
A Reinforcement Learning based Approach to
Identify Resource Bottlenecks for Multiple
Services Interactions in Cloud Computing

Environments

Lingxiao Xu1, Minxian Xu2(�), Richard Semmes3, Hui Li3, Hong Mu3,
Shuangquan Gui3, Wenhong Tian1(�), Kui Wu4, and Rajkumar Buyya1,5

1 School of Software and Information Engineering, University of Electronic Science
and Technology of China, China

2 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
3 Siemens Industry Software (Chengdu) Co., Ltd , China

4 Department of Computer Science of University of Victoria, Canada
5 CLOUDS Lab, School of Computing and Information Systems, University of

Melbourne, Australia

Abstract. Cloud service providers are provisioning resources including
a variety of virtual machine instances to support customers that migrate
their services to the cloud. From the customers’ perspective, selecting the
appropriate amount of resources is tightly coupled with performance and
cost. By identifying the potential resource bottlenecks in the early stage
of the service deployment process, resource planning can be significantly
optimized. However, due to the unpredictable workloads and heteroge-
neous resources, it is difficult to identify resource bottlenecks that can
degrade system performance. To support system non-functional require-
ments (NFR) in a better manner, we propose a reinforcement learning
based approach to support the NFR management of system concerning
the multiple services interactions scenario by identifying the potential
resource bottleneck and optimizing the demanded resources. The pro-
posed approach can predict the resource bottleneck for multiple services
interactions, e.g. bottleneck in CPU or overloads in specific service, and
provide guidance for resource planning. We modeled and simulated the
proposed approach using an extended version of the CloudSim toolkit.
Comprehensive evaluations with realistic use case from Siemens Digital
Industries Software’s MindSphere Solution on AliCloud show that our
proposed approach can achieve high accuracy in terms of performance
metrics, such as response time, queries per second (QPS), and resource
usage.

Keywords: Cloud Computing · Reinforcement Learning · Service Interactions
· Non-functional Requirement · Resource Bottleneck

Minxian Xu and Wenhong Tian are corresponding authors



2 L. Xu et al.

1 Introduction

The rapid development of cloud computing has made it be regarded as the fifth
utility, like electricity, gas, and water [4]. Rather than assigning all tasks to a
single local computer or a traditional computer cluster, cloud computing enables
users to utilize computing or storage resources remotely, which provisions trans-
parent and on-demand resources. In essence, the cloud is a networked computer
paradigm based on virtualization techniques to improve resource usage. The pay-
as-you-go model provided by cloud computing also helps the service providers
and customers to start their business with minimal costs and eliminates the
efforts to maintain the data centers [10].

Among all the benefits provided by cloud computing, some features are par-
ticularly attractive for customers. To be more specific, the first one is flexibility,
which allows customers to acquire or release resources dynamically to fit their
demands. The second is cost reduction, which means cloud computing service
can convert capital expenditures to operational expenditures [23]. By utilizing
the cloud, expensive infrastructures like servers and professionals will not be the
main concern of customers anymore. And the third is the device and location in-
dependence, which supports customers to access computing resources anywhere
and anytime, instead of using the specific interfaces to access the local machines
and avoiding unavailability due to machine maintenance. Benefiting from these
advantages, many customers have migrated their business to the cloud, for in-
stance, Alibaba has announced a statement that their services should be ”All in
Cloud” [6]. Currently, the prominent IT companies such as Amazon, Google, Mi-
crosoft, and Alibaba, have established their own cloud data centers and become
cloud providers.

Though cloud computing has significant advantages, based on the practice
of utilizing resources of cloud computing, resource bottlenecks can still happen
occasionally, like in CPU, memory, and bandwidth [24]. The reason is that when
customers set up their services, they need to estimate how much of the resources
will be used for their services and reserve specific amount of resources. However,
due to the fluctuations of loads, overloads can occasionally happen and lead
to bottlenecks. When bottlenecks exist, the system performance, such as non-
functional requirement (NFR) can be significantly influenced [20], for instance,
CPU bottleneck can cause insufficient computing power and reduced number
of parallel processes, memory bottleneck can lead to insufficient tasks or data
waiting to be processed [27], and bandwidth bottleneck can trigger requests
failed to be responded.

As bottlenecks can greatly affect the performance and user experience of
cloud services [11], it is important to identify the potential bottlenecks. However,
different cloud services often provision various resource capacity, such as VM
instances with different CPU, memory, and bandwidth, thus they may have
bottlenecks under diverse load conditions. Besides, the bottlenecks of individual
services are more difficult to be predicted based on divergent resource demands,
running status and internal logic. If service providers can identify the potential
bottleneck of each service and modify configurations, the NFR can be satisfied.



A RL-based Approach to Identify Bottlenecks of Service s in Clouds 3

However, identifying the bottlenecks at the early stage is not easy. It’s not fea-
sible that arranging testers to perform a large number of stress tests to evaluate
the bottlenecks when changing resource configurations. Apart from it, purchas-
ing much more resources than required is not cost-effective and evaluation results
may not be reproducible due to uncontrolled factors, such as network traffics.

To deal with the above challenges, using a simulation toolkit to simulate the
real environment is a promising way. In this paper, we use CloudSim [5], which
is a well-known cloud simulation toolkit that enables seamless modeling, simu-
lation and experimentation of cloud computing. With CloudSim, we can model
the resource provisioning of various cloud infrastructure configurations and gen-
erate reproducible results. Large-scale simulations can also be easily conducted.
Our motivation is to predict the potential resource and service bottlenecks of a
sample use case that is based on Siemens Digital Industries’ MindSphere solu-
tion [16],which is a cloudbased Internet-of-Things (IoT) open operating system.
We aim to generate various metrics to help plan hardware resources for the use
case. We also make efforts to ensure our approach as generic as possible in order
to extend it other cloud platforms with ease. To achieve these goals, we also
have some challenges to address, including how to build a model for realistic
scenarios, how to ensure that the system output results are consistent with the
real test results, and how to make it a generic approach.

In this paper, we propose a data-driven framework to support the non-
functional requirement, e.g. system performance, for multiple services interac-
tions to identify the potential bottlenecks of service in the early stage. A policy
gradient approach based on reinforcement learning is also proposed to predict
the potential system bottleneck based on data collected from real test cases and
guide companies to optimize the resource configuration. Additionally, the ap-
proach can also help to predict the response time and QPS when the system has
reached the bottleneck.

Our key contributions are as follows:

– Presented a framework to identify the potential bottleneck for multiple ser-
vices interacted in the cloud to optimize resource planning for companies.

– Proposed a policy gradient approach to model resource utilization and pre-
dict the system behaviors under different loads.

– Utilized CloudSim components to setup specific underlying IaaS infrastruc-
ture model, specific MindSphere service model, and realized performance
test simulation.

The rest of the paper is organized as: we start by discussing the related work
in Section 2, where we highlight the differences between our work and existing
work. In Section 3, we introduce our proposed framework, named IRBS, for
bottleneck identification. Then we discusses the modeling of multiple services
interactions scenario and introduce our proposed reinforcement learning based
approach for bottleneck prediction in Section 4. Afterward, the evaluation results
based on the sample scenario are demonstrated in Section 5. Finally, conclusions
and future work are given in Section 6.

https://siemens.mindsphere.io/en



4 L. Xu et al.

2 Related work

To utilize cloud service more efficiently and reduce the cost, it is important
to model cloud services and scheduling process and optimize resources. Some
work has been done to model services and optimize resources in Clouds. Neer-
aja et al. developed a data-driven system named PARIS, which can predict
workload performance, resulting in costs and workloads across multiple cloud
providers [26]. To decrease the task execution failure, Lattif et al. proposed the
DCLCA (dynamic clustering league championship algorithm) scheduling tech-
nique for fault tolerance awareness to address cloud task execution which would
reflect on the currently available resources and reduce the untimely failure of
autonomous tasks [13]. Sekaran et al. presented a new meta-heuristic algorithm,
named the dominant firefly algorithm, which can optimize load balancing of tasks
among the multiple virtual machines in the Cloud server, thereby improving the
response efficiency of Cloud servers that concomitantly enhances the accuracy
of m-learning systems [18]. Cheng et al. introduced DRL-Cloud, a novel Deep
Reinforcement Learning (DRL)-based RP and TS system, to minimize energy
cost for large-scale CSPs with a very large number of servers that receive enor-
mous numbers of user requests per day [7]. Nayak et al. used AHP (Analytic
Hierarchy Process) as a decision-maker in the backfilling algorithm to choose
the possible best lease from the given best-effort queue to schedule the dead-
line sensitive lease [15]. Priya et al. constructed a Fuzzy-based Multidimensional
Resource Scheduling model to obtain resource scheduling efficiency in cloud in-
frastructure and increased utilization of Virtual Machines through effective and
fair load balancing are then achieved by dynamically selecting a request from a
class using Multi-dimensional Queuing Load Optimization algorithm [17]. These
work can optimize resource usage, however, their objectives are not identifying
the potential bottleneck of resources and services in the system.

In order to generate reproducible results and simulate a large-scale cloud
environment, CloudSim is frequently used. For instance, Wickremasinghe et al.
developed CloudAnalyst, which is a CloudSim based tool for simulating large-
scale Cloud applications to study the behavior of such applications under var-
ious deployment configurations [21]. Shi et al. used CloudSim to develop ef-
ficient energy-saving methods to reduce the huge energy consumption in the
cloud datacenter [19]. Jung et al. proposed a simulation tool that supports the
MapReduce model, implemented on CloudSim [12]. Belalem et al. investigated
two approaches that aim at returning a better availability of data centers with-
out deteriorating the performances for the answers of the users [2]. Alla et al.
presented Task Scheduling optimization using a novel approach based on Dy-
namic dispatch Queues (TSDQ) and hybrid meta-heuristic algorithms, which
is based on CloudSim and showed a great advantage in terms of waiting time,
queue length, makespan, cost, resource utilization, degree of imbalance, and load
balancing [1]. Sharma et al. demonstrated a modified particle swarm optimiza-
tion (MPSO) task scheduling algorithm in order to optimize execution time,
transmission time, makespan, transmission cost, and load balancing of virtual
machines and got the best cost as compared to original PSO on the CloudSim [3].



A RL-based Approach to Identify Bottlenecks of Service s in Clouds 5

However, these works do not model service internal logic. Besides, they do not
provide the model for the intended sample scenario and use cases which will be
elaborated in Section 4.

Table 1: Comparison of related work
Approach

Resource
Optimization

Service
Modelling

Bottleneck
Identification

Multiple Services
Interactions Modelling

Evaluations with
CloudSim Extension

Sample
Scenario

Neeraja et al. [26] X X
Latif et al. [13] X X

Sekaran et al. [18] X X
Cheng et al. [7] X X
Nayak et al. [15] X X
Priya et al. [17] X X

Wickremasinghe et al. [21] X X
Shi et al [19] X X

Jung et al. [12] X X
Alla et al. [1] X X

Sharma et al. [3] X X
Our Approach X X X X X X

We compare our approach with other related work from multiple perspectives
in Table 1. Our work mainly contributes to the current research area by providing
an approach for identifying the resource and service bottlenecks for cloud system,
it also models the multiple services interactions for the sample scenario. The
proposed approach can be further applied to other related scenarios and service
providers.

3 IRBS Framework

To make our proposed approach to be reusable, correct and universal, we propose
a framework to identify resource and service bottlenecks for multiple services in-
teractions in Cloud, named IRBS (Identifying Resource Bottlenecks Solution).
IRBS can evaluate different kinds of cloud services to achieve their availabil-
ity and scalability. IRBS aims to predict the bottlenecks of the cloud service
and identify the metrics when the service has reached the bottleneck. From the
companies’ perspective, selecting the appropriate amount of resources is tightly
coupled with performance and cost, and bottlenecks are the important metric to
improve the rationality of resource allocation. We provide a high-level summary
below and then discuss the details in the subsequent sections.

We aim to make generic design, thus IRBS should be applicable to cloud
services of different specifications by changing configurations. We also target
to fit the data to achieve high accuracy. Furthermore, when a new service is
integrated into the system, our framework should also adapt it in a good manner.

The framework of IRBS is shown in Fig. 1, it contains five components:
Input Controller, Resource Usage Model, Data Fitting Model, Queue Processing
Model, Multiple Services Interactions Modelling.

The Input Controller Component handles the input workloads. The work-
loads can be generated by this component, then the concurrent loads can be



6 L. Xu et al.

Multiple Service Interaction

Queue Processing Model

The Data Fitting ModelInput 
Controller

Resource 

Usage Model

Container

Service

Application

Bandwidth

CPU

Container

Service

Application

Bandwidth

CPU

Container

Service

Application

Bandwidth

CPU

Container

Service

Application

Bandwidth

CPU

Fig. 1: Framework of IRBS

processed by other components in the framework. The characteristic of loads
can be defined in the input property files, including the number of loads, du-
ration, ramp-up time etc., which will be loaded firstly. In our framework, we
consider the online scheduling policy to fit the realistic scenario, and the loads
are generated as per time slot, e.g. 1 second.

The Resource Usage Model Component is the key component of IRBS. It
produces the resource pool containing the CPU pool and bandwidth pool, then
simulates the real scenario to perform the distribution of loads. Based on this,
results including real-time CPU usage, the real-time bandwidth usage, the initial
response time can be obtained and modelled. More details will be provided in
Section 4.

The Data Fitting Model Component supports to calculate the evaluation re-
sults. In the real scenario, the hardware, temperature, voltage, and other factors
can have significant impacts on cloud service performance. As for the software,
the scheduling policy and the adopted cloud service can also influence the NFR.
This component provides the approach to train the prediction model based on
the actual data.

Queue Processing Model controls two queues by monitoring the data in Re-
source Usage Model, which named the deferral queue and processing queue. It is
responsible for managing the workloads in the system and collaborating with the
components in the system to schedule the resources. The deferral queue stores
the loads that are deferred when the resource pool is full, and the processing
queue stores the loads under processing. The component notifies the Input Con-
troller about the total loads in the system and then adjusts the generated loads
dynamically based on resource usage.



A RL-based Approach to Identify Bottlenecks of Service s in Clouds 7

Load generator SLB GW GW K8S

Redis

SLB NFR Mockservice

Fig. 2: The sample scenario for Simulation

The Multiple Services Interactions Component manages the interactions and
collaborations between services. It can also represent the flow of workloads. Con-
sidering the collaboration of different services that if one service reaches its bot-
tleneck, the other service will be affected, so IRBS designs the multiple service
interactions to deal with the situation. By querying the Queue Processing Model,
the component can obtain the previous service queue status and notify the next
service, then achieve better resource optimization effects.

4 Problem Modelling and Proposed Solution

In this section, we will formulate our problem modeling for identifying the sys-
tem bottlenecks by predicting the system resource usage. We then present our
proposed approach based on policy gradient in reinforcement learning to solve
the problem.

4.1 System Model

To support the understanding of our system model, the sample scenario is shown
in Fig. 2, which mainly consists of 6 services collaborating together to support the
scenario. The load generator is the service that generates loads for the system.
SLB GW is used as the task scheduler (GW), which is responsible for maintaining
the load balancing and performing task distribution. GW K8S is the service
under test which is also the core component simulated in the whole system
model, which will also refer to the simulation of the interatction between GW
K8S and its backing database(Redis). SLB NFR is used to monitor various
metrics in the entire system, and Mockservice is a black box component that
generates as fixed processing delay component, e.g. 300 ms. Considering the
different functionalities of these services, the services consume different amount
of resources, and there are interactions between the services. Our objective is to
identify the bottlenecks in the system resulted from CPU usage and bandwidth
usage. A more general system model is introduced as follows.

Assuming the whole observation time period is T , and at time slot t, t ∈
{1, 2, . . . , T}, the number of load requests is Lt. We consider that there are



8 L. Xu et al.

M services collaborating together to support the sample scenario by providing
services for the customers. These services can be deployed on public cloud, e.g.
Alicloud, which provisions N ECS (Elastic Computing Service) VM nodes and
I pods (containers). The pods are deployed on ECS. For ECS node En, n ∈
{1, 2, . . . N}, it can have Ecn cores. And for pod Pi, i ∈ {1, 2, . . . , I}, it can have
P ci cores. The cores represent the capacity to process the load requests coming
into the system. The CPU utilization of each ECS and pod at time slot t can be
represented as Eun(t) and Pui (t) respectively. For service Sm, m ∈ {1, 2 . . . ,M},
considering Im pods are provided for it, thus the CPU utilization of service Sum(t)
can be represented:

Sum(t) =
1

Im

Im∑
i=1

Pui (t) (1)

CPU utilization is one of the key resource bottleneck that we would like to
investigate.

Besides CPU utilization, we also consider the bandwidth resource bottleneck.
Based on the obtained data, the bandwidth between different services can also
experience bottlenecks due to the communications between services. For exam-
ple, in Fig. 2 the requests are processed and distributed via the SLB GW service
and then the requests are processed by GW K8S, where the bottleneck can exist
due to the high volume of requests.

Considering services Sm and Sk, m, k ∈ {1, 2 . . . ,M}, are collaborating with
each other. The bidirectional network traffics at time slot t can be represented
as BSm,Sk(t) and BSk,Sm(t), where BSm,Sk(t) represents the communication is
from service Sm to Sk, and vice verse.

We use m∗ to denote the id of the service with the highest CPU utilization,
which can be calculated as:

m∗ = arg max
m,t
{Sum(t)} (2)

Compared with the predefined CPU utilization threshold T c, when Sum∗(t) ≥
T c, it means the bottleneck exists in service m∗. Similarly, the communication
with the highest bandwidth utilization between services can be represented as
BSm∗ ,Sk∗ (t), where the m∗ and k∗ can be calculated as:

{m∗, k∗} = arg max
m,k,t
{BSm,Sk(t)} (3)

Assuming that the bandwidth threshold from service m∗ to k∗ is T bm∗,k∗ , the

bandwidth bottleneck exists when BSm∗ ,Sk∗ (t) ≥ T bm∗,k∗ .
Some sample data for the Gateway service are shown in Table 2, which in-

cludes the information on load, pod utilization, throughput, average response
time and bandwidth. Based on these data, we can define a given set of J input
and output data asD = {(xi, y1), (x2, y2), . . . , (xJ , yJ)}, andX = {x1,x2, . . . ,xJ}
and Y = {y1, y2, . . . , yJ} are the set of input and output data.

In our reinforcement learning based approach, we would like to predict some
key metrics that can represent the system bottlenecks, e.g. CPU utilization and



A RL-based Approach to Identify Bottlenecks of Service s in Clouds 9

Table 2: Performance metrics of Realistic Scenario

Case Load
Pod CPU

utilization
Throughput

Average response

Time
Bandwidth

1 1,500 vu 38.5 cores 10,000 calls/s 50 ms 300 Mbps

2 2,000 vu 46 cores 11,300 calls/s 75 ms 342 Mbps

3 3,000 vu 47 cores 11,600 calls/s 158 ms 352 Mbps

bandwidth. The predicted metrics can be calculated by ŷi = f(xi), where f(x)
is the trained model by policy gradient approach. In our proposed approach, we
aim to reduce the error between the predicted data and actual data, which can
be evaluated by metrics such as Root Mean Square Error, Mean Relative Error,
and R2.

