
Energy Efficient Scheduling of Cloud Application
Components with Brownout

Minxian Xu, Amir Vahid Dastjerdi,Member, IEEE, and Rajkumar Buyya, Fellow, IEEE

Abstract—It is common for cloud data centers meeting unexpected loads like request bursts, which may lead to overloaded situation

and performance degradation. Dynamic Voltage Frequency Scaling and VM consolidation have been proved effective to manage

overloads. However, they cannot function when the whole data center is overloaded. Brownout provides a promising direction to avoid

overloads through configuring applications to temporarily degrade user experience. Additionally, brownout can also be applied to

reduce data center energy consumption. As a complementary option for Dynamic Voltage Frequency Scaling and VM consolidation,

our combined brownout approach reduces energy consumption through selectively and dynamically deactivating application optional

components, which can also be applied to self-contained microservices. The results show that our approach can save more than 20

percent energy consumption and there are trade-offs between energy saving and discount offered to users.

Index Terms—Cloud data centers, energy efficient, application component, microservices, brownout

Ç

1 INTRODUCTION

THE emergence of cloud computing is viewed as a new
paradigm in IT industry [1]. Cloud computing provides

compelling features such as pay-as-you-go pricing model,
low operation cost, high scalability and easy access. This
makes Cloud computing attractive to business owners as it
eliminates the requirement for users to plan ahead for pro-
visioning, and allows enterprises to start with the minimum
and request resources on demand. Providers like Amazon,
Microsoft, IBM and Google have established data centers to
support cloud applications around the world, and aimed to
ensure that their services are flexible and suitable for the
needs of the end-users.

Energy consumption by the cloud data centers has cur-
rently become one of the major problems for the computing
industry. The growth and development of complex data-
driven applications have promulgated the creation of huge
data centers, which heightens the energy consumption [2].
The servers hosted in data centers dissipate more heat and
need to be maintained in a fully air-conditioned and engi-
neered environment. The cooling system is already efficient,
while servers are still one of the major energy consumer.
Hence, reducing server energy consumption has become a
main concern of researchers [3].

Given the scenario that the budget and resource are lim-
ited, overloaded tasks may trigger performance degradation
and lead the applications to saturate, in which some appli-
cations cannot be allocated by provider. Therefore, some
users are not served in a timely manner or experience high

latencies, others may even not receive service at all [4]. The
saturated applications also bring over-utilized situation to
hosts and cause high energy consumption. Unfortunately,
current resource management approaches like Dynamic
Voltage Frequency Scaling (DVFS) and VM consolidation
cannot function when the holistic data center is overloaded.

Currently, applications can be constructed via set of self-
contained components that are also called microservices.
The components encapsulate its content and expose its func-
tionality through interfaces, which makes them flexible to be
deployed and replaced. With components or microservices,
developers and users can benefit from their technological
heterogeneity, resilience, scaling, ease of deployment, orga-
nizational alignment, composability and optimizing for
replaceability [5]. This brings the advantage of more fine-
grained control over the application resource consumption.

It is common that application components have different
priorities to be provided to users. Therefore, not all compo-
nents or microservices in an application are mandatory to
be functional all the time on hosts. We investigate whether
it is feasible to downgrade user experience by disabling part
of non-mandatory application components or microservices
to relieve the over-utilized condition and reduce energy
consumption.

Therefore, we take advantage of a paradigm called
brownout. It is inspired by the concept of brownout in elec-
tric grids. Its original definition is the voltage shutdown to
cope with emergency cases, in which light bulbs emit fewer
lights and consumes less power [6]. A brownout example
for online shopping system is introduced in [4], the online
shopping application provides a recommendation engine to
recommend similar products that users may be interested
in. The recommendation engine component helps service
provider to increase the profits, but it is not essential to run
the engine. Recommendation engine also requires more
resource in comparison to other components. Therefore,
with brownout, under overloaded situation, the recommen-
dation engine could be deactivated to serve more clients
who require essential requirements.

� The authors are with the Cloud Computing and Distributed Systems
(CLOUDS) Lab, Department of Computing and Information Systems,
University of Melbourne, Parkville, Vic 3010, Australia.
E-mail: xianecisp@gmail.com, {amir.vahid, rbuyya}@unimelb.edu.au.

Manuscript received 9 Aug. 2016; revised 8 Jan. 2017; accepted 26 Jan. 2017.
Date of publication 30 Jan. 2017; date of current version 13 Feb. 2017.
Recommended for acceptance by L. Wang.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSUSC.2017.2661339

40 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 1, NO. 2, JULY-DECEMBER 2016

2377-3782� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

There are many other applications with some features can
be disabled under brownout situation. Like the online docu-
ment process application that contains the components for
spell checking and report generating. These components are
not required to be running all the time and can be deactivated
for a while to reduce resource utilization. Other applications
contain components that are not required to be executing all
the time can be applied with the brownout approach. What
the service providers need to spend efforts on is identifying
the optional components and determining their discount
when deactivated. Our motivation is to investigate the trade-
off between energy consumption and discount, as well as
offering different component selection policies.

We consider component-level control in our system
model. The model could also be applied to container or
microservices architecture. We model the application
components as mandatory and optional, if required,
optional components can be deactivated. By deactivating
the optional components selectively and dynamically, the
application utilization is reduced and eventually total
energy consumption is saved as well. While under market
scenario, service provider may provide discount for user as
the services are deactivated.

Our objective is to tackle the problem of energy efficiency
and our contributions are as below:

� Our approach considers the trade-offs between dis-
count that should be given to a user if a component
is deactivated and howmuch of energy can be saved.

� Then we propose a number of policies that consider
the aforementioned trade-offs and dynamically
make decisions on which components are going to
be deactivated.

The rest of this paper is organized as: after discussing
related work in Section 2, we present the brownout enabled
system model and problem statement in Section 3. Section 4
introduces our proposed brownout enabled approach in
details, while the experimental results of the proposed
approach are illustrated in Section 5. The conclusions along
with future work are given in Section 6.

2 RELATED WORK

It is an essential requirement for Cloud providers to reduce
energy consumption, as it can both decrease operating costs
and improve system reliability. Data centers can consume
from 10 to 100 times more power per square foot than a typ-
ical office building. A large body of literature has focused
on reducing energy consumption in cloud data centers, and
the dominant categories for solving this problem are VM
consolidation and Dynamic Voltage Frequency Scaling [7].

VM consolidation is regarded to be an act of combining
into an integral whole, which helps minimizing the energy
consumed by allocating work among fewer machines and
turning off unused machines [8]. Under this approach, the
VMs hosted on underutilized hosts would be consolidated
to other servers and the remaining hosts would be trans-
formed into power-saving state. Beloglazov et al. [9] pro-
posed scheduling algorithms considering Quality of Service
and power consumption in Clouds. The algorithms objec-
tive is energy-efficient mapping VMs to cloud servers
through dynamic VM consolidation. The VM consolidation
process is modeled as a bin-packing problem, where VMs
are regarded as items and servers are regarded as bins. The

advantages of the proposed algorithms are that they are
independent of workload types and do not need to know
the VM application information in advance.

The authors in [10] introduced adaptive approaches for
VM consolidation with live migration according to VM his-
torical data. Similar to [9], the VM placement is also mod-
eled as a bin-packing problem, in which VMs from over-
utilized servers are allocated to the PM with the least
increase of power consumption and under-utilized servers
are switched to be off or low power mode. In comparison to
[9], this work considers multiple dimension resource (CPU,
memory and bandwidth) and focuses more on VM place-
ment optimization stage by proposing various policies. This
work advances previous work by discussing online algo-
rithm competitive ratio for energy efficient VM consolida-
tion, which proves the algorithm’s efficiency.

A self-adaptive method for VM consolidation on both
CPU and memory is introduced in [11]. Its objective is mini-
mizing the overall costs caused by energy related issues.
The VM assignment and migration processes are deter-
mined by probabilistic functions (Bernoulli trial). The math-
ematical analysis and realistic testbed results show that the
proposed algorithm reduces total energy consumption for
both CPU-intensive and memory-intensive workloads with
suitable Bernoulli trial parameters. Compared with bin-
packing approach (adopted in [9], [10]), the proposed algo-
rithm in this work can reduce migration times of VMs and
its time complexity is lower than bin-packing-based algo-
rithm, which offers higher efficiency in the online scenario.
To achieve the best performance, the disadvantage of this
work is that it needs some efforts to find the most suitable
Bernoulli trial parameter. Chen et al. [12] extended [11] and
proposed another utilization-based probabilistic VM consol-
idation algorithm that aimed to reducing energy consump-
tion and VM migration times. The author also made
performance comparison with the algorithms in [9].

