
Prepartition: A New Paradigm for the Load
Balance of Virtual Machine Reservations in

Data Centers

Wenhong Tian*, Minxian Xu, Yu Chen, Yong Zhao
School of Computer Science and Engineering

University of Electronic Science and Technology of China, Chengdu, China

Email: tian wenhong@uestc.edu.cn

Abstract—It is significant to apply load-balancing strat-
egy to improve the performance and reliability of resource
in data centers. One of the challenging scheduling problems
in Cloud data centers is to take the allocation and migration
of reconfigurable virtual machines (VMs) as well as the
integrated features of hosting physical machines (PMs)
into consideration. In the reservation model, workload of
data centers has fixed process interval characteristics. In
general, load-balance scheduling is NP-hard problem as
proved in many open literatures. Traditionally, for offline
load balance without migration, one of the best approaches
is LPT (Longest Process Time first), which is well known to
have approximation ratio 4/3. With virtualization, reactive
(post) migration of VMs after allocation is one popular way
for load balance and traffic consolidation. However, reactive
migration has difficulty to reach predefined load balance
objectives, and may cause interruption and instability of
service and other associated costs. In view of this, we
propose a new paradigm-Prepartition: it proactively sets
process-time bound for each request on each PM and
prepares in advance to migrate VMs to achieve the prede-
fined balance goal. Prepartition can reduce process time by
preparing VM migration in advance and therefore reduce
instability and achieve better load balance as desired.
Trace-driven and synthetic simulation results show that
Prepartition has 10%-20% better performance than the well
known load balancing algorithms with regard to average
CPU utilization, makespan as well as capacity makespan.

Index Terms—Cloud Computing; Physical Machines
(PMs); Virtual Machines (VMs); Reservation Model; Load
Balance Scheduling

I. INTRODUCTION

In traditional data centers, applications are tied to

specific physical servers that are often over-provisioned

to deal with upper-bound workload. Such configuration

makes data centers expensive to maintain with wasted

energy and floor space, low resource utilization and

significant management overhead. With virtualization

technology, today’s Cloud data centers become more

flexible, secure and provide better support for on-demand

allocating. The definition and model defined by this

paper are aimed to be general enough to be used by

a variety of Cloud providers and focus on the Infras-

tructure as a Service (IaaS). Cloud datacenters can be a

distributed network in structure, containing many com-

pute nodes (such as servers), storage nodes, and network

devices. Each node is formed by a series of resources

such as CPU, memory, and network bandwidth and so

on, which are called multi-dimensional resources; each

has its corresponding properties. Under virtualization,

Cloud data centers should have ability to migrate an

application from one set of resources to another in a non-

disruptive manner. Such ability is essential in modern

cloud computing infrastructure that aims to efficiently

share and manage extremely large data centers. Reactive

migration of VMs is widely proposed for load balance

and traffic consolidation.

One key technology playing an important role in Cloud

data centers is load balance scheduling. There are quite

many load balance scheduling algorithms. Most of them

is for traditional web servers but does not consider VM

reservations with lifecycle characteristics. One of the

challenging scheduling problems in Cloud data centers

is to consider allocation and migration of reconfigurable

VMs and integrated features of hosting PMs. The load

balance problem for VM reservations considering life-

cycle is as follows: given a set of m identical machines

(PMs) PM1, PM2, . . . , PMm and a set of n requests

(VMs), each request [si, fi, di], has a start-time (si),
end-time (fi) constraint and a capacity demand (di)
from a PM, the objective of load balance is to assign

each request to one of PMs so that the loads placed

on all machines are balanced or the maximum load is

minimized. This problem is not studied yet in the open

literatures. The major contributions of this paper are:

• Providing a modeling approach to VM reservation

scheduling with capacity sharing by modifying tra-

IEEE ICC 2014 - Selected Areas in Communications Symposium

978-1-4799-2003-7/14/$31.00 ©2014 IEEE 4017Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on July 06,2021 at 06:25:58 UTC from IEEE Xplore. Restrictions apply.

ditional interval scheduling problem and consid-

ering life-cycles characteristics of both VMs and

PMs.

• Designing and implementing a load balancing

scheduling algorithm–Prepartition which can pre-

pare migration in advance and set process time

bound for each VM on a PM. Computational com-

plexity and approximation analysis are also pro-

vided for Prepartition.

• Providing performance evaluation of multiple met-

rics such as makespan, average utilization, total mi-

gration numbers as well as capacity makespan. by

simulating different algorithms using trace-driven

and synthetic data.