4.2 Policy Gradient Approach

Reinforcement Learning [14] is a data-driven approach for adaptively applying
optimized control policies based on real-time feedback, which models the stochas-
tic process under the framework of Markov Decision Process (MDP) [25]. Policy
gradient [9] is one of the most common types of reinforcement learning algo-
rithms. In the policy gradient approach, the optimal actions with model param-
eters can be learned directly. The control actions are selected as the ones that
can maximize the system rewards. In this section, we exploit the policy gradient
to seek the optimal policy.

In our problem, the approach will decide the amount of resources that should
be allocated to each request load at each time slot. The key entities in our
approach are defined as follows.

States: The system state S(t) includes the status of (1) amount of loads L(t), (2)
CPU capacity for processing loads Wc(t) (3) bandwidth capacity for processing
loads Wb(t), (4) CPU resource usage Uc(t), and (5) bandwidth resource usage
Ub(t). The state space of L(t) at time t is given as L(t) < L ∈ Z+, where L
is the maximum number of loads that the system can accommodate and Z+

is a set of non-negative integers. Wc(t) ∈ R+ and Wb(t) ∈ R+ represent the
capacity to process loads based on CPU (per core) and bandwidth (per Mbps)
respectively, where R+ is a set of non-negative real numbers. The CPU resource
usage Uc(t) ∈ [0, 1] and bandwidth resource usage Ub(t) ∈ [0, 1] are obtained
from system running status. Therefore, the system state at time t, S(t), can be
denoted by:

S(t) , [L(t),Wc(t),Wb(t), Uc(t), Ub(t)] ∈ S, (4)

where S stands for all possible states.

Actions: At the beginning of each time slot, the approach determines the ac-
tions to increase or decrease Wc(t) and Wb(t) to decide the CPU and bandwidth



10 L. Xu et al.

capacity to process loads. The next state S(t+ 1) depends on the current state
S(t) by taking action A(t) , [Ac(t), Ab(t)] ∈ A, where Ac(t) ∈ (0,+∞) and
Ab(t) ∈ (0,+∞) are the corresponding actions for CPU capacity and bandwidth
capacity, and A stands for all possible actions. Thus, the CPU and bandwidth
capacity for processing loads at t+1 can be determined according to the following
equations:

Wc(t+ 1) = Ac(t) ·Wc(t) (5)

Wb(t+ 1) = Ab(t) ·Wb(t) (6)

Rewards: At each unit time, the process is in a state S(t), and we choose a
possible action A(t). The process randomly moves to the next state S(t + 1)
at the next time slot, and gives the corresponding reward is r(S(t), A(t)). Our
model concerns the Euclidean Distance. After adopting the action A(t), the Uc(t)
and Ub(t) that are received from the system, and the errors between the actual
values and predicted values are accumulated. We set the cumulative errors of
two consecutive actions, e.g.

r(t) = D(t− 1)−D(t), (7)

where D(t − 1) and D(t) are the total cumulative errors in the current and
previous time slots. The total cumulative errors at time slot t, is the summation
of the cumulative errors of all actions from t = 0 to the current time slot.
The positive reward values imply that actions are taken to decrease the total
cumulative errors and the negative rewards imply an increase. With regard to
the reward values, the actions can be taken to change the current state to other
certain states in future time slots.

Objective Function: The approach chooses the actions based on policy π,
which is defined as the mapping from the input state to a probability distribu-
tion over actions A. We use parameters θ as policy parameters, and the policy
distribution π(A(t)|S(t); θ) is learned by performing gradient descent on the pol-
icy parameters. In this research, we aim to maximize the reduction of cumulative
errors, which represent the accuracy of resource utilization and bottleneck iden-
tification. The objective to maximize the reward values under the probability
distribution π(A(t)|S(t); θ) can be denoted as:

J(θ) = Eπθ [

T∑
t=0

γtr(t)] = Eπθ [R]. (8)

Where γ is the discount factor, and R is defined as the sum of future dis-
counted rewards.

In policy gradient approach, the gradient of the objective function in Equa-
tion (8) can be given by:

5θ J =

T∑
t=0

Eπθ [5θlog(A(t)|S(t); θ)Rt]. (9)



A RL-based Approach to Identify Bottlenecks of Service s in Clouds 11

Algorithm 1 Policy gradient based reinforcement learning approach

Input: Reachable system states S(t) ∈ S, observation time period T , possible actions
A(t) ∈ A, initialized parameters θ and θv, the maximum step K, discount factor
γ, and learning rate α

Output: θ, θv
1: for t from 1 to T do
2: for S(t) ∈ S do
3: perform action A(t) according to policy π(A(t)|S(t); θ)
4: obtain reward R(t) and next state S(t+ 1)
5: if S(t) is terminal state or T − t = K then
6: R = 0
7: break;
8: else
9: R = V (S(t); θv)

10: end if
11: for t

′
from t to t+K do

12: R← R(t
′

+ γR)

13: θ ← θ + αOθlog(A(t
′
)|S(t

′
); θ)(R− V (S(t

′
); θv))

14: θv ← θv + ∂(R−V (S(t
′
);θv))

2

∂θv
15: end for
16: end for
17: end for

The equation can update the policy parameters θ in the direction5θlog(A(t)|S(t); θ)
in order to increase the probability of action A(t) at state S(t) if the action can
increase the cumulative reward values, and vice verse.

By utilizing actor-critic approach [9], the parameters update can be done by
selecting actions to achieve the terminal state or taking K steps. Therefore, the
parameters θ can be updated through the following equation:

θ = θ + α
∑
t

5θlog(A(t)|S(t); θ)V (S(t), A(t); θ, θv), (10)

where α is the learning rate, V (S(t), A(t); θ, θv) is the estimate of advantage
function [14] comparing the state value function V πθv (S(t)) of current state and
the state after K steps.