Corradi et al. [13] considered VM consolidation in a more
practical viewpoint related to power, CPU and networking
resource sharing and tested VM consolidation in Open-
Stack, which shows VM consolidation is a feasible solution
to reduce energy consumption. Salehi et al. [14] proposed a
VM consolidation based approach, which is an adaptive
energy management policy that preempts VMs to reduce
the energy consumption according to user-specific perfor-
mance constraints and used fuzzy logic for obtaining appro-
priate decisions.

Han et al. [15] used Markov Decision Process (MDP) to
handle VM management to reduce data center energy con-
sumption. Through MDP, the optimal result is obtained by
solving objective function. However, its solution dimension
is quite large, the authors also proposed an approximate
MDP approach to reduce the solution space and achieve
faster convergence. In this approximate algorithm, a central-
ized controller calculates the utilization function for each
VM and determines the possibilities for the state transition.
The state transitions in this algorithm represent the VMs are
migrated from one server to another. The authors also theo-
retically validated the upper bound of algorithm’s error.

A practical OpenStack framework is implemented in [16]
considering VM consolidation and data center power man-
agement. This framework is available for customized algo-
rithm implementation. With public APIs, the framework is
transparent to the base OpenStack installation, and it is not
required to modify any OpenStacks configurations. This

XU ET AL.: ENERGY EFFICIENT SCHEDULING OF CLOUD APPLICATION COMPONENTS WITH BROWNOUT 41

work is the first step to implement VM consolidation in
OpenStack to minimize total energy consumption.

The DVFS technique introduces a trade-off between com-
puting performance and energy consumed by the server.
The DVFS technique lowers the frequency and voltage
when the processor is lightly loaded, and utilizes maximum
frequency and voltage when the processor is heavily
loaded. Von et al. [17] introduced a power-aware schedul-
ing algorithm based on DVFS-enabled cluster. Hanumaiah
et al. [18] introduced a solution that considers DVFS, thread
migration and active cooling to control the cores to maxi-
mize overall energy efficiency.

The authors in [19] modelled real-time service to be real-
time VM requests and applied several DVFS algorithms to
reduce energy consumption. Their objective is balancing the
energy consumption and prices. The major concern in this
work is that less energy is preferred at the same price, thus
three different schemes based on DVFS are proposed to bal-
ance the energy consumption and prices. The proposed
schemes are easy to implement while the adaptive DVFS
evaluations are restricted by the simplified and known-in-
advance queueing model.

Deng et al. [20] proposed a method named CoScale for
DVFS coordinating on CPU and memory while investigat-
ing performance constraints, which is the first trial to coor-
dinate them together. Its objective is finding the most
efficient frequency from a set of frequency settings while
ensuring system performance. The most efficient frequen-
cies for cores and memory are selected as they minimize the
whole system energy consumption. CoScale adopts a fine-
grained heuristic algorithm that iteratively predicates the
component frequencies according to its performance coun-
ters as well as online models. However, CoScale is not suit-
able for offline workloads because it cannot reduce the
possible frequency space as like in online workloads.

Teng et al. [21] combined DVFS and VM consolidation
together to minimize total energy consumption. The energy
saving objective is mainly applied to batch-oriented sce-
nario, in which the authors introduced a DVFS-based algo-
rithm to consolidate VMs on servers to minimize energy
consumption and ensure job Service Level Agreement. With
theoretical analysis and realistic testbed on Hadoop, the
authors proved that the proposed algorithm can find the
most efficient frequency that is only associated with the pro-
cessor type and its VM consolidation performance is insen-
sitive to tunable parameters. The limitations of this work is
that its realistic testbed is already upgraded to a new ver-
sion that provides better management, which is more per-
suasive to implement the proposed approach on the
updated platform.

Brownout was originally applied to prevent blackouts
through voltage drops in case of emergency. Klein et al. [4]
first borrowed the approach of brownout and applied it to
cloud applications, aiming to design more robust applica-
tions under unpredictable loads. Tomas et al. [22] used the
brownout along with overbooking to ensure graceful degra-
dation during load spikes and avoid overload. Durango
et al. [6] introduced novel load balancing strategies for
applications by supporting brownout. In a brownout-
compliant application or service, the optional parts are iden-
tified by developers and a control knob called dimmer that
controls these optional parts is also exported. The dimmer
value represents a certain probability given by a control
variable and shows how often these optional parts are

executed. In addition, a brownout controller is also required
to adjust the dimmer value to avoid overload [22].

To the best of our knowledge, our approach is the first
research to reduce energy consumption with brownout at
components level, which also considers revenues for cloud
service providers. Our approach provides a complementary
option apart from VM consolidation and DVFS.

3 PROBLEM STATEMENT

In this section, we explain our system model and state the
problem we aim to tackle. For reference, Table 1 summaries
the symbols and their definitions throughout this paper.

3.1 System Model
Our system model (Fig. 1) includes entities: users, applica-
tions and cloud providers, which are discussed as below:

Users. Users submit service requests to cloud data centers
to process. User entities contain user id and requested appli-
cations (services) information.

Applications. The application entities in our model come
into system together with user entities. The applications
consist of a number of components, which are tagged as
mandatory or optional.

Mandatory Component. The mandatory component is
always running (activated) when the application is executed.

Optional Component. The optional component can be set
as activated or deactivated. These components have param-
eters like utilization and discount (penalty payment amount).
Utilization indicates the amount of reduced utilization, and
discount represents the price that is cut. The deactivation
and activation of optional components are controlled by the
brownout controller, which makes decisions based on system
status and component selection policies.

The components can also be connected, which means that
they communicate with each other and there are data
dependencies between them. Therefore, we consider that if
a component is deactivated, then all its connected optional
components would also be set as deactivated. For example
in Fig. 1, if Com3 in Application #1 is deactivated, Com2
should also be deactivated; in Application #2, if Com1 is
deactivated, Com3 should also be deactivated; in Applica-
tion #n, if Com4 is deactivated, Com3 should also be deacti-
vated, but Com2 is still working (Com1 is connected with
Com3, but Com1 is mandatory, so it is not deactivated).

Cloud Providers. Cloud providers offer resources to meet
service demands, which host a set of VMs or containers to
run applications.

3.2 Power Model
To calculate the total energy consumption of data center, we
adopt the server power model proposed by Zheng et al.
[23]. The server power consumption is modeled as

Pserver
i ¼ Pidle

i þPwi
j¼1 uðVMi;jÞ � Pdynamic

i ; wi > 0
0 ; wi ¼ 0

�
: (1)

Pserver
i is composed of idle power and dynamic power. The

idle power is regarded as constant and the dynamic power
is linear to the total CPU utilization of all the VMs on the
server. If no VM is hosted on a server, the server is turned
off to save power. VMi;j refers to the jth VM on the ith
server, wi means the number of VMs assigned to server i

42 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 1, NO. 2, JULY-DECEMBER 2016

uðVMi;jÞ ¼
XAj

c¼1
uðAppcÞ: (2)

The utilization of VMi;j is represented as uðVMi;jÞ, which
is computed by summing up all the application utilization
on the jth VM. The c is the component id and Aj is the num-
ber of application components. As processors are still the
main energy consumer of servers, we focus on CPU utiliza-
tion in this work.

3.3 Discount Amount

Di ¼
Xwi

j¼1
dðVMi;jÞ: (3)

In Equation (3), Di is the total discount amount obtained
from all VMs, in which the individual discount dðVMi;jÞ
from VMi;j is the sum of all application components dis-
count amount dðAppcÞ as shown as

dðVMi;jÞ ¼
XAj

c¼1
dðAppcÞ: (4)

Aj is the number of applications hosted on VMj, and
dðVMi;jÞ is the discount happened from VMj on server i,
andDi is the total discount amount on server i.

3.4 Constraints and Objectives
The above equations subject to the following constraints:

XM
i¼1

wi ¼ N (5)

Xwi

j¼1
uðVMi;jÞ � 1; 8i 2 ½1;M�: (6)

N is the total number of VMs and M is the total number of
servers. Equation (5) represents the total number of VMs
assigned to hosts wi equals to the sum of VMs. Equation (6)
represents the sum of all the VMs utilization cannot surpass
their host available utilization.