The remaining parts of this paper are organized as

follows. Section II discusses the related work on load

balance algorithms. Section III introduces problem for-

mulation. Section IV presents Prepartition algorithm in

details. Performance evaluation of different scheduling

algorithms is shown in section V. Finally in section VI,

a conclusion is given.

II. RELATED WORKS

A great mount of work has been devoted to the

schedule algorithms and can be mainly divided into

two types: online load balance algorithms and offline

ones. The major difference lies in that online schedulers

only know current request and status of all PMs but

offline schedulers know all the requests and status of all

PMs. Armbrust et al.[1] summarized the key issues and

solutions in Cloud computing. Foster et al.[3] provided

detailed comparison between Cloud computing and Grid

computing. Wood et al.[11] introduced techniques for

virtual machine migration with spots and proposed a

few reactive migration algorithms. Arzuaga et al.[2]

proposed a quantifying measure of load imbalance on

virtualized enterprise servers considering reactive live

VM migrations. Gulati et al [5] presented challenge

issues and Distributed Resource Scheduling (DRS) as a

load balance scheduling for Cloud-scale resource man-

agement in VMware. Tian et al. [8] design a toolkit

for modeling and simulating VM allocation, [9][10]

introduced a dynamic load balance scheduling algorithm

considering only current allocation period and multi-

dimensional resource but without considering life-cycles

of both VMs and PMs. Most of existing research does

not consider fixed interval constraints of VM allocation.

Knauth et al. [6] introduce energy-efficient scheduling

algorithms applying timed instances that have an a priori

specified reservation time of fixed length by following

divisible capacity configuration, these assumptions are

also adopted in this paper. Most of existing research

considers reactive VM migrations as a mean for load

balance in data centers. To the best of our knowledge,

proactive VM migration by pre-partition has not been

studied yet in the open literatures. This is one of major

objectives in this paper.

III. PROBLEM FORMULATION

A. Problem description and formulation

In this paper we consider VMs reservation and model

the VM allocations as a modified interval scheduling

problem (MISP) with fixed processing time. More expla-

nation and analysis about traditional interval scheduling

problems with fixed processing time can be found in [7]

and references there in. We present a general formulation

of modified interval-scheduling problem and evaluate

its results compared to well-known existing algorithms.

There are following assumptions:

1) All data are deterministic and unless otherwise spec-

ified, the time is formatted in slotted windows. we

partition the total time period [0, T] into slots with equal

length (s0), the total number of slots is k=T/s0. The

start time si and finish time fi are integer numbers of one

slot. Then the interval of a request can be represented in

slot format with (start-time, finish-time). For example,

if s0=5 minutes, an interval (3, 10) means that it has

start time and finish time at the 3rd-slot and 10th-slot

respectively. The actual duration of this request is (10-

3)×5=35 minutes.

2) For all VM reservations, there are no precedence

constraints other than those implied by the start-time and

finish-time.

3) The required capacity of each request is a positive

real number between (0,1]. Notice that the capacity of

a single physical machine is normalized to be 1 and the

required capacity of a VM can be 1/8, 1/4 or 1/2 or other

portions of the total capacity of a PM. This is consistent

with widely adopted practice in Amazon EC2 [13] and

[6].

A few key definitions are explained as follows:

Traditional interval scheduling problem (ISP) with fixed
processing time: A set of requests {1, 2,. . ., n} where the

i-th request corresponds to an interval of time starting at

si and finishing at fi , each request needs a capacity of

1, i.e. occupying the whole capacity of a machine during

fixed processing time.

Interval scheduling with capacity sharing (ISWCS): The

only difference from traditional interval scheduling is

that a resource (to be concrete, a PM) can be shared

by different requests if the total capacity of all requests

allocated on the single resource at any time does not

surpass the total capacity that the resource can provide.

2

IEEE ICC 2014 - Selected Areas in Communications Symposium

4018Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on July 06,2021 at 06:25:58 UTC from IEEE Xplore. Restrictions apply.

Sharing compatible intervals for ISWCS: A subset of

intervals with total required capacity not surpass the

total capacity of a PM at any time, therefore they

can share the capacity of a PM. In the literature, the

makespan is used to measure the load balance, which is

simply the maximum total load (processing time) on any

machine. Traditionally, the makespan is the total length

of the schedule (that is, when all the jobs have finished

processing where each job occupies the whole capacity

of a machine during processing).

