of the
proposed DDTO algorithm, the following state-of-the-art
offloading decision methods are implemented for compar-
isons:
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(a) The number of DNNs (b) The size of database (c) The learning rate

Fig. 4: Impact of the number of DNNs, the size of the database and the learning rate on R1

(a) The number of DNNs (b) The size of database (c) The learning rate

Fig. 5: Impact of the number of DNNs, the size of the database and the learning rate on R2

• Local-only Scheme: i.e., the zero offloading scheme. In
this method, all tasks of workflows are executed lo-
cally on their respective MDs, and hence, no parallel
execution of tasks can be performed for workflows.
Here, the offloading decisions x1(n,m) will be 1. The
results of this method can be used as a benchmark to
analyze the gain of different types of task offloading
techniques.

• Edge-only Scheme: i.e., the edge cloud-only offloading
scheme. In this method, all tasks of workflows are
fully offloaded to the edge cloud server for execution
[42]. The offloading decisions x1(n,m) and x2(n,m) will
be 0 and 1, respectively.

• Central-only Scheme: i.e., the central cloud-only of-
floading scheme. In this method, all tasks of work-
flows are fully offloaded to the central cloud server
for further processing [23]. The offloading decisions
x1(n,m) and x2(n,m) will be 0 and 0, respectively.

• Local & Central Scheme: i.e., the local execution
and central cloud partial offloading scheme. In this
method, some tasks of workflows are processed lo-
cally on the MDs, while some of them are offloaded
to the central cloud server for further processing [26].

• Our Algorithm: i.e., the proposed DDTO scheme. In
this method, we adopt the proposed DDTO algo-
rithm to generate optimal offloading decisions over
the MDs, the edge cloud server and the central cloud
server.

The comparison of the results of different offloading
schemes are shown in Fig. 6. It can be seen that the optimal
decisions of the proposed DDTO algorithm perform very
well since the relative optimality, the ratio R2, of the DDTO
scheme exceeds 0.93, which is much higher than for any of

Fig. 6: Comparison with several offloading schemes

the other four schemes. For example, the R2−value of the
local-only scheme is only about 0.3, and the local & central
scheme is approximately 0.75. This is because unlike the
edge-only and the central-only schemes, the DDTO scheme
dynamically offloads tasks according to the heterogeneous
computing environment such as task workloads, communi-
cation data and network conditions. Especially when the
network bandwidth is very low offloading tasks to the
edge/cloud server may not be beneficial. Therefore, the
proposed DDTO scheme can achieve near-optimal offload-
ing decisions in edge and cloud computing heterogeneous
environments.

6 CONCLUSIONS AND FUTURE WORK

In contrast to conventional distributed deep learning ap-
proaches, we have proposed a DDTO algorithm with het-
erogeneous clouds, i.e., the central cloud and the edge
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cloud, which optimizes the weighted sum of the energy
consumption and the execution time in the MCC and MEC
hybrid offloading model. This is achieved by generating
and storing the offloading decisions with the workloads
and system consumption together in a database and then
training and updating multiple parallel DNNs with a batch
of labeled data.

The DDTO algorithm determines whether a task should
be executed at a local device or whether it should be
offloaded to the clouds, and if it should be offloaded to
the clouds the algorithm determines, whether to offload the
task to the central cloud or to the edge cloud. The numerical
results demonstrate the accuracy of DDTO algorithm and
in comparison with several previously known schemes our
results are significantly better. In future studies, we will
consider more factors in the hybrid offloading model to
further improve the capability of our algorithm in handling
realistic mobile offloading scenarios. Moreover, we will
build a platform that can evaluate the performance of the
DDTO algorithm during the actual task offloading progress.

Offloading decisions in MEC and MCC are becoming
more intelligent with the emergence of innovative technolo-
gies and paradigms such as fog-aided wireless networks,
blockchain and artificial intelligence [43], [44]. To meet
more stringent requirements for security and environmental
adaptability, we plan to use blockchain and meta-learning
techniques for intelligent offloading in the future.

In view of the single point of failure, data privacy
and security problems faced by the current centralized IoT
systems, we will develop a blockchain-based decentralized
offloading scheme, to address the challenge of data loss
or privacy disclosure that may occur in the process of
task offloading, effectively promote data intelligence across
devices, and ensure data integrity. When the environment
of the IoT system changes, such as the performance of the
edge server or the bandwidth, deep learning-based methods
have to train from scratch. To solve the problem of poor
portability, we also introduce meta-learning to ensure that
the offloading decision model can quickly adapt to the new
environment by learning the initial parameters of the neural
network in a different environment.
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