We formulate the objectives of this problem as

min
XM
i¼1

Pserver
i : (7)

As well as

min
XM
i¼1

Di

 !
: (8)

Therefore, we aim at investigating the trade-off total energy
consumption and discount amount.

To measure the performance of an algorithm, we repre-
sent the algorithm efficiency Effpa

Effpa ¼ Epa

Eb
þ aDpa; (9)

Fig. 1. System model with brownout.

TABLE 1
Symbols and Definitions

Symbol Definition

hi Server (host) i
P server
i Power of hi

P idle
i Power when hi is idle

Pdynamic
i Power when hi is fully loaded

Pmax
i Maximum power of hi

hl Server list in data center
wi Number of VMs assigned to hi

VMi;j VM j on hi

uðVMi;jÞ Utilization of VM j on hi

dðVMi;jÞ Discount of VM j on hi

Appc Application component c
Aj Total number of application components
uðAppcÞ Utilization of application component c
dðAppcÞ Discount of application component c
Di Total discount from server i
N Total number of VMs
M Total number of servers
Effpa Algorithm efficiency of proposed algorithm pa
Epa Energy consumption of proposed algorithm pa
Ebl Energy consumption of baseline algorithm bl
Dpa Discount amount of proposed algorithm pa
a Weight of discount to calculate algorithm efficiency
t Time interval t
T The whole scheduling interval
TP Overloaded power threshold
ut Dimmer value in brownout at time t
nt Number of overloaded hosts at time t
P r
i Expected power reduction of hi

COHðÞ Calculate the number of overloaded hosts
HPMðÞ Host power model to compute expected utilization

reduction
urhi Expected utilization reduction on hi
VUMðÞ VM utilization model to compute expected

utilization reduction
urVMi;j

Expected utilization reduction on VMj on hi

CSP ðÞ Component selection policy to deactivate components
dcli;j;t Deactivated component list at time t on hi

St Set of deactivated components connection tags
CtðAppcÞ Connection tag of component Appc
ocli;j;t Optional component list of VMj on hi at time t
p Position index in optional component list
Rh Available resource of host
Rv Maximum requested resource of VM
Ce Cost of energy consumption per unit of time
Co Cost of overloads per unit of time
" Relative cost of overloads compared with Ce

tb Time for brownout operation
tm Time for VM consolidation
t The times of brownout and VM consolidation

occur in T

XU ET AL.: ENERGY EFFICIENT SCHEDULING OF CLOUD APPLICATION COMPONENTS WITH BROWNOUT 43

where Epa is the energy consumption of the proposed algo-
rithm, Eb is the baseline algorithm energy consumption,Dpa

is the discount amount offered by the proposed algorithm.
If the proposed algorithm saves more energy than the base-
line algorithm,

Epa

Eb
is a value between 0 to 1, and Dpa repre-

sents the offered discount percentage, which also belongs to
0 to 1. Thus, the smaller Effpa is, the more energy is reduced
and less discount amount is offered. The a is the weight of
discount, its default value is 1.0, if service provider care
more on discount, a is set as larger than 1.0; if they care
more about energy saving, a is set as less than 1.0.

4 PROPOSED APPROACH

Prior to brownout approach, we require a VM placement
and consolidation algorithms. We adopt the placement
and consolidation algorithm (PCO) proposed by Belogla-
zov et al. [9]. Then we propose our brownout enabled
algorithm based on PCO and introduce a number of
component selection policies considering component uti-
lization and discount.

4.1 VM Placement and Consolidation Algorithm
The VM placement and consolidation algorithm is an adap-
tive heuristics for dynamic consolidation of VMs and exten-
sive experiments show that it can significantly reduce
energy consumption. In the initial VM placement phase,
PCO sorts all the VMs in decreasing order of their current
CPU utilization and allocates each VM to the host that
increases the least power consumption due to this alloca-
tion. In the VM consolidation phase, PCO optimizes VM
placement according to loads of hosts: PCO separately picks
VMs from over-utilized and under-utilized hosts to migrate,
and finds new placements for them. After migration, the
over-utilized hosts are not overloaded any more and the
under-utilized hosts are switched to sleep mode.

4.2 Energy Efficient Brownout Enabled Algorithm
Our proposed energy efficient brownout enabled approach
(noted as EEBA) is an enhanced approach based on PCO
algorithm. According to host power consumption, the
brownout controller dynamically deactivates or activates
applications’ optional components on VMs to relieve over-
loads and reduce the power consumption.

As shown in Algorithm 1, EEBA mainly consists of six
steps:

Before entering the approach procedures, service pro-
vider first needs to initialize VM placement by algorithm
like PCO and overloaded power threshold (lines 1-2). The
power threshold TP is a value for checking whether a host
is overloaded. Then the other steps are as below:

1) In each time interval t, checking all the hosts
and counting the number of overloaded hosts as nt

(line 4);
2) Adjusting dimmer value ut as

ffiffiffiffi
nt
M

p
based on the num-

ber of overloaded hosts nt and host sizeM (line 6).
As mentioned in our related work, the dimmer

value ut is a control knob used to determine the
adjustment degree of power consumption at time t.
The dimmer value ut is 1.0 if all the hosts are over-
loaded at time t and it means that brownout controls
components on all the hosts. The dimmer value is 0.0

if no host is overloaded and brownout will not
be triggered at time t. The dimmer adjustment
approach shows that dimmer value varies along
with the number of overloaded hosts.

3) Calculating the expected utilization reduction on the
overloaded hosts (lines 8-10). According to the dim-
mer value and host power model, EEBA calculates
expected host power reduction Pr

i (line 9) and
expected utilization reduction ur

hi
(line 10). With host

power model (like in Table 3), we have host power
at different utilization levels, so the utilization reduc-
tion can be computed based on power reduction.
For example, in a power model, the host with
100 percent utilization is 247 Watts and 80 percent
utilization is 211 Watts, if the power is required to be
reduced from 247 to 211 Watts, the expected utiliza-
tion reduction is 100%� 80% ¼ 20%.

4) Calculating the expected utilization reduction on VM
(lines 11-13). An empty deactivated component list
dcli;j;t of VMj on host hi is initialized to prepare for
storing deactivated components (line 12). Then the

expected VM utilization reduction ur
VMi;j

is computed

based on VM utilization model as VM utilization
multiplies ur

hi
(line 13).

5) Applying component selection policyCSP to find and
deactivate components list dcli;j;t (line 14). According

to the expected VM utilization reduction ur
VMi;j

, com-

ponent selection policy is responsible for finding the
components satisfying the utilization constraint, deac-
tivating these components and their connected ones,
and updating total discount amount (line 15).

6) In EEBA, if no host is above the power threshold, the
algorithm activates the optional components that
have been set as deactivated (line 20).

Finally, after finishing the main steps of EEBA, VM con-
solidation in PCO algorithm is applied to optimize VM
placement (line 22).

The EEBA algorithm takes effect between the VM place-
ment and VM consolidation in PCO. VMs are initially placed
by VMplacement phase in PCO, after that, if no host is above
the power threshold, the EEBA does not work; otherwise,
the brownout is triggered to handle the overloaded condi-
tion, then the VM consolidation phase in PCO is applied.

As applications may have multiple optional components
with different utilization and discount amount, for Algo-
rithm 1 step 4 that applies component selection policy, we
have designed several policies:

Nearest Utilization First Component Selection Policy (NUFCS).
The objective of NUFCS is finding and deactivating a
single component in the component list. Compared
with other components, the single component has the
nearest utilization to ur

VMi;j
. NUFCS can find the goal

component in OðnÞ time, which is efficient in online
scheduling.

If the deactivated component is connected with
other components, NUFCS also deactivates other connected
components. NUFCS runs fast and can reduce utilization,
but if urVMi;j

is much larger than all the single component uti-
lization in the component list, more components should
be deactivated to achieve expected energy reduction.