In view of the problem in ISWCS, we redefine the

makespan as capacity makespan.

Capacity makespan of a PM i: In any allocation of VM

requests to PMs, let A(i) denote the set of VM requests

allocated to machine PMi. Under this allocation, ma-

chine PMi will have total load equal to the sum of

product of each required capacity and its duration (called

Capacity makespan, i.e., CM for abbreviation in this

paper), as follows:

CMi =
∑

j∈A(i)

djtj (1)

where dj is the capacity requests of VMj from a PM and

tj is the span of request j (i.e., the length of processing

time of request j).

Therefore, the goal of load balancing is to minimize

the maximum load (capacity makespan) on any PM.

Some other related metrics such as average utilization

and makespan are also considered and will be explained

in the following section. Assuming there are m PMs in

data centers, the problem of ISWCS load balance in it

therefore can be formulated as:

Minm
i=1CMi (2)

subject to 1). ∀ slot s,
∑

VMj∈PMi

dj ≤ 1 (3)

2). ∀ j, sj and ej are fixed by reservation.
(4)

where dj is the capacity requirement of VM j and the

total capacity of a PM i is normalized to 1. The condition

1) shows the sharing capacity constraint and condition

2) is for the interval constraint of VM reservations.

Theorem 1 The offline scheduling problem of finding an
allocation of minimizing the makespan in general case
is NP-complete.
The proof can be found in [10] and is omitted here.

B. Metrics for ISWCS load balancing algorithms

In this section, a few metrics closely related to ISWCS

load balance problem will be presented. Some other

metrics can be found in Tian et al. [9][10].

1) PM resource: PMi(i, PCPUi, PMemi, PStoi), i is

the index number of PM, PCPUi,PMemi,PStoi are

the CPU, memory, storage capacity of that a PM can

provide.

2) VM resource:

VMj(j, V CPUj , V Memj , V Stoj , T
start
j , T end

j), j is

the VM type ID, V CPUj , V Memj , V Stoj are the CPU,

memory, storage requirements of VMj , T start
j , T end

j are

the start time and end time, which are used to represent

the life cycle of a VM.

3) Time slots: we consider a time span from 0 to T be

divided into slots with same length. The n slots can be

defined as [(t1 − t0), (t2 − t1), . . . , (tn − tn−1)], each

time slot Tk means the time span (tk − tk−1).
4) Average CPU utilization of PMi during slot 0 and

Tn is defined as:

PCPUU
i =

∑n
k=0(PCPUTk

i × Tk)∑n
k=0 Tk

(5)

where PCPUTk
i is the average CPU utilization during

slot Tk. Average memory utilization (PMemU
i) and stor-

age utilization (PStoUi) of both PMs can be computed

in the same way. Similarly, average CPU (memory and

storage) utilization of a VM can be computed.

5) Makespan: is the total length of a schedule for a set

of VM reservations, i. e., when all the jobs have finished

processing.

6) The capacity makespan (CM) of all PMs: can be

formulated as:

CM =max
i

(CMi) (6)

From these equations, we notice that life cycle and ca-

pacity sharing are two major differences from traditional

metrics such as makespan which only considers process

time (duration). Traditionally Longest Process Time first

(LPT) [4] is widely used for load balance of offline

multi-processor scheduling. Reactive (post) migration of

VMs is another popular way of load-balancing. However,
reactive migration has difficulty to reach predefined
load balance objectives, and may cause interruption
and instability of service and other associated costs.

By considering both fixed process intervals and capacity

sharing properties in Cloud data centers, we propose a

new offline algorithm–Preparitition as follows.

IV. PREPARTITION ALGORITHM

For a given set of VM reservations, let us consider

there are m PMs in a data center and denote OPT as the

optimal solution for a given set of J VM reservations.

3

IEEE ICC 2014 - Selected Areas in Communications Symposium

4019Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on July 06,2021 at 06:25:58 UTC from IEEE Xplore. Restrictions apply.

Firstly define

P0 = max{maxJ
j=1CMj ,

1

m

J∑

j=1

CMj} ≤ OPT (7)

P0 is a lower bound on OPT. Fig.2 shows the

pseudocodes of Prepartition algorithm. The algorithm

firstly computes balance value by equation (7), defines

partition value (k) and finds the length of each partition

(i.e. �P0/k�, which is the max time length a VM

can continuously run on a PM). For each request,

Preparition equally partitions it into multiple �P0/k�
subintervals if its CM is larger than �P0/k�, and then

finds a PM with the lowest average capacity makespan

and available capacity, and updates the load on each

PM. After all requests are allocated, the algorithm

computes the capacity makespan of each PM and finds

total partition (migration) numbers. For practice, the

scheduler has to record all possible subintervals and

their hosting PMs of each request so that migrations of

VMs can be conducted in advance to reduce overheads.

