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Abstract. The widespread adoption of the large language model (LLM),
e.g. Generative Pre-trained Transformer (GPT), deployed on cloud com-
puting environment (e.g. Azure) has led to a huge increased demand for
resources. This surge in demand poses significant challenges to resource
management in clouds. This paper aims to highlight these challenges by
first identifying the unique characteristics of resource management for
the GPT-based model. Building upon this understanding, we analyze
the specific challenges faced by resource management in the context of
GPT-based model deployed on clouds, and propose corresponding poten-
tial solutions. To facilitate effective resource management, we introduce
a comprehensive resource management framework and present resource
scheduling algorithms specifically designed for the GPT-based model.
Furthermore, we delve into the future directions for resource manage-
ment in the GPT-based model, highlighting potential areas for further
exploration and improvement. Through this study, we aim to provide
valuable insights into resource management for GPT-based models de-
ployed in clouds and promote their sustainable development for GPT-
based models and applications.

Keywords: GPT-based Model, Cloud Computing, Resource Manage-
ment, Resource Management Framework, Scheduling Algorithms

1 Introduction

The GPT-based model is a language generation model based on the transformer
architecture, which learns the statistical regularities and semantic knowledge
of language through unsupervised pre-training on large-scale text datasets. The
model can then be fine-tuned on specific domain or task data through supervised
or semi-supervised learning to adapt to different language application scenarios
[12] [4]. The GPT-based model can generate natural, fluent, context-aware, and
semantically coherent language content, making it suitable for applications such
as text summarization, machine translation, sentiment analysis, question answer-
ing systems, and chatbots. Figure 1 provides examples of current applications
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2 Resource Management for GPT-based Model on Clouds

Fig. 1. GPT-based Model Application Areas

of the GPT-based model for different areas[11] [3], including academic, medical,
office, education [7] and marketing.

The GPT-based model was first proposed and developed by OpenAI and has
since been developed into multiple versions and variants, such as GPT-1, GPT-2,
GPT-3, and GPT-4. The main differences between these models lie in the num-
ber of parameters, dataset size, and training methods. For example, GPT-3 is
currently one of the largest GPT-based models, with 175 billion parameters, re-
quiring 800 GB of storage [12]. It has achieved excellent performance on multiple
natural language processing tasks. Table 1 lists several mainstream GPT-based
models, providing relevant details such as model names, research teams, release
dates, and model sizes, with each row representing a distinct model.

The rapid development and widespread application of GPT-based model have
led to the increased demand for resources, and the current GPT-based model
has been deployed on public clouds like Azure and Google Cloud for training and
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Table 1. Parameters of Mainstream GPT-based Models [17]

Model Research Teams Release Date Size

GPT-3 OpenAI 28-May-20 175B
PanGu-α Pengcheng Laboratory and other teams 26-Apr-21 207B
OPT-175B Meta 3-May-22 175B

PaLