
1

Operating System Architecture

and Distributed Systems

Some concepts are
drawn from Chapter 7
© Pearson Education

Dr. Minxian Xu
Associate Professor

Research Center for Cloud Computing

Shenzhen Institute of Advanced Technology, CAS

http://www.minxianxu.info/dcp

泰山不让土壤，故能成其大；河海不择细流，故能就其深。
——（秦）李斯

http://www.minxianxu.info/dcp

Review

 A set of information exchange protocols
at the Middleware layer

‹#› 2

Review

 Q1: Can you describe the procedure of
the Request-Reply protocol?

‹#› 3

Review

 Q2: Can you explain the following invocation

semantics?

 Maybe semantics

 At-least-once semantics

 At-most-once semantics

‹#› 4

Review

‹#› 5

Review

 Q3: Explain the key components in RMI.

‹#› 6

Review

 Q4: Explain the process of Java RMI

‹#›

Client

RemotObj
proxy

<implements
RemoteInterface>

Client

RMI Registry

Server

RemoteObj
<implements

RemoteInterface>

Server

RemoteObj

Skeleton

<“myRO”, Remote Ref. to RemoteObj>

7

8

Operating System Architecture and
Distributed Systems (DS)

 Explore the architecture of a kernel
suitable for a distributed system.

 A key principle of DS is openness and
with this in mind, let us examine the
major kernel architectures:

 Monolithic kernels

 Layered architecture-based kernels

 Micro-kernels

9

Open DS and System Software

 A open DS should make it possible to:
 Run only that (“specific” components of) system

software at each computer that is necessary for its
particular role in the system architecture.
 For example, system software needs of laptops and

dedicated servers are different and loading redundant
modules wastes memory resources.

 Allow the software implementing any particular
service to be changed independent of other facilities.

 Allow for alternatives of the same service to be
provided, when this is required to suit different users
or applications.

 Introduce new services without harming the integrity
of existing ones.

10

Separating Mechanisms and Policies
in OS and DS

 A Guiding Principle of OS design:
 The separation of fixed resource management “mechanisms“

from resource management “policies”, which vary from
application to application and service to service.

 For example, an ideal scheduling system would provide
mechanisms that enable a multimedia application such as
videoconferencing to meet its real-time demands while
coexisting with a non-real-time application such as web
browsing.

 That is kernel would provide only the most basic
mechanisms upon which the general resource
management tasks at a node are carried out.

 Server modules would be dynamically loaded as
required, to implement the required RM policies for the
currently running applications.

11

OS/Kernel Architecture

 The two key examples of kernel design
approaches are:
 Monolithic
 Microkernel

 These two designs differ primarily in the
decision as to what functionality belongs in the
kernel and what is left to server processes that
can be dynamically loaded to run on top of it.

 In literature, we find predominantly 3 types of
OSs:
 Monolithic OS
 Layered OS
 Microkernel-based OS

12

Monolithic kernel and microkernel

Monolithic Kernel Microkernel

Server: Dynamically loaded server program:Kernel code and data:

...

...

Key:

S4

S1

S1 S2 S3

S2 S3 S4

13

Operating System Models

 Serve as frameworks that unify capabilities,
services and tasks to be performed

 Three approaches to building OS....

 Monolithic OS

 Layered OS

 Microkernel based OS

 Client server OS

 Suitable for distributed systems

 Simplicity, flexibility, and high performance are
crucial for OS.

14

Application

Programs

Application

Programs

System Services

Hardware

User Mode

Kernel Mode

Monolithic Operating System

 Better application Performance

 Difficult to extend Ex: MS-DOS

15

Layered OS

 Easier to enhance

 Each layer of code access lower level interface

 Low-application performance

Application

Programs

System Services

User Mode

Kernel Mode

Memory & I/O Device Mgmt

Hardware

Process Schedule

Application

Programs

Ex : UNIX

16

Traditional OS

OS Designer

OS

Hardware

User Mode

Kernel Mode

Application

Programs

Application

Programs

17

Disadvantages of Monolithic OS

 It is massive:

 It performs all basic OS functions and takes up in
the order of megabytes of code and data

 It is undifferentiated:

 It is coded in a non-modular way (traditionally)
although modern ones are much more layered.

 It is intractable:

 Altering any individual software component to adapt
it to changing requirements is difficult.

18

New trend in OS design: Separating

mechanisms and policies

User Mode

Kernel Mode

Hardware

Microkernel

(very basic functions)

ServersApplication

Programs

Application

Programs

19

Micro-kernel

 Compared to monolithic, microkernel design
provides only the most basic abstractions,

 address space, threads and local IPC.

 All other system services are provided by
servers that are dynamically loaded precisely on
those computers in the DS that require them.

 Clients access these system services using the
kernel’s message-based invocation
mechanisms.

20

Microkernel/Client Server OS

 Tiny OS kernel providing basic primitive (process, memory, IPC)

 Traditional services becomes subsystems

 OS = Microkernel + User Subsystems

Client

Application

OS

Emulators

File

Server

Network

Server

Display

Server

Microkernel

Hardware

User

Kernel

Send

Reply

Ex: Mach, QNX, Windows NT!

21

The role of the microkernel (MK)

 MK appears as a layer between H/W and a
layer of major system components
(subsystems). If performance, rather than
portability is goal, then middleware may use
facilities of MK directly.

Middleware

Language

support

subsystem

Language

support

subsystem

OS emulation

subsystem
....