Input: VM requests indicated by their (required VM type IDs, start
times, ending times, requested capacity), CMi is the capacity_makespan
of request i.

Output: Assign a PM ID to all requests and their partitions (migrations)
Initialization: computing the bound P0 value, set the partition value k.

1: IF CMi >(P0/k), THEN partitions it into multiple P0/k subintervals
equally and consider each subinterval as a new request
2: Sorts all intervals in decreasing order of CMs, break ties arbitrarily;
3: Let I1, I2,…, In denote the intervals in this order
3: For j from 1 to n Do
4: allocates j to the PM with the lowest load and available capacity
5: updates load (CM) of the PM
6: Endfor
7: Computes CM of each PM and total partitions (migrations)

Fig. 1. The pseudo codes of Prepartition algorithm

Theorem 2: The computational complexity of
Prepartition algorithm is O(nlogm) using priority
queue data structure where n is the number of VM
requests after pre-partition and m is total number of
PMs used.

Proof: The priority queue is designed such that

each element (PM) has a priority value (average

capacity makespan), and each time the algorithm

needs to select an element from it, the algorithm takes

the one with highest priority (the smaller average

capacity makespan value is, the higher priority it is).

Sorting a set of n number in a priority queue takes

O(n) time and a priority queue performs insertion and

the extraction of minima in O(logn) steps (detailed

proof of the priority queue is shown in [7]). Therefore,

by using priority queue or related data structure, the

algorithm can find a PM with the lowest average

capacity makespan in O(logm) time. Altogether, for

n requests, Prepartition algorithm has time complexity

O(nlogm).
Theorem 3: The approximation ratio of Prepartition
algorithm is (1 + ε) where ε= 1

k .

Proof: This is because that each request has bounded

capacity makespan by pre-parition based on ideal lower

bound P0. We sketch the proof as follows. Each job has

start-time si, end-time (fi) and process time pi=fi-si.
Considering the last job to finish (after scheduling all

other jobs) and supposing this job starts at time T0.

All the machines must have been fully loaded up to

T0, which gives T0 ≤OPT. Since, for all jobs, we have

pi ≤ ε OPT (by setting of Prepartition algorithm), this

job finishes at T0+εOPT. Hence, the schedule can be

no more than T0+ε OPT ≤ (1+ε)OPT, this finishes the

proof.

V. PERFORMANCE EVALUATION

In this part, we will present the simulation results

between Prepartition algorithm and other three existed

algorithms. To achieve this goal, we used a Java simula-

tor CloudSched (see Tian et al. [8]). For simulation, to

be realistic and reasonable, we adopt data both from nor-

mal distribution and Lawrence Livermore National Lab

(LLNL) trace, see [12] for detailed introduction about

the trace. All simulations are conducted on a computer

configured with Intel i5 processor at 2.5GHz and 4GB

memory. Round-Robin (RR) algorithm, Longest Process

Time (LPT) algorithm and Post Migration Algorithm

(PMG) are also implemented:

1) Round-Robin Algorithm: a traditional load balancing

scheduling algorithm by allocating the VM requests in

turn to each PM that can provide required resource.

2) Longest Processing Time first (LPT): it sorts the VM

requests by processing time in decreasing order firstly.

Then allocating the requests in that order to the PM with

the lowest load. In this paper, the lowest load means the

lowest capacity makespan of all PMs.

3) Post Migration algorithm (PMG): Firstly, it processes

the requests in the same way as LPT does. Then the aver-

age capacity makespan of all jobs is calculated. The up-

threshold and low-threshold of the capacity makespan

for the post migration are calculated through the aver-

age capacity makespan multiplied by a factor (in this

4

IEEE ICC 2014 - Selected Areas in Communications Symposium

4020Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on July 06,2021 at 06:25:58 UTC from IEEE Xplore. Restrictions apply.