The pseudocode of our proposed algorithm is shown in Algorithm 1. The
algorithm is based on policy gradient to maximize the reward values, which
controls by the actions. With the inputs of reachable states, possible actions, and
predefined system parameters, the algorithm iterates over time slots from periods
1 to T . Line 3 explores the possible actions under policies and the expected
reward of a state is calculated in line 4. The future discounted rewards calculation
is performed by lines 5 to 10. And lines 12-14 update the parameters.



12 L. Xu et al.

Cloudlet VM Task Stage Container
Disk IO & RAM 

Support

Container Placement Container Allocation Container Orchestration

Cloudlet Scheduler VM Management

VM 
Provisioning

CPU 
Allocation

Memory 
Allocation

Storage 
Allocation

Bandwidth 
Allocation

Events
Handling

Sensor
Cloud

Coordinator

Date
Center

Network
Date Center

Network
Switch

Network Topology Message Delay Calculation

User Interface 
Structures 

Container 
services

VM services

Cloud Services

Cloud Resources

Network

CloudSim

User Code
Simulation 

Specification

Scheduling policy

Cloud Scenario
User 

Requirements

User or Data Center Broker Preprocessing

Not used

Used but heavily modified

Used and not modified

Fig. 3: Extension of CloudSim Components of this Scenario

5 Performance Evaluations

In this section, we introduce our experimental environment, including the ex-
tension of CloudSim, environment settings, two scenarios under different loads,
convergence analysis, performance evaluations, bottleneck prediction, and scal-
ability analysis.

5.1 Extension of CloudSim for this scenario

By following the simulation methodology of CloudSim 4.0, we have re-implemented
some existing modules such as cloudlet, container, containerVM, and host. We
add the queueing method and apply the resource scheduling approach to design
our scheduling policy. The major modified components are shown in Fig. 3.

Considering the scenario, there is a mechanism to support admission control
based on system feedbacks, which CloudSim does not have. And the schedul-
ing logic of CloudSim is offline, in which it submits all the cloudlets firstly, and
processes them later. This policy does not support the feedback mechanism. Ad-
ditionally, we make improvements based on our objectives to make the scheduling
more suitable for our scenario, and finally realizing our target scenario. Some
components are kept as they are, e.g. CloudSim has virtual machine migration
and container migration in resource scheduling, which are not suitable for our
scenario.

5.2 Environment Settings

In our simulations, the time accuracy can be adjusted to make it more fine-
grained. However, if the accuracy is improved, the simulation takes longer run-



A RL-based Approach to Identify Bottlenecks of Service s in Clouds 13

Table 3: Infrastructure configuration
Case Load (per sec.) ECS number Pod number ECS cores Pod cores Bandwidth Other service response time

1 1,500 9 18 8 cores 3 cores 350 Mbps about 100 ms

2 2,000 9 18 8 cores 3 cores 350 Mbps about 100 ms

3 3,000 9 18 8 cores 3 cores 350 Mbps about 100 ms

4 3,020 20 40 8 cores 3 cores 650 Mbps about 100 ms

5 4,000 16 32 8 cores 3 cores 800 Mbps about 100 ms

6 4,000 20 40 8 cores 3 cores 610 Mbps about 100 ms

ning time and consumes more memory resources. To balance the trade-offs be-
tween accuracy and running costs, we simulate and collect the CPU usage, band-
width usage every second. And then, we draw the results based on the obtained
metrics. We use the policy gradient algorithm introduced in Section 4.2 to train
the resource usage parameters in our model, and the simulations are conducted
for the situation under this configuration.

Based on the results, we can know when the bottleneck will exist under
specific loads. Then we can adjust the configuration files according to the cor-
responding loads to optimize resource planning. In this way, the number of the
loads when CPU resources or the bandwidth resources reach the bottleneck can
be identified under this configuration. Additionally, we can use IRBS to predict
some scenarios without evaluations under real tests, for example in what CPU
configuration or bandwidth configuration the QPS will reach 20,000 calls/s, and
optimize resource planning without changing hardware specifications, only via
changing the cores or the maximum bandwidth.

In the scenario, GW K8S is the core component to be evaluated, as the whole
data is confidential, only the key data is shown in Table 2. In the configurations,
there are 9 ECS and 18 pods in total for the resource provisioning. Each ECS
is equipped with 8 cores, each pod has 3 cores, and the bandwidth is configured
350 Mbps. The detailed configurations are shown in Table 3.

To evaluate the performance of our approach to verify system performance
under different conditions, we firstly conduct experiments for underutilized sce-
nario and overutilized scenario, which represent the system is running without
bottlenecks and with bottlenecks. The discount factor γ in Algorithm 1 is con-
figured as 0.99, and the learning rate α is set as 0.1. The following metrics are
adopted to evaluate the performance, which are also key metrics that company
would like to investigate:

– GW workload: number of input loads per second for GW service

– CPU usage: CPU usage base on percentage and number of cores at each
time slot

– Outbound traffic: bandwidth usage in the outbound direction

– Inbound traffic: bandwidth usage in the inbound direction

– GW latency: response time of GW

– QPS: Queries per second that system can accommodate



14 L. Xu et al.

0 200 400 600 800 1000 1200 1400
time(s)

0

500

1000

1500

2000

2500

3000

Ac
tiv

e 
Us

er
 O

ve
r T

im
e

GW Workload Curve
1500vu
2000vu
3000vu

(a) GW workload

0 200 400 600 800 1000 1200 1400
time(s)

0

20

40

60

80

100

CP
U(

%
)

CPU usage GW
1500vu
2000vu
3000vu

(b) CPU usage(%)

0 200 400 600 800 1000 1200 1400
time(s)

0

10

20

30

40

50

CP
U(

co
re

)

CPU usage GW
1500vu
2000vu
3000vu

(c) CPU usage(core)

0 200 400 600 800 1000 1200 1400
time(s)

0

20

40

60

80

100

CP
U(

%
)

CPU usage_GW_Container
1500vu
2000vu
3000vu

(d) CPU usage(container)

0 200 400 600 800 1000 1200 1400
time(s)

0

50

100

150

200

250

300

350

M
bp

s

GW Outbound Traffic bps
1500vu
2000vu
3000vu

(e) Outbound traffic

0 200 400 600 800 1000 1200 1400
time(s)

0

20

40

60

80

100

120

140

M
bp

s

GW Inbound Traffic bps
1500vu
2000vu
3000vu

(f) Inbound traffic

0 200 400 600 800 1000 1200 1400
time(s)

0

25

50

75

100

125

150

175

La
te

nc
y 

ov
er

 ti
m

e(
m

s)