Microkernel

Hardware

The microkernel supports middleware via subsystems

The microkernel story
is full of good ideas and blind alleys (Liedtke)

 Although the concept of microkernel is
beautiful, the reality is very cruel:

22

23

Few Popular Microkernel Systems

MACH, CMU (Carnegie Mellon University)

supports OS emulators such as Unix and OS/2.

PARAS (C-DAC, India) for PARAM Supercomputers

ChorusOS (Sun, USA) Realtime OS (RTOS)

seL4 (created by NICTA/Data61, Australia)

QNX - Unix-like RTOS (Canada, BlackBerry)

 used in a variety of devices including cars and mobile
phones (e.g., BlackBerry).

Intel x86, MIPS, PowerPC, StrongARM..

Windows NT – original design

HarmonyOS (Huawei)

https://www.google.com/search?client=firefox-b&q=Intel+8088&stick=H4sIAAAAAAAAAONgVuLQz9U3MC4vyQUAUn3XQgwAAAA&sa=X&ved=2ahUKEwjglaqJlpHdAhWO7mEKHUXVC44QmxMoATAaegQICxAp
https://www.google.com/search?client=firefox-b&q=x86&stick=H4sIAAAAAAAAAONgVuLQz9U3sDDPSAEAapLnegwAAAA&sa=X&ved=2ahUKEwjglaqJlpHdAhWO7mEKHUXVC44QmxMoAjAaegQICxAq
https://www.google.com/search?client=firefox-b&q=MIPS&stick=H4sIAAAAAAAAAONgVuLQz9U3MDWMTwcAi8cOhQwAAAA&sa=X&ved=2ahUKEwjglaqJlpHdAhWO7mEKHUXVC44QmxMoAzAaegQICxAr
https://www.google.com/search?client=firefox-b&q=PowerPC&stick=H4sIAAAAAAAAAONgVuLQz9U3MDMySAMAwpGfAAwAAAA&sa=X&ved=2ahUKEwjglaqJlpHdAhWO7mEKHUXVC44QmxMoBDAaegQICxAs
https://www.google.com/search?client=firefox-b&q=StrongARM&stick=H4sIAAAAAAAAAONgVuLQz9U3MLc0ygUATKKSEQwAAAA&sa=X&ved=2ahUKEwjglaqJlpHdAhWO7mEKHUXVC44QmxMoBjAaegQICxAu

Kubernetes: distributed operating
system with Microkernel

24

Huawei Harmony OS

 “HarmonyOS is completely different from Android and iOS. It is a
microkernel-based, distributed OS that delivers a smooth
experience across all scenarios. It has a trustworthy and secure
architecture, and it supports seamless collaboration across devices.
You can develop your apps once, then flexibly deploy them across
a range of different devices.”

25

26

Comparison: Monolithic and
Micro-kernel OS Design

 The main advantages of a MK-based OS:

 A relative small kernel is more likely to be free of
bugs than one that is larger and complex.

 Extensibility and its ability to enforce modularity
behind memory protection boundaries

 The advantage of a monolithic OS:

 Relative efficiency with which operations can be
invoked is high because even invocation to a
separate user-level address space on the same node
is more costly.

27

Hybrid Approaches

 Many modern OSs follow hybrid approach in OS
structure. E.g., Windows NT.

 Pure microkernel OSs such as Chorus & Mach
have changed over time to allow servers to be
loaded dynamically into the kernel address
space or into a user-level address space.

 Some OSs (such as SPIN) use event-based
model as a mechanism for interaction between
modules grafted into the kernel address space.

28

Summary

 OSs provide various types of facilities/services
to support middleware for distributed system:
 encapsulation, protection, and concurrent access

and management of node resources.

 Three types of OS:
 Monolithic OS
 Layered OS
 Microkernel-based OS

 New OS designs provide flexibility in terms of
separating mechanisms from policies.

 Microkernel based systems are flexible
 Quite popular model for OS design for embedded systems
 New Emerging optimized Kernels like nanokernel or picokernel

Additional References

 Rajkumar Buyya, The Design of PARAS
Microkernel, Centre for Development of
Advanced Computing (C-DAC), 1998.
 http://www.buyya.com/microkernel/chap2.pdf

 Gernot Heiser, Gerwin Klein, June Andronick,
seL4 in Australia: From Research to Real-World
Trustworthy Systems, Communications of the
ACM, April 2020.

 https://cacm.acm.org/magazines/2020/4/243
641-sel4-in-australia/fulltext

29

http://www.buyya.com/microkernel/
http://www.buyya.com/microkernel/chap2.pdf
https://cacm.acm.org/magazines/2020/4/243641-sel4-in-australia/fulltext

 Demo

 JSON Client Server

 JSON Simple Domo

30

JSON Example

 “JSON” stands for “JavaScript Object Notation”
 Despite the name, JSON is a (mostly) language-independent

way of specifying objects as name-value pairs

 Example
 {"skillz": {

"web":[
{ "name": "html",
"years": 5

},
{ "name": "css",
"years": 3

}]
"database":[

{ "name": "sql",
"years": 7

}]
}}

31

JSON Syntax

 An object is an unordered set of
name/value pairs

 The pairs are enclosed within braces, { }

 There is a colon between the name and the
value

 Pairs are separated by commas

 Example: { "name": "html", "years": 5 }

32

JSON Syntax

 A value can be: A string, a number, true, false, null, an

object, or an array

 Values can be nested

 Strings are enclosed in double quotes, and can contain
the usual assortment of escaped characters

 Numbers have the usual C/C++/Java syntax, including
exponential (E) notation

 All numbers are decimal--no octal or hexadecimal

 Whitespace can be used between any pair of tokens

33