TABLE I
8 TYPES OF VIRTUAL MACHINES (VMS) IN AMAZON EC2

Compute Units Memory Storage VM Type

1 units 1.7GB 160GB 1-1(1)
4 units 7.5GB 850GB 1-2(2)
8 units 15GB 1690GB 1-3(3)
6.5 units 17.1GB 420GB 2-1(4)
13 units 34.2GB 850GB 2-2(5)
26 units 68.4GB 1690GB 2-3(6)
5 units 1.7GB 350GB 3-1(7)
20 units 7GB 1690GB 3-2(8)

TABLE II
3 TYPES OF PHYSICAL MACHINES (PMS) SUGGESTED

PM Pool Type Compute Units Memory Storage

Type 1 16 units 30GB 3380GB
Type 2 52 units 136GB 3380GB
Type 3 40 units 14GB 3380GB

paper we set the factor as 0.1, so the up-threshold is

average capacity makespan multiplied by 1.1 and the

low-threshold is multiplied by 0.9). Of course the factor

can be set dynamically to meet different requirements;

however, the larger the factor is, the higher imbalance is.

A migration list is formed by collecting the VMs taken

from PMs with capacity makespan higher than the low-

threshold. The VMs would be taken from a PM only

if the operation would not lead the capacity makespan

of the PM to be less than the low threshold. After that,

the VMs in the migration list would be re-allocated to a

PM with capacity makespan less than the up-threshold.

The VMs would be allocated to a new PM only if the

operation would not lead the capacity makespan of the

PM to be higher than the up-threshold. There may be

still some VMs left in the list, finally the algorithm

allocates the left VMs to the PMs with the lowest

capacity makespan until the list is empty.

In this paper, we adopt the Amazon EC2 configuration

of VMs and PMs as shown in Table I and II. Note that

one compute unit (CU) has equivalent CPU capacity of

a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor

[13].

Observation 1 PMG is a best-effort trial heuristic for
load balance. It does not guarantee a bounded or
predefined load balance objective. This is validated in
the performance evaluation section.

A. replay with LLNL data traces

As for realistic data, we adopt the log data at Lawrence

Livermore National Lab (LLNL) [12]. The log contains

months of records collected by a large Linux cluster and

has characteristics consistent with our problem model.

Each line of data in that log file includes 18 elements,

while we only need the request-ID, start-time, duration

and number of processors (capacity demands) in our sim-

ulation. We convert the units from seconds in LLNL log

file into minutes, because we set 5 minutes as a time slot

length mentioned in previous section. Fig.2 and Fig.3

0

500

1000

1500

2000

2500

PMs:VMs=15:100 PMs:VMs=30:200 PMs:VMs=60:400 PMs:VMs=240:1600

R-R

LPT

PMG

Prepartition(k=4)

Fig. 2. The comparison of makespan with LLNL trace

show the makespan and capacity makespan comparison

for different algorithms with LLNL data traces. We ob-

serve that Prepartition algorithm has better performance

than other algorithms in average utilization, makespan,

capacity makespan. Prepartition algorithm has 10%-

20% higher average utilization than PMG and LPT,

and 40%-50% higher average utilization than Random-

Robin (RR). Prepartition algorithm has 10%-20% lower

average makespan and capacity makespan than PMG

and LPT, and 40%-50% lower average makespan and

capacity makespan than Random-Robin (RR). Because

of page limit, some similar results are omitted.

0

1000

2000

3000

4000

5000

6000

7000

8000

PMs:VMs=15:100 PMs:VMs=30:200 PMs:VMs=60:400 PMs:VMs=240:1600

R-R
LPT
PMG
Prepartition(k=4)

Fig. 3. The comparison of capacity makespan of LLNL trace

Observation 2 Whatever numbers of migrations to taken,
post migration algorithm (PMG) just cannot achieve
the same level of average utilization, makespan and
capacity makespan as Prepartition does.

This is because that Prepartition works in a much

more refined and desired scale by partition based on

reservation data while PMG is just a best-effort trial by

migration.

5

IEEE ICC 2014 - Selected Areas in Communications Symposium

4021Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on July 06,2021 at 06:25:58 UTC from IEEE Xplore. Restrictions apply.

B. Results comparison by synthetic data

We set 5 minutes as a slot, so 12 slots are for

an hour, 96 slots are for a day, 2880 slots are for a

month. All requests satisfy the Normal distribution, with

parameters mean μ and standard deviation δ as 288

(three days) and 96 (one day) respectively. For collecting

data, we firstly fix the k value of Prepartition algorithm

as 4. Different types of VMs have equal probability.