Latency GW(avg)
1500vu
2000vu
3000vu

(g) GW latency

0 200 400 600 800 1000 1200 1400
time(s)

0

2000

4000

6000

8000

10000

12000

Th
ro

ug
h 

ou
tp

ut
 o

ve
r t

im
e

QPS(call/second)
1500vu
2000vu
3000vu

(h) QPS

Fig. 4: The metrics under different load conditions

5.3 Underutilized Scenario

The underutilized scenario demonstrates the scenario when both the CPU and
the inbound and outbound traffic have not reached the bottleneck, and all loads
can respond in time. The results are demonstrated in Fig. 4. In this scenario,
the load is about 1500 vu (virtualized users) per second at peak, and the loads
grow gradually until 660s and then keep stable until about 1200s, and finally
dropping to 0. During this period, the maximum CPU resource usage is about
70%, the used cores are about 38.5, the output bandwidth is about 300 Mbps,
the inbound traffic is about 110 Mbps, the latency is about 50 ms, and the
QPS is about 10,000. Compared with the actual data, the results conform to the
system behavior, which illustrates that our approach can predict resource usage
and system performance under the underutilized scenario.

5.4 Overutilized Scenario

Considering the overutilized bandwidth as another example when the peak loads
are 2000 and 3000 vu per second, which is also shown in Fig. 4. The increase
and decrease patterns of loads are the same as the one with 1500 vu per second,
which reaches the peak at time 660s and starts to drop at time 1200s. Based on
the results, we can notice that when the outbound traffic reaches the peak and
the saturation happens, the loads which arrive later cannot be processed by the
service. Although CPU is not overutilized, the CPU utilization still grows up to
be about 90% and the QPS also reaches 11,600 calls/s, which means bandwidth
is the bottleneck rather than CPU in this case.

Given that resource competition will occur when resource usage approaches
the bottleneck value, resulting in performance degradation, the average response
time tends to rise in advance. Meanwhile, it is observed that when the bottleneck
point is reached, the QPS remains at its peak, but the load is still rising. The



A RL-based Approach to Identify Bottlenecks of Service s in Clouds 15

Table 4: Regression Models
Case Method type Regression fomula

1 Single parameter regression cpu ˆUc(t)=0.0324*L(t)+0.5691

2 Single parameter regression bandwidth ˆUb(t)=0.1392*L(t)-1.0351

3 Double parameters regression cpu ˆUc(t)=0.01129*L(t)+0.0626*t

4 Double parameters regression bandwidth ˆUb(t)=0.0512*L(t)+0.2326*t

5 Triple parameters regression cpu ˆUc(t)=0.00009*L(t)+0.2185*Ub(t)+0.0118*t

6 Triple parameters regression bandwidth ˆUb(t)=-0.00005*L(t)+4.5441*Uc(t)-0.052*t

Table 5: Performance comparison with baselines
Approach RMSE (underutilized) RMSE (overutilized) RMSE MAPE R2

Single parameter regression 55.832 54.561 55.200 35.6% -0.243

Double parameters regression 79.782 14.638 57.356 30.3% -0.342

Triple parameters regression 8.822 10.132 9.499 4.0% 0.963

PSO 8.171 8.603 8.390 6.7% 0.971

IRBS 6.306 4.466 5.464 3.5% 0.988

results obtained by the simulation system are nearly the same as the actual test
results. According to the results, it can be observed that when the load is close
to 1,800 vu, it is the bottleneck in this configuration. Therefore, we can conclude
that our approach supports identifying the system bottleneck.

5.5 Evaluation Metrics and Results

To show the accuracy of our proposed approach, we used a linear regression algo-
rithm [8] and PSO (particle swarm optimization) algorithm [22] to compare the
performance of our proposed algorithm. We adopt these two algorithms as base-
lines because there is no algorithm focusing on the same scenario we are going
to apply and these two algorithms have been validated to be efficient to model
resource usage in cloud systems. In the linear regression algorithm, we concern
about the different number of parameters (single parameter, double parameter,
and triple parameters) for training. The corresponding models based on linear
regression are shown in the Table 4. For instance, the predicted CPU utilization

ˆUc(t) at time slot t with single parameter (loads number L(t)) regression can
be represented as 0.0324 ∗ L(t) + 0.5691. PSO algorithm can be used as an au-
tomatic parameter training algorithm, in which specific parameters are trained
and finally integrated into the system for evaluations. We evaluate the following
metrics including Root Mean Square Error (RMSE), Mean Absolute Percentage
Error (MAPE), and R2, which have been widely used to evaluate the prediction
accuracy:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (11)



16 L. Xu et al.

0 20 40 60 80 100

Traing times

0

50

100

150

200

250

Ac
cu

m
ul

at
iv

e 
er

ro
rs

cpu
bandwidth(*500)

Fig. 5: Convergence process of cumulative errors

MAPE =
100%

n

n∑
i=1

∣∣∣∣ ŷi − yiyi

∣∣∣∣ (12)

R2 = 1−
∑

(yi − ŷi)2∑
(yi − ȳ)2

(13)

where n is the size of the dataset, yi is the actual value, ȳ is the mean value of ac-
tual data, and ŷi is the predicted value based on our approach. The performance
evaluation results are shown in the Table 5.

It can be noted that our approach has the highest value of RMSE for the
underutilized scenario, the overutilized scenario, and the combined scenario. Our
approach can also obtain the smallest MAPE value and the best R2 value, which
all illustrate that our approach can achieve the highest accuracy than other
algorithms.

5.6 Convergence Analysis

To show the convergence of our proposed approach, we also demonstrate the
convergence process of cumulative errors as shown in Fig. 5. The CPU capacity
and bandwidth capacity for processing loads are illustrated respectively. We use
the algorithm introduced in Section 4.2 to realize the parameter updates. Based
on the results, we can notice that the initial value and the final convergence
value are significantly different, the cumulative errors have been reduced to be
less than 100 within 100 training times. The experiments illustrate that our
approach can achieve convergence efficiently.

5.7 Bottleneck Prediction

Apart from identifying the bottleneck in specific configurations, IRBS can also
predict the satisfaction of various metrics based on the parameters of the current
configurations. Taking QPS as an example, Fig. 6 shows various situations when



A RL-based Approach to Identify Bottlenecks of Service s in Clouds 17

QPS reaches 20,000 calls/s, and the configurations of each situation are the same
as the configurations in Table 3.