44 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 1, NO. 2, JULY-DECEMBER 2016

Therefore, we propose another three multiple components
selection policies to achieve expected utilization reduction:

Algorithm 1. Energy Efficient with Brownout Algorithm
(EEBA)

Input: hostList hl with size M, application components infor-
mation, overloaded power threshold TP , dimmer value
ut at time t, scheduling interval T , deactivated compo-
nent list dcli;j;t of VMi;j on host hi, power model of host
HPM , VM utilization model VUM, component selection
policy CSP

Output: total energy consumption, discount amount, number
of shutting down hosts

1: use PCO algorithm to initialize VMs placement
2: initialize parameters with inputs, like TP
3: for t 0 to T do
4: nt COHðhlÞ
5: if nt > 0 then
6: ut =

ffiffiffiffi
nt
M

p
7: for all hi in hl (i.e., i ¼ 1; 2; ;M) do
8: if (Pserver

i > Pmax
i � TP) then

9: Pr
i ut � Phi

10: ur
hi
 HPM(hi; P

r
i)

11: for all VMi;j on hi (i.e., j ¼ 1; 2; . . . ; wi) do
12: dcli;j;t NULL
13: ur

VMi;j
 VUM(ur

hi
, VMi;j)

14: dcli;j;t CSP (ur
VMi;j

)
15: Di Di þ dðVMi;jÞ
16: end for
17: end if
18: end for
19: else
20: activate deactivated components
21: end if
22: use VM consolidation in PCO algorithm to optimize VM

placement
23: end for

Lowest Utilization First Component Selection Policy
(LUFCS). LUFCS selects a set of components from the
component with the lowest utilization until these compo-
nents achieve expected utilization reduction. This policy
follows the assumption that the component with less utili-
zation is less important for users. Hence, with this policy,
the service provider deactivates a number of components
with low utilization to satisfy the expected utilization
reduction.

Lowest Price First Component Selection Policy (LPFCS).
LPFCS selects a set of components from the component
with lowest discount. This policy focuses more on discount
and its objective is deactivating a number of components
with less discount amount and satisfying the expected utili-
zation reduction.

Highest Utilization and Price Ratio First Component Selection
Policy (HUPRFCS). HUPRFCS selects a set of components
considering component utilization and discount together.
The components with larger uðAppcÞ

dðAppcÞ values are prior to be
selected. Its objective is deactivating the components with
higher utilization and smaller discount. Therefore, the ser-
vice provider saves more energy while offering less dis-
count amount.

Algorithm 2 shows an example about how the compo-
nent selection policy works. The example is about LUFCS:

the input of the algorithm is the expected configured utiliza-
tion ur

VMi;j
and the output is the deactivated components list

dcli;j;t. The steps are:

a) Algorithm 2 sorts the optional components list
ocli;j;t based on component utilization parameter in
ascending sequence (line 1), therefore, the compo-
nent with the lowest utilization is put at the head.
For connected components, the sorting process is
modified as treating the connected components
together and using their average utilization for sort-
ing, which lowers the priority of deactivating con-
nected components to avoid deactivating too many
components due to connections;

b) Initialize a set St that stores the deactivated compo-
nents connection tags (line 2);

c) Algorithm 2 deactivates the first component and its
connected components if it satisfies the expected uti-
lization reduction (lines 3-11). If the first component
utilization parameter value is above ur

VMi;j
, Algo-

rithm 2 puts this component into the deactivated
components list dcli;j;t and puts its connection tag
CtðApp1stÞ (a tag shows how it is connected with
other components) into St. After that, Algorithm 2
finds other connected components and put them into
deactivated components list. Finally, summing up
the deactivated components discount amount as
dðVMi;jÞ;

d) If the first component utilization does not satisfy the
expected utilization reduction, Algorithm 2 finds a
position p in the optional components list (lines
13-23). The sublist before p� 1 is the last sublist
that makes its components utilization sum less
than ur

VMi;j
and the sublist that before p is the first

sublist that makes its components utilization sum
larger than u. The policy selects the sublist with
utilization sum closer to the ur

VMi;j
from these two

sublists;
e) Algorithm 2 puts all the components in the sublist

into the deactivated components list and puts
their connection parameters into the St (lines 24-
28);

f) Algorithm 2 finds other connected components and
puts them into the deactivated components list, and
updates the discount amount (lines 29-35);

g) Finally, Algorithm 2 returns the deactivated compo-
nents list (line 36).

The LPFCS and HUPRFCS procedures are quite similar
to LUFCS except the sorting process at line 1. For example,
the LPFCS sorts the optional components list according to
component discount, while HUPRFCS sorts the optional

components list based on component utilization and dis-

count ratio uðAppcÞ
dðAppcÞ. For connected components, these policies

also treat them together and use their discount or utilization
and discount ratio to sort.

The complexity of our proposed algorithm at each time
interval is calculated based on two parts, one is the brown-
out part and the other is the PCO part. At each time interval,
the complexity of the brownout part is Oðm �MÞ, where m
is the maximum number of components in all applications,
M is the number of hosts. The complexity of the PCO part is

XU ET AL.: ENERGY EFFICIENT SCHEDULING OF CLOUD APPLICATION COMPONENTS WITH BROWNOUT 45

Oð2MÞ as analyzed in [9]. The complexity at each time inter-
val of our proposed algorithm is the sum of the two parts,
which is to Oðð2þmÞ �MÞ.

Algorithm 2. Component Selection Policy: Lowest Utili-
zation First Component Selection Policy (LUFCS)

Input: expected utilization reduction ur
VMi;j

on VMi;j

Output: deactivated components list dcli;j;t
1: Sort the optional component list ocli;j;t based on utilization

uðAppcÞ in ascending order //Other policies may change
the sorting approach at this line. If there are connected
components, the connected components are treated
together and sorted by their average utilization

2: St NULL
3: if uðApp1stÞ � ur

VMi;j
then

4: dcli;j;t dcli;j;t + App1st
5: St St + CtðApp1stÞ
6: for all Appc in ocli;j;t do
7: if CtðAppcÞ is in St then
8: dcli;j;t dcli;j;t þAppc
9: dðVMi;jÞ dðVMi;jÞ þ dðAppcÞ
10: end if
11: end for
12: else
13: p 0
14: for Appc in ocli;j;t do
15: if (

Pk
0ðAppcÞ < ur

VMi;j
&
Pkþ1

0 ðAppcÞ > ur
VMi;j

) then
16: if (ur

VMi;j
�Pk

0ðAppcÞ <
Pkþ1

0 ðAppcÞ � ur
VMi;j

) then
17: p ¼ k� 1
18: else
19: p ¼ k
20: end if
21: break
22: end if
23: end for
24: for c 0 to p do
25: dcli;j;t dcli;j;t þAppc
26: St St + CtðAppcÞ
27: dðVMi;jÞ dðVMi;jÞ þ dðAppcÞ
28: end for
29: for all Appc in ocli;j;t do
30: if CtðAppcÞ in St then
31: dcli;j;t dcli;j;t þAppc
32: dðVMi;jÞ dðVMi;jÞ þ dðAppcÞ
33: end if
34: end for
35: end if
36: return dclði; j; tÞ

4.3 EEBA Competitive Analysis
We apply competitive analysis [10], [24] to analyze the
brownout approach combining with VM consolidation for
multiple hosts and VMs. We assume that there areM homo-
geneous hosts and N homogeneous VMs. If the available
resource of each host is Rh and maximum resource that can
be allocated to VM is Rv, then the maximum number of
VMs allocated to host is Rh

Rv
. Overloaded situation occurs

when VMs require more capacity than Rh. The brownout
approach handles with the overloaded situation with a
processing time tb, and VMs are migrated between hosts
through VM consolidation with migration time tm. The cost
of overloads per unit of time is Co, and the cost of energy

consumption is Ce. Without loss of generality, we can define
Ce ¼ 1 and Co ¼ ". Then we have the following theorem:

Theorem 1. The upper bound of the competitive ratio of EEBA

algorithm for the components control and VM migration prob-

lem is EEBAðIÞ
OPT ðIÞ � 1þ N"

NþM.

Proof. The EEBA controls the application components to
handle with the overloaded situation and applies VM
consolidation to reduce energy consumption. This algo-
rithm deactivates application components to make the
hosts to be not overloaded and consolidates VMs to
the minimum number of hosts. Under normal status, the
number of VMs allocated to each host is N

M, while in over-
loaded situation, at least N

M þ 1 VMs are allocated to a sin-
gle host. Thus, the maximum number of overloaded hosts
isMo ¼ b N

N
Mþ1
c, which is equivalent toMo ¼ b MN

NþMc.
In the whole scheduling interval T , we split the time

into 3 parts T ¼ ðtb þ tmÞt þ t0, where tb is the time that
EEBA uses brownout to relieve overloads, tm is the time
consumed for VMmigration, t0 is the time that hosts run-
ning at normal status and t 2 Rþ . For the brownout and
VMmigration parts, the behaviors are as below:

1). During the tb, the brownout controller selects
application components on overloaded hosts and
deactivates them. Because all the hosts are active
during tb, the cost of this part is tbðMCe þMoCoÞ.