Then we change the ratio of VMs to PMs numbers as

15 : 100, 30 : 200, 60 : 400 and 240 : 1600 to track

the tendency. Each set of data is the average values

of 10-runs. Fig. 4 and Fig. 5 show the makespan and

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

PMs:VMs=15:100 PMs:VMs=30:200 PMs:VMs=60:400 PMs:VMs=240:1600

R-R
LPT
PMG
Prepartition(k=4)

Fig. 4. The comparison of makespan-Normal distribution

capacity makespan comparison of different algorithms

respectively. We observe that Prepartition algorithm has

10%-20% higher average utilization than PMG and LPT,

and 40%-50% higher average utilization than Random-

Robin (RR); Prepartition algorithm has 8%-13% lower

average makespan and capacity makespan than PMG

and LPT, and 40%-50% lower average makespan and

capacity makespan than Random-Robin (RR). Because

of page limit, some similar results are omitted.

Fig. 5. The comparison of capacity makespan of Normal distribution

VI. CONCLUSION

In this paper, to reflect the feature of capacity sharing

and fixed interval constraint in Cloud data centers,

we propose a new offline load-balancing algorithm

Prepartition. Theoretically we prove that Prepartition is

a (1+ε)-approximation where ε= 1
k and k is a positive

integer. By increasing k it is possible to be very close

to optimal solution, i.e., by setting k value, it is also

possible to achieve predefined load balance goal as

desired. There are still a few research issues such as

making suitable choices between total partition numbers

and load balance objective, analyzing the performance

in a real data center, and considering precedence

constraints among different VM requests.

Acknowledgement This research is partially supported

by Central University Fund (ID-ZYGX2013J073),

2013 CCF-Tencent Open Research Fund (CCF-

TencentAGR20130110) and China National Science

Foundation (CNSF) with project ID 61150110486.

REFERENCES

[1] M. Armbrust et al., Above the Coulds: A Berkeley View of Cloud
Computing, technical report,2009.

[2] E. Arzuaga, D. R. Kaeli, Quantifying load imbalance on virtual-
ized enterprise servers, in the proceedings of WOSP/SIPEW 10,
January 28-30, 2010, San Jose, California, USA.

[3] I. Foster, Y. ZHAO, I. RAICU, S. Lu, Cloud Computing and Grid
Computing 360-Degree Compared, IEEE International Workshop
on Grid Computing Environments (GCE) 2008, co-located with
IEEE/ACM Supercomputing 2008.

[4] R. L. Graham 1969. Bounds on Multiprocessing Timing Anoma-
lies, SIAM Journal on Applied Mathematics, Vol.17, No.2. (Mar.,
1969), pp.416-429.

[5] A. Gulati, G. Shanmuganathan, A. Holler, I. Ahmad, Cloud-
scale resource management: challenges and techniques, VMware
Technical Journal, 2011.

[6] T. Knauth, C. Fetzer, Energy-aware Scheduling for Infrastructure
Clouds, In the proceedings of CloudCom 2012.

[7] J. Kleinberg, E. Tardos, Algorithm Design, Pearson Education
Inc., 2005.

[8] W. Tian, Y. Zhao, Y. Zhong, C. Jing, X. Sun, A Toolkit For
Modeling and Simulation of Real-time Virtual Machine Alloca-
tion in a Cloud Data Center, IEEE Trans Automation Science
and Engineering, DOI (identifier) 10.1109/TASE.2013.2266338,
Online First, July of 2013.

[9] W. Tian, Y. Zhao,Y. Zhong, M. Xu, C. Jing, dynamic and
integrated load-balancing scheduling algorithms for Cloud data-
centers, China Communications, 2011, Vol. 8 Issue (6): 117-126.

[10] W. Tian, X. Liu, C. Jin, Y. Zhong, LIF: A dynamic scheduling
algorithm for Cloud data centers considering multi-dimensional
resources, Journal of Information & Computational Science, Aug.
12, 2013, 10:12,pp.3925-3937.

[11] T. Wood, et. al., Black-box and Gray-box Strategies for Virtual
Machine Migration, in the proceedings of Symp. on Networked
Systems Design and Implementation (NSDI), 2007.

[12] Hebrew University, Experimental Systems Lab,
www.cs.huji.ac.il/labs/parallel/workload, 2013

[13] Amazon, Amazon Elastic Compute Cloud,
http://aws.amazon.com/ec2/, 2013

6

IEEE ICC 2014 - Selected Areas in Communications Symposium

4022Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on July 06,2021 at 06:25:58 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