The first case is that the CPU and bandwidth are not overutilized. In this
case, we can notice that when the number of loads reaches 3020 vu, the QPS is
close to 20,000 calls/s. At this moment, the peak response time of GW service is
50 ms, and other services are also at the system condition that is not overutilized,
the total response time of the other parts is about 100 ms, and the total response
time is about 150 ms. Thus, we can conclude that the prediction results are
accurate.

The second and third cases are about the condition when the CPU or band-
width reaches the overutilization and becomes the bottleneck. In these cases, the
CPU or bandwidth utilization is about 100% as overutilized. Under this situa-
tion, the peak response time of the GW service is about 100 ms. And the total
response time is about 200 ms, which shows that the results are also accurate.
Then the users can use these results to optimize their infrastructure configura-
tion, e.g. adding more CPU or bandwidth resources to avoid the bottleneck.

0 200 400 600 800 1000 1200 1400
time(s)

0

500

1000

1500

2000

2500

3000

3500

4000

Ac
tiv

e 
Us

er
 O

ve
r T

im
e

GW Workload Curve
underutilized
CPU-overutilized
BW-overutilized

(a) GW workload

0 200 400 600 800 1000 1200 1400
time(s)

0

20

40

60

80

100

CP
U(

%
)

CPU usage GW
underutilized
CPU-overutilized
BW-overutilized

(b) CPU usage(%)

0 200 400 600 800 1000 1200 1400
time(s)

0

20

40

60

80

100

CP
U(

co
re

)

CPU usage GW
underutilized
CPU-overutilized
BW-overutilized

(c) CPU usage(core)

0 200 400 600 800 1000 1200 1400
time(s)

0

20

40

60

80

100

CP
U(

%
)

CPU usage_GW_Container
underutilized
CPU-overutilized
BW-overutilized

(d) CPU usage(container)

0 200 400 600 800 1000 1200 1400
time(s)

0

100

200

300

400

500

600

700

800

M
bp

s

GW Outbound Traffic bps
underutilized
CPU-overutilized
BW-overutilized

(e) Outbound traffic

0 200 400 600 800 1000 1200 1400
time(s)

0

50

100

150

200

250

300

M
bp

s

GW Inbound Traffic bps
underutilized
CPU-overutilized
BW-overutilized

(f) Inbound traffic

0 200 400 600 800 1000 1200 1400
time(s)

0

20

40

60

80

100

La
te

nc
y 

ov
er

 ti
m

e(
m

s)

Latency GW(avg)
underutilized
CPU-overutilized
BW-overutilized

(g) GW latency

0 200 400 600 800 1000 1200 1400
time(s)

0

5000

10000

15000

20000

Th
ro

ug
h 

ou
tp

ut
 o

ve
r t

im
e

QPS(call/second)
underutilized
CPU-overutilized
BW-overutilized

(h) QPS

Fig. 6: The metrics of different loads when QPS is 20,000 calls/s.

5.8 Scalability

Finally, we aim to show that this approach is not only suitable for the discussed
scenario but can also be extended to other scenarios. Let us consider the scenario
that there are only three services, namely load generation, GW, and Mockservice.
Due to changes in the hardware resources to support services, we can re-adjust
the parameters, select different parts by adjusting the VM and container ca-
pacity, and control the execution order by defining them in the property files.
Some sample results are shown in Fig. 7. The only efforts needed to be made
are changing the property files, including the load number, type, and the order
of interacted services.



18 L. Xu et al.

0 200 400 600 800 1000 1200 1400
time(s)

0

20

40

60

80

100

Ac
tiv

e 
Us

er
 O

ve
r T

im
e

GW Workload Curve

gw

(a) GW Workload

0 200 400 600 800 1000 1200 1400
time(s)

0

10

20

30

40

50

60

CP
U(

%
)

CPU usage GW

gw

(b) CPU usage

0 200 400 600 800 1000 1200 1400
time(s)

0

50

100

150

200

250

300

La
te

nc
y 

ov
er

 ti
m

e(
m

s)

Latency GW(avg)
gw

(c) GW latency

0 200 400 600 800 1000 1200 1400
time(s)

0

50

100

150

200

250

Th
ro

ug
h 

ou
tp

ut
 o

ve
r t

im
e

QPS(call/second)

gw

(d) QPS

Fig. 7: Extended scenario

6 Conclusions and future work

In this paper, we present a resource bottleneck identification approach, called
IRBS, which can predict resource and service bottlenecks in multiple services
interactions scenarios. We also proposed a policy gradient algorithm based on
reinforcement learning to support the prediction of resource usage under different
conditions. Based on the dataset provided, which is deployed on AliCloud, our
simulated results based on the extension of CloudSim show that our approach
can effectively identify the potential bottlenecks and achieve high accuracy for
adopted metrics. The dominant advantage of the proposed approach is easy to
operate and it provides a feasible solution for the customers to plan infrastruc-
ture resources. It can also ensure high prediction accuracy while maintaining
reusability and scalability.

As future work, we would like to investigate other datasets or a broad range
of conditions to evaluate our proposed approach. We would also like to apply
our approach to other cloud platforms, e.g. Amazon and Azure.

Acknowledgments

This research is partially supported by Key-Area Research and Development
Program of Guangdong Province (NO. 2020B010164003), the National Natural
Science Foundation of China, with Grant ID 61672136 and 61828202, SIAT In-
novation Program for Excellent Young Researchers. We thank teams in Siemens
Industry Software Co., Ltd, China, for their discussion and comments on this
work.

References

1. Alla, H.B., Alla, S.B., Touhafi, A., Ezzati, A.: A novel task scheduling approach
based on dynamic queues and hybrid meta-heuristic algorithms for cloud comput-
ing environment. Cluster Computing 21(4), 1797–1820 (2018)

2. Belalem, G., Tayeb, F.Z., Zaoui, W.: Approaches to improve the resources man-
agement in the simulator cloudsim. In: International Conference on Information
Computing and Applications. pp. 189–196. Springer (2010)



A RL-based Approach to Identify Bottlenecks of Service s in Clouds 19

3. Ben Alla, H., Ben Alla, S., Ezzati, A., Mouhsen, A.: A novel architecture with
dynamic queues based on fuzzy logic and particle swarm optimization algorithm
for task scheduling in cloud computing. In: El-Azouzi, R., Menasche, D.S., Sabir,
E., De Pellegrini, F., Benjillali, M. (eds.) Advances in Ubiquitous Networking 2.
pp. 205–217. Springer Singapore, Singapore (2017)

4. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing
and emerging it platforms: Vision, hype, and reality for delivering computing as
the 5th utility. Future Generation Computer Systems 25(6), 599–616 (2009)

5. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: Cloudsim:
a toolkit for modeling and simulation of cloud computing environments and evalu-
ation of resource provisioning algorithms. Software: Practice and experience 41(1),
23–50 (2011)

6. Chen, W., Ye, K., Wang, Y., Xu, G., Xu, C.: How does the workload look like in
production cloud? analysis and clustering of workloads on alibaba cluster trace.
In: 2018 IEEE 24th International Conference on Parallel and Distributed Systems
(ICPADS). pp. 102–109 (2018)

7. Cheng, M., Li, J., Nazarian, S.: Drl-cloud: Deep reinforcement learning-based re-
source provisioning and task scheduling for cloud service providers. In: in Pro-
ceedings of the 2018 23rd Asia and South Pacific Design Automation Conference
(ASP-DAC). pp. 129–134. IEEE (2018)

8. Fan, Jianqing: Local linear regression smoothers and their minimax efficiencies.
Annals of Statistics 21(1), 196–216 (1993)

9. Funika, W., Koperek, P.: Evaluating the use of policy gradient optimization ap-
proach for automatic cloud resource provisioning. In: Wyrzykowski, R., Deelman,
E., Dongarra, J., Karczewski, K. (eds.) Parallel Processing and Applied Mathe-
matics. pp. 467–478. Springer International Publishing, Cham (2020)

10. Gao, H., Huang, W., Zou, Q., Yang, X.: A dynamic planning framework for qos-
based mobile service composition under cloud-edge hybrid environments. In: Wang,
X., Gao, H., Iqbal, M., Min, G. (eds.) Collaborative Computing: Networking, Ap-
plications and Worksharing. pp. 58–70. Springer International Publishing, Cham
(2019)

11. Ibidunmoye, O., Hernández-Rodriguez, F., Elmroth, E.: Performance anomaly de-
tection and bottleneck identification. ACM Computing Surveys (CSUR) 48(1),
1–35 (2015)

12. Jung, J., Kim, H.: Mr-cloudsim: Designing and implementing mapreduce comput-
ing model on cloudsim. In: Proceedings of the 2012 International Conference on
ICT Convergence (ICTC). pp. 504–509. IEEE (2012)

13. Latiff, M.S.A., Madni, S.H.H., Abdullahi, M., et al.: Fault tolerance aware schedul-
ing technique for cloud computing environment using dynamic clustering algo-
rithm. Neural Computing and Applications 29(1), 279–293 (2018)

14. Mousavi, S.S., Schukat, M., Howley, E.: Traffic light control using deep policy-
gradient and value-function-based reinforcement learning. IET Intelligent Trans-
port Systems 11(7), 417–423 (Sep 2017)

15. Nayak, S.C., Tripathy, C.: Deadline sensitive lease scheduling in cloud computing
environment using ahp. Journal of King Saud University-Computer and Informa-
tion Sciences 30(2), 152–163 (2018)

16. Petrik, D., Herzwurm, G.: iiot ecosystem development through boundary resources:
a siemens mindsphere case study. In: Proceedings of the 2nd ACM SIGSOFT
International Workshop on Software-Intensive Business: Start-ups, Platforms, and
Ecosystems. pp. 1–6 (2019)



20 L. Xu et al.

17. Priya, V., Kumar, C.S., Kannan, R.: Resource scheduling algorithm with load bal-
ancing for cloud service provisioning. Applied Soft Computing 76, 416–424 (2019)

18. Sekaran, K., Khan, M.S., Patan, R., Gandomi, A.H., Krishna, P.V., Kallam, S.:
Improving the response time of m-learning and cloud computing environments
using a dominant firefly approach. IEEE Access 7, 30203–30212 (2019)

19. Shi, Y., Jiang, X., Ye, K.: An energy-efficient scheme for cloud resource provisioning
based on cloudsim. In: Proceedings of the 2011 IEEE International Conference on
Cluster Computing. pp. 595–599. IEEE (2011)

20. Wang, Z., Wen, Y., Zhang, Y., Chen, J., Cao, B.: A resource usage prediction-based
energy-aware scheduling algorithm for instance-intensive cloud workflows. In: Gao,
H., Wang, X., Yin, Y., Iqbal, M. (eds.) Collaborative Computing: Networking,
Applications and Worksharing. pp. 626–642. Springer International Publishing,
Cham (2019)

21. Wickremasinghe, B., Calheiros, R.N., Buyya, R.: Cloudanalyst: A cloudsim-based
visual modeller for analysing cloud computing environments and applications. In:
Proceedings of the 2010 24th IEEE international conference on advanced informa-
tion networking and applications. pp. 446–452. IEEE (2010)

22. Wu, D., Jiang, N., Du, W., Tang, K., Cao, X.: Particle swarm optimization with
moving particles on scale-free networks. IEEE Transactions on Network Science
and Engineering 7(1), 497–506 (2020)

23. Xu, M., Buyya, R.: Brownout approach for adaptive management of resources and
applications in cloud computing systems: a taxonomy and future directions. ACM
Computing Surveys (CSUR) 52(1), 1–27 (2019)

24. Xu, M., Tian, W., Buyya, R.: A survey on load balancing algorithms for virtual
machines placement in cloud computing. Concurrency and Computation: Practice
and Experience 29(12), e4123 (2017)

25. Xu, M., Toosi, A.N., Bahrani, B., Razzaghi, R., Singh, M.: Optimized renewable
energy use in green cloud data centers. In: Service-Oriented Computing, pp. 314–
330. Springer International Publishing (2019)

26. Yadwadkar, N.J., Hariharan, B., Gonzalez, J.E., Smith, B., Katz, R.H.: Selecting
the best vm across multiple public clouds: A data-driven performance modeling
approach. In: Proceedings of the 2017 Symposium on Cloud Computing. pp. 452–
465 (2017)

27. Yazdanbakhsh, A., Thwaites, B., Esmaeilzadeh, H., Pekhimenko, G., Mutlu, O.,
Mowry, T.C.: Mitigating the memory bottleneck with approximate load value pre-
diction. IEEE Design & Test 33(1), 32–42 (2016)


	A Reinforcement Learning based Approach to Identify Resource Bottlenecks for Multiple Services Interactions in Cloud Computing Environments