2). During the tm, if there are still overloaded hosts,
VMs are migrated from the overloaded hosts M

0
o,

and M
0
o �Mo. As the VM migration time is tm

and all the hosts are active during migration, the
total cost during this time of period is
tmðMCe þM

0
oCoÞ.

Therefore, the total cost C during tb þ tm is defined as
below

C ¼ tbðMCe þMoCoÞ þ tmðMCe þM
0
oCoÞ: (10)

And the total cost incurred by EEBA for the input I is
shown as

EEBAðIÞ ¼ t½tbðMCe þMoCoÞ þ tmðMCe þM
0
oCoÞ�:

(11)

The optimal offline algorithm for this problem only
keeps the VMs at each host and does not apply brownout
and VM consolidation. Therefore, the total cost of an
optimal offline algorithm is defined as

OPT ðIÞ ¼ tðtb þ tmÞMCe: (12)

Then we compute the competitive ratio of an optimal
offline deterministic algorithm as

EEBAðIÞ
OPT ðIÞ ¼

t½tbðMCe þMoCoÞ þ tmðMCe þM
0
oCoÞ�

tðtb þ tmÞMCe
:

(13)

46 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 1, NO. 2, JULY-DECEMBER 2016

AsM
0
o �Mo, we have

EEBAðIÞ
OPT ðIÞ �

t½ðtb þ tmÞðMCe þMoCoÞ�
tðtb þ tmÞMCe

¼MCe þMoCo

MCe
:

(14)

As Mo ¼ b MN
NþMc, we have M0 � MN

NþM and combine with
Equation (14) as well Ce ¼ 1; Co ¼ ", the competitive ratio
is defined as

EEBAðIÞ
OPT ðIÞ �

MCe þMoCo

MCe
�M þ MN

NþM "

M
¼ 1þ N"

N þM
:

(15)

tu

5 PERFORMANCE EVALUATION

5.1 Environment Setting
Weuse the CloudSim framework [25] to simulate a cloud data
center with 100 hosts. Two types of hosts and four types of
VMs aremodeled based on current offerings in EC2 as shown
in Table 2. The powermodels of hostswe adopted are derived
from IBM System x3550 M3 with CPU Intel Xeon X5670 and
X5675 [26], and their power consumption at different utiliza-
tion levels are demonstrated in Table 3. We assume that the
idle host consumes 50 percent full utilization.

The application modeled in CloudSim is based in a class
called cloudlet. We have extended the cloudlet to model
application with optional components, and each component
has its corresponding CPU utilization, discount amount,
and connection parameter. The components are uniformly
distributed on VMs.

We adopt the realistic workload trace from more than
1,000 PlanetLab VMs [27] to create an overloaded environ-
ment [28]. Our experiments are simulated under one-day

scheduling period and repeated 10 times based on 10 differ-
ent days PlanetLab data. The brownout is invoked every
300 seconds (5 minutes per time slot) if hosts power sur-
passes the power threshold. The CPU resource is measured
with capacity of running instructions. Assuming that the
application workload occupies 85 percent resource on a VM
and the VM has 1,000 million instructions per second
(MIPS) computation capacity, then it presents the applica-
tion constantly requires 0.85 � 1000 = 850 MI to 1.0 � 1,000
= 1,000 MI per second in the 5 minutes.

To reflect the impact of different configurations, we
investigate a set of parameters as shown in Table 4:

1) Optional component utilization threshold: it repre-
sents the threshold portion of utilization that
is optional and can be reduced by deactivating
optional components. An optional component
with 25 percent utilization means 25 percent of
application utilization is reduced if it is set as
deactivated. We adjust this parameter from 0 to
100 percent and categorize it as 25, 50, 75 and 100
percent.

2) Percentage of optional components: it represents
how many components of the total components are
optional. Assuming the number of all components
is numcom and the number of optional components
is numopt, then the percentage of optional compo-
nents is

numopt

numcom
. This parameter is varied from 0

to 100 percent and is categorized as 20, 50, 75 and
100 percent.

3) Percentage of connected components: it represents
how many components are connected among all the
components. Assuming the number of connected
components is numconnected, then the percentage of
connected components is numconnected

numcom
. This parameter

is also varied from 0 to 100 percent and is catego-
rized as 25, 50, 75 and 100 percent. The connections
between components are randomly generated based
on percentage of connected components.

4) Discount: It represents the discount amount that
allowed to be paid back to the user if components
are deactivated. We assume that application maxi-
mum discount is identical to the optional component
utilization threshold, for example 50 percent
optional component utilization threshold comes
along with 50 percent discount.

TABLE 2
Host / VM Types and Capacity

Name CPU Cores Memory Bandwidth Storage

Host Type 1 1.86 GHz 2 4 GB 1 Gbit/s 100 GB
Host Type 2 2.66 GHz 2 4 GB 1 Gbit/s 100 GB
VM Type 1 2.5 GHz 1 870 MB 100 Mbit/s 1 GB
VMType 2 2.0 GHz 1 1,740 MB 100 Mbit/s 1 GB
VM Type 3 1.0 GHz 1 1,740 MB 100 Mbit/s 1 GB
VM Type 4 0.5 GHz 1 613 MB 100 Mbit/s 1 GB

TABLE 3
Power Consumption of Servers in Watts

Servers 0%
(sleep mode)

10% 20% 30% 40% 50%
(idle)

60% 70% 80% 90% 100%
(max)

IBM x3550 M3 (Interl Xeon X5670 CPU) 66 107 120 131 143 156 173 191 211 229 247
IBM x3550 M3 (Intel Xeon X5675 CPU) 58.4 98 109 118 128 140 153 170 189 205 222

TABLE 4
Parameter Configurations for Testing

Parameters P1: Optional component
utilization threshold

P2: Percentage of optional
Components

P3: Percentage of connected
components

P4: Discount

Range 0% to 100% 0% to 100% 0% to 100% 0% to 100%
Categories 25%, 50%, 75%, 100% 25%, 50%, 75%, 100% 25%, 50%, 75%, 100% varying with P1

XU ET AL.: ENERGY EFFICIENT SCHEDULING OF CLOUD APPLICATION COMPONENTS WITH BROWNOUT 47

We assume that the components utilization uðAppcÞ and
discount dðAppcÞ conform normal distribution uðAppcÞ 	 N
ðm; s2Þ; dðAppcÞ 	 Nðm; s2Þ, the m is the mean utilization of
component utilization or discount, which is computed as
the optional component utilization threshold (or discount
amount) divided by the number of optional components.
The s2 is the standard deviation of components utilization
or discount.

Based on s2, we consider two component design patterns
according to component utilization and discount. One pat-
tern is that components are designed with uniform or
approximate utilization and discount, which means each
component is designed to require same or approximate
resource amount, like there are five components and
each component requires 10 percent utilization and offers
10 percent discount. We define the components as approxi-
mate if their utilization standard deviation and discount
standard deviation are both less than 0.1. Another pattern is
that components utilization and discount are conspicuous
different, which means the components are designed to
require quite different resource. We define the components
as different if either their utilization standard deviation or
discount standard deviation is larger than 0.1.

According to Table 4, Table 5 shows a testcase with con-
figured parameters, the optional component utilization
threshold is configured as 50 percent, the percentage of
optional utilization is configured as 50 percent, the percent-
age of connected components is set as 25 percent and the
discount is 50 percent.

Table 6 demonstrates an application components exam-
ple fits the configurations in Table 5. This application con-
sists of eight components: four of them (50 percent) are
optional components. Each component has utilization, dis-
count and connected relationship with other components:
the optional component utilization threshold is 50 percent
(the utilization sum of component 5, 6, 7 and 8), there are
two components (20 percent) of all components are con-
nected (component 5 and 6) and the total discount of
optional components is 50 percent.

5.2 Results and Analysis
In this section, we compare EEBA performance with two
baselines algorithms:

1) VM Placement and Consolidation algorithm: the algo-
rithm is described in Section 4.1. We configure its
upper threshold as 0.8 and the lower threshold as 0.2.

2) Utilization-based Probabilistic VM consolidation algo-
rithm (UBP) [12]: in the VM placement, UBP adopts
the same approach as PCO: sorting all the VMs in
decreasing order based on their utilization and allo-
cating each VM to the host that increases the least
power consumption. In the VM consolidation phase,
UBP applies a probabilistic method [11] to select
VMs from overloaded host. The probabilistic method
calculates the migration probability based on PM uti-
lization u as

fmðuÞ ¼ 1� u� 1

1� Th

� ��

; (16)

where fmðuÞ is the migration probability, Th is the
upper threshold for detecting overloads and � is a
constant to adjust probability. We configure the
Th ¼ 0:8 and � ¼ 1.

In EEBA, we also configure TP ¼ 0:8 that is as same as
the upper threshold in PCO and Th in UBP.

We separately conduct experiments for the two design
patterns to evaluate algorithm performance. With approxi-
mate components, our proposed policies LUFCS, LPFCS
and HUPRFCS select the same components, so we focus on
comparing PCO, UBP, NUFCS and LUFCS policies, which
represent baseline algorithms without brownout, EEBA
with single component selection policy and EEBAwith mul-
tiple components selection policy respectively. While with
different components, we focus on comparing the LUFCS,
LPFCS and HUPRFCS policies to evaluate performance of
different multiple components selection policies.

In addition, as introduced in Section 3.1, components
may be connected. Therefore, to investigate the effects of
individual component selection and connected components
selection, we separately run experiments for components
without connections and connected components.

As PCO and UBP performance are not influenced by
the parameters in Table 4, we first obtain their results as
baselines. The PCO leads to 345.3 kWh with 95 percent
confidence interval (CI): (336.9, 353.7), and UBP reduces
this value to 328.5 kWh with 95 percent CI: (321.1, 335.9).
Both these two algorithms offer no discount and no
disabled utilization. Because UBP performance is better
than PCO, we set PCO as the benchmark. Referring to Equa-
tion (9), Eb is set as 345.3, so PCO algorithm efficiency
EffPCO ¼ 345:3=345:3þ 0:0 ¼ 1:0; for UBP algorithm, its
efficiency is EffUBP ¼ 321:1=345:3þ 0:0 ¼ 0:95.

5.2.1 Components without Connections

1) Varying Optional Component Utilization Threshold. Fig. 2
shows the comparison between PCO, UBP, NUFCS and
LUFCS when components are approximate by varying the

TABLE 5
A Testcase Example

Testcase ID Optional component
utilization threshold

Percentage of optional
Components

Percentage of connected
components

Discount

TC1 50% 50% 25% 50%

TABLE 6
An Application Component Example 1

Components ID Mandatory /
Optional

Utilization Discount Connected

Comp 1 Mandatory 10% 10% N/A
Comp 2 Mandatory 10% 10% N/A
Comp 3 Mandatory 20% 20% N/A
Comp 4 Mandatory 10% 10% N/A
Comp 5 Optional 5% 5% Comp8
Comp 6 Optional 10% 10% Comp7
Comp 7 Optional 15% 20% N/A
Comp 8 Optional 20% 15% N/A

48 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 1, NO. 2, JULY-DECEMBER 2016

optional utilization threshold (the percentage of optional
components is fixed as 50 percent). Fig. 2a shows the energy
consumption of these policies respectively. NUFCS and
LUFCS can save more energy when the optional component
utilization threshold is larger. However, more discount
amount is also offered to users according to Fig. 2b. The rea-
son lies in that Figs. 2c and 2d demonstrate that more utili-
zation amount is disabled in NUFCS and LUFCS, and more
hosts are shutdown by these policies, which contributes to
more energy reduction. We use UBP and NUFCS with 100
percent optional utilization threshold to compare the num-
ber of shutdown hosts with PCO, which shows the maxi-
mum and minimum number of shutdown hosts in this
series of experiments. The number of shutdown hosts of
other experiments falls between the UBP and LUFCS-100
percent lines in Fig. 2d. Compared with UBP, NUFCS
reduces 2 to 7 percent energy and LUFCS reduces 6 to
21 percent energy while 1 to 6 percent and 8 to 22 percent
discount amount are offered respectively.

Fig. 3 showsLUFCS, LPFCS andHUPRFCSpolicies’ effects
on energy and discount amount when components are differ-
ent and optional utilization threshold increases, more energy
is reduced and more discount amount is offered. As Figs. 3a
and 2a illustrate, when components are different, LUFCS can-
not save as much energy as when components are approxi-
mate. For example, LUFCS-100 percent in Fig. 3a shows it
reduces maximum 15 percent energy (the dotted line repre-
sents UBP energy consumption), while LUFCS-100 percent in
Fig. 2a saves 21 percent energy. Therefore, our proposed poli-
cieswork betterwhen components are designedwith approx-
imate resource requirement, which also shows the value of
proper design of components or microservices. According to
Figs. 3a and 3b, LUFCS reduces the maximum energy, but
also offers the maximum discount amount, which gives
LUFCS < LPFCS < HUPRFCS in energy and LUFCS >
LPFCS > HUPRFCS in discount amount. We conduct paired
t-tests for energy consumption of these policies, when
optional utilization threshold is 25 percent, the p-value for
LUFCS-25 percent and HUPRFCS-25 percent is 0.12, which
shows nonstatistically significant differences between these
policies, while the optional utilization threshold increases, the

p-value for LUFCS-50 percent and LPFCS-50 percent is 0.038
and the p-value for LPFCS-50 percent and HUPRFCS-50 per-
cent is 0.046,which shows there are statistically significant dif-
ferences in energy consumption. As shown in Figs. 3c and 3d,
it reflects more utilization amount is disabled and more hosts
are shutdown in LUFCS as shown. The different effects
between these policies come from the LUFCS selects compo-
nents without considering discount, as it can select as many
components as possible until achieving expected utilization
reduction.While other two policies consider discount amount
and do not deactivate asmany components as in LUFCS.

2) Varying Percentage of Optional Components. Fig. 4 shows
the results when components are approximate by varying the
percentage of optional components (the optional component
utilization threshold is fixed as 50 percent). Figs. 4a and 4b
illustrate that in comparison to PCO andUBP, more energy is
saved andmore discount amount is offered with the increase
of the optional components in NUFCS and LUFCS, which
results from more options of components are available to be
selected. In comparison to UBP, when more than 25 percent
components are optional, NUFCS saves 1 to 7 percent energy
and offers maximum 12 percent discount amount, and
LUFCS saves 5 to 19 percent energy but offers 5 to 20 percent
discount amount. As shown in Figs. 4c and 4d, compared
with UBP, LUFCS disables maximum 19 percent utilization
amount andmore than 8 hosts averagely.

Fig. 5 compares LUFCS, LPFCS and HUPRFCS policies
for different components when varying the percentage of
optional components. The results in Figs. 5a and 5b show
that these policies save more energy when optional compo-
nents increases, and show LUFCS < LPFCS < HUPRFCS
in energy as well as LUFCS > LPFCS > HUPRFCS in dis-
count amount. As demonstrated in Figs. 5c and 5d, LUFCS
disables more utilization amount than other two policies
and shuts down the maximum number of hosts when with
100 percent optional components. Through paired t-tests for
25 percent optional components, we observe the p-value for
LUFCS and LPFCS is 0.035, which shows statistically signifi-
cant differences. But the p-value for LPFCS and HUPRFCS
is 0.095, which shows nonstatistically significant different.
Similar p-values are also observed when more optional
components are provided.

Fig. 2. Comparison by varying optional utilization threshold for approximate components.

Fig. 3. Comparison by varying optional utilization threshold for different components

XU ET AL.: ENERGY EFFICIENT SCHEDULING OF CLOUD APPLICATION COMPONENTS WITH BROWNOUT 49

Although LUFCS with 100 percent optional components
saves about 19 and 16 percent energy for approximate com-
ponents and different components respectively, it is not rec-
ommended to set all components as optional since too
much discount amount is offered. We will discuss policies
selection considering the trade-offs in the Section 5.2.3.

5.2.2 Connected Components

After investigating the components without connections, we
move to investigate connected components. Asmentioned in
Algorithm 2, in these cases, our proposed policies treat the
connected components together and use their average utili-
zation or discount to sort. Fig. 6 shows the PCO, UBP,
NUFCS and LUFCS for approximate components when
varying the percentage of connected components (optional
component utilization threshold and percentage of optional
components are both fixed as 50 percent). Fig. 6a shows that
the connected components affects the NUFCS impressively.
The energy consumption drops heavily in NUFCS when the
percentage of connected components increases, i.e., from 9 to
21 percent reduction compared with UBP. While in LUFCS,
the connected components do not affect its performance sig-
nificantly. Although the energy consumption is also reduced
when the percentage of connected components increases,
energy consumption drops slowly from 14 to 21 percent.
When 100 percent components are connected, NUFCS and
LUFCS produce the same effects. As shown in Fig. 6b, with
the increase of connected components, discount amount
increases fast from 10 to 23 percent in NUFCS while slowly
in LUFCS from 17 to 23 percent. NUFCS and LUFCS both
offer same discount amount when all the components are

connected. For the cases that save more energy, like NUFCS
or LUFCS with 100 percent connected components, Figs. 6c
and 6d show that more utilization amount is disabled and
more hosts are shutdown than baseline algorithms.

Fig. 7 illustrates the comparison of LUFCS, LPFCS and
HUPRFCS for different components when varying the per-
centage of connected components. Fig. 7a shows that
when connected components are larger than 75 percent,
these policies do not result in significant differences, this is
due to when the percentage of connected components
increases, similar deactivated component lists are obtained
although these components may be put into the list in dif-
ferent orders by these policies. Apparent differences for
discount amount and disabled utilization amount are illus-
trated in Figs. 7b and 7c when connected components are
less than 75 percent, like LUFCS reduces 2 to 5 percent
energy than LPFCS and 5 to 10 percent energy than
HUPRFCS, LUFCS offers 4 to 10 percent more discount
than LPFCS and 9 percent to 15 percent more discount
amount than HUPRFCS. Fig. 7d shows that when compo-
nents are connected, more hosts are shutdown than UBP.
In summary, our proposed multiple components selection
policies works better under components with lower con-
nected percentage up to 75 percent, which enables to pro-
vide multiple choices for service provider rather than
providing same effects.

To evaluate the effects of combined parameters, we vary
optional component utilization threshold and percentage of
connected components together. We choose the optional
component utilization threshold, as this parameter shows

Fig. 4. Comparison by varying optional component percentage for approximate components.

Fig. 5. Comparison by varying optional component percentage for different components.

Fig. 6. Comparison by varying percentage of connected components for approximate components.

50 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 1, NO. 2, JULY-DECEMBER 2016

more significant effects than the percentage of optional com-
ponent in energy and discount. Figs. 8, 9, and 10 demon-
strate the energy consumption, discount amount and
disabled utilization amount separately when varying these
two parameters together. Each subfigure is with fixed
optional component utilization threshold and variable per-
centage of connected components, for example, Fig. 8a rep-
resents energy consumption when optional component
utilization threshold is 25 percent and percentage of con-
nected component is varied from 25 to 100 percent. Fig. 8
shows that energy is reduced when connected components
increases or larger optional component utilization threshold
is given. For the compared policies, LUFCS, LPFCS and
HUPRFCS show similar results when optional component
utilization threshold is below 25 percent or percentage of
connected components is above 75 percent. This is because
when optional component utilization threshold is low, the
disabled utilization is quite close for different policies,
and higher percentage of connected components also con-
tributes to deactivating the same list of components. For
other cases that show statistically significant differences in

energy consumption with p-value less than 0.05, like in
Fig. 7a, the results are given as LUFCS � LPFCS �
HUPRFCS. In these cases, Figs. 9 and 10 also show that
LUFCS > LPFCS > HUPRFCS in discount amount and
disabled utilization.

In conclusion, EEBA algorithm saves more energy than
the VM consolidation approaches without brownout, like
PCO and UBP. It is noticed that our experiments are mainly
focused on optimizing servers energy consumption, so the
network infrastructure energy consumption is not opti-
mized. Since the component selection policies in brownout
controller can be modelled into applications, like in [6], they
are insensitive to network infrastructures.

5.2.3 Policy Selection Recommendation

To help make choices for component selection policies, we
use the Equation (9) to calculate their algorithm efficiency
and summarize suitable policies under different configura-
tions to achieve better energy efficiency. We consider
energy consumption and discount with the same impor-
tance, so the a is set as 1. Table 7 shows the results for

Fig. 8. Energy consumption comparison by varying percentage of connected components and optional component utilization threshold.

Fig. 7. Comparison by varying percentage of connected components for different components.

Fig. 9. Discount amount comparison by varying percentage of connected components and optional component utilization threshold.

Fig. 10. Disabled utilization amount comparison by varying percentage of connected components and optional component utilization threshold.

XU ET AL.: ENERGY EFFICIENT SCHEDULING OF CLOUD APPLICATION COMPONENTS WITH BROWNOUT 51

components without connections and Table 8 presents the
results for the connected components.

To sum up, for components without connections, 1) when
the components are approximate, NUFCS fits in the config-
urations when service provider allows maximum 5 percent
discount and LUFCS performs better when more discount
amount is allowed by service provider. 2) When the compo-
nents are different, although the discount constraint is not
as important as in the approximate components cases, the
policies are picked out by other parameters, for instance,
LUFCS achieves the best efficiency with less than 50 percent
optional component utilization threshold, LPFCS over-
whelms others with 50 to 75 percent optional component
utilization threshold, HUPRFCS performs the best efficiency
with more than 75 percent optional components utilization
threshold.

For connected components, the suitable conditions are
more complex: 1) when the components are approximate,
NUFCS is recommended if discount amount is limited
under 5 percent and LUFCS is suggested if more than 5 per-
cent discount amount is allowed; 2) when the components
are different, recommended policy changes via different
configurations. For example, when connected components
are less than 50 percent, if optional component utilization
threshold is less than 50 percent, LUFCS is recommended; if
optional component utilization threshold is larger than 50
percent, LPFCS is recommended. When connected compo-
nents are between 50 percent and 75, LPFCS is recom-
mended for optional component utilization threshold that is
not larger than 50 percent, HUPRFCS is recommended for
optional component utilization threshold larger than 50 per-
cent. When more than 75 percent components are con-
nected, any policy achieves quite close results, HUPRFCS is
a choice.

6 CONCLUSIONS AND FUTURE WORK

Brownout has been proven effective to solve the overloaded
situation in cloud data centers. Additionally, brownout
can also be applied to reduce energy consumption. We
introduce the brownout enabled system model by consi-
dering application components, which are either mandatory
or optional. In the model, the brownout controller can

deactivate the optional components to reduce data center
energy consumption while offering discount to users. We
also propose a brownout enabled algorithm to determine
when to use brownout and how much utilization on a host
is reduced. Then we present a number of policies to select
components and investigate their effects on energy con-
sumption and discount offering.

In our experiments, we consider different configurations,
such as components without connections, connected com-
ponents, approximate components, different components
and etc. The results show that these proposed policies save
more energy than the baselines PCO and UBP. The compari-
son of proposed policies demonstrates that these policies fit
in different configurations. Considering the discount
amount offered by a service provider, NUFCS is recom-
mended when a small amount of discount (like less than
5 percent) is offered, as it can reduce maximum 7 percent
energy consumption in contrast to UBP. When more dis-
count amount (like more than 5 percent) is allowed by ser-
vice provider, other multiple components selection policies
are recommended, for example, compared with UBP,
HUPRFCS saves more than 20 percent energy with 10 to
15 percent discount amount.

As for future work, to avoid ineffective deactivation, we
plan to investigate Markov Decision Process to determine
whether the energy consumption would be reduced if some
components are deactivated. We also plan to implement
proposed policies and deploy them to OpenStack and web
application system such as Apache web server.

ACKNOWLEDGMENTS

This work is supported by the China Scholarship Council
(CSC), Australia Research Council Future Fellowship, and
Discovery Project Grants.

REFERENCES

[1] R. Buyya, C. S. Yeo, and S. Venugopal, “Market-oriented cloud
computing: Vision, hype, and reality for delivering it services as
computing utilities,” in Proc. 10th IEEE Int. Conf. High Performance
Comput. Commun., 2008, pp. 5–13.

[2] T. Kaur and I. Chana, “Energy efficiency techniques in cloud com-
puting: A survey and taxonomy,” ACM Comput. Surveys, vol. 48,
no. 2, 2015, Art. no. 22.

TABLE 8
Recommended Policies for Connected Components under Different Configurations

TABLE 7
Recommended Policies for Components without Connections under Different Configurations

52 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 1, NO. 2, JULY-DECEMBER 2016

[3] M. Pedram, “Energy-efficient datacenters,” IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol. 31, no. 10, pp. 1465–1484,
Oct. 2012.

[4] C. Klein, M. Maggio, K.-E. A

rz�en, and F. Hern�andez-Rodriguez,

“Brownout: Building more robust cloud applications,” in Proc.
36th Int. Conf. Softw. Eng., 2014, pp. 700–711.

[5] S. Newman, Building Microservices. Sebastopol, CA, USA: O’Reilly
Media, 2015.

[6] J. D€urango, et al., “Control-theoretical load-balancing for cloud
applications with brownout,” in Proc. 53rd IEEE Conf. Decision
Control, 2014, pp. 5320–5327.

[7] N. J. Kansal and I. Chana, “Cloud load balancing techniques: A
step towards green computing,” Int. J. Comput. Sci. Issues, vol. 9,
no. 1, pp. 238–246, 2012.

[8] J. E. Pecero, H. J. F. Huacuja, P. Bouvry, A. A. S. Pineda, M. C. L.
Loc�es, and J. J. G. Barbosa, “On the energy optimization for prece-
dence constrained applications using local search algorithms,” in
Proc. Int. Conf. High Performance Comput. Simul., 2012, pp. 133–139.

[9] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for
cloud computing,” Future Generation Comput. Syst., vol. 28, no. 5,
pp. 755–768, 2012.

[10] A. Beloglazov and R. Buyya, “Optimal online deterministic algo-
rithms and adaptive heuristics for energy and performance effi-
cient dynamic consolidation of virtual machines in cloud data
centers,” Concurrency Comput.: Practice Experience, vol. 24, no. 13,
pp. 1397–1420, 2012.

[11] C. Mastroianni, M. Meo, and G. Papuzzo, “Probabilistic consolida-
tion of virtual machines in self-organizing cloud data centers,”
IEEE Trans. Cloud Comput., vol. 1, no. 2, pp. 215–228, Jul.–Dec. 2013.

[12] Q. Chen, J. Chen, B. Zheng, J. Cui, and Y. Qian, “Utilization-based
VM consolidation scheme for power efficiency in cloud data cen-
ters,” in Proc. IEEE Int. Conf. Commun. Workshop, 2015, pp. 1928–
1933.

[13] A. Corradi, M. Fanelli, and L. Foschini, “VM consolidation: A real
case based on OpenStack cloud,” Future Generation Comput. Syst.,
vol. 32, pp. 118–127, 2014.

[14] M. A. Salehi, P. R. Krishna, K. S. Deepak, and R. Buyya,
“Preemption-aware energy management in virtualized data cen-
ters,” in Proc. 5th Int. Conf. Cloud Comput., 2012, pp. 844–851.

[15] Z. Han, H. Tan, G. Chen, R. Wang, Y. Chen, and F. C. M. Lau,
“Dynamic virtual machine management via approximate markov
decision process,” in Proc. 35th Annu. IEEE Int. Conf. Comput. Com-
mun., Apr. 2016, pp. 1–9.

[16] A. Beloglazov and R. Buyya, “OpenStack neat: A framework for
dynamic and energy-efficient consolidation of virtual machines in
openstack clouds,” Concurrency Comput.: Practice Experience,
vol. 27, no. 5, pp. 1310–1333, 2015.

[17] G. von Laszewski, L. Wang, A. J. Younge, and X. He, “Power-
aware scheduling of virtual machines in DVFS-enabled clusters,”
in Proc. IEEE Int. Conf. Cluster Comput. Workshops, 2009, pp. 1–10.

[18] V. Hanumaiah and S. Vrudhula, “Energy-efficient operation of
multicore processors by DVFS, task migration, and active cool-
ing,” IEEE Trans. Comput., vol. 63, no. 2, pp. 349–360, Feb. 2014.

[19] K. H. Kim, A. Beloglazov, and R. Buyya, “Power-aware provision-
ing of virtual machines for real-time cloud services,” Concurrency
Comput.: Practice Experience, vol. 23, no. 13, pp. 1491–1505, 2011.

[20] Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch, and R. Bian-
chini, “CoScale: Coordinating CPU and memory system DVFS in
server systems,” in Proc. 45th Annu. IEEE/ACM Int. Symp. Micro-
architecture, 2012, pp. 143–154.

[21] F. Teng, L. Yu, T. Li, D. Deng, and F. Magoul�es, “Energy efficiency
of VM consolidation in IaaS clouds,” J. Supercomputing, vol. 73,
no. 2, pp. 782–809, 2017.

[22] L. Tom�as, C. Klein, J. Tordsson, and F. Hern�andez-Rodr�ıguez,
“The straw that broke the camel’s back: Safe cloud overbooking
with application brownout,” in Proc. Int. Conf. Cloud Auton. Com-
put., 2014, pp. 151–160.

[23] K. Zheng, X. Wang, L. Li, and X. Wang, “Joint power optimization
of data center network and servers with correlation analysis,” in
Proc. IEEE Conf. Comput. Commun., 2014, pp. 2598–2606.

[24] A. Borodin and R. El-Yaniv, Online Computation and Competitive
Analysis. Cambridge, U.K.: Cambridge Univ. Press, 2005.

[25] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and simula-
tion of scalable cloud computing environments and the CloudSim
toolkit: Challenges and opportunities,” in Proc. Int. Conf. High Per-
formance Comput. Simul., 2009, pp. 1–11.

[26] Standard performance evaluation corporation. [Online]. Available:
http://www.spec.org/power-ssj2008/results/res2010q2/, 2010.

[27] K. Park and V. S. Pai, “CoMon: A mostly-scalable monitoring sys-
tem for PlanetLab,” ACM SIGOPS Operating Syst. Rev., vol. 40,
no. 1, pp. 65–74, 2006.

[28] A. Beloglazov and R. Buyya, “Managing overloaded hosts for
dynamic consolidation of virtual machines in cloud data centers
under quality of service constraints,” IEEE Trans. Parallel Distrib.
Syst., vol. 24, no. 7, pp. 1366–1379, Jul. 2013.

Minxian Xu received the BSc and MSc degrees
in software engineering from the University of
Electronic Science and Technology of China,
in 2012 and 2015, respectively. He is working
toward the PhD degree in the Cloud Computing
and Distributed Systems (CLOUDS) Laboratory,
Department of Computing and Information
Systems, University of Melbourne, Australia. His
research interests include resource scheduling
and optimization in cloud computing.

Amir Vahid Dastjerdi is a research fellow in the
Cloud Computing and Distributed Systems
(CLOUDS) Laboratory, University of Melbourne.
His current research interests include cloud ser-
vice coordination, scheduling, and resource pro-
visioning using optimization, machine learning,
and artificial intelligence techniques. He is a
member of the IEEE.

Rajkumar Buyya is a professor and future fellow
of the Australian Research Council, and the
director of the Cloud Computing and Distributed
Systems (CLOUDS) Laboratory, University of
Melbourne, Australia. He is also serving as the
founding CEO of Manjrasoft, a spin-off company
of the university, commercializing its innovations
in Cloud Computing. He has authored more than
425 publications and four text books including
Mastering Cloud Computing published by
McGraw Hill and Elsevier/Morgan Kaufmann,

2013, for Indian and international markets, respectively. He is one of the
highly cited authors in computer science and software engineering
worldwide. Microsoft Academic Search Index ranked him as the world’s
top author in distributed and parallel computing between 2007 and 2012.
Software technologies for grid and cloud computing developed under his
leadership have gained rapid acceptance and are in use at several aca-
demic institutions and commercial enterprises in 40 countries around
the world. He has led the establishment and development of key
community activities, including serving as foundation chair of the IEEE
Technical Committee on Scalable Computing and five IEEE/ACM con-
ferences. His contributions and international research leadership have
been recognized through the award of the 2009 IEEE Medal for Excel-
lence in Scalable Computing from the IEEE Computer Society. He is a
fellow of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

XU ET AL.: ENERGY EFFICIENT SCHEDULING OF CLOUD APPLICATION COMPONENTS WITH BROWNOUT 53

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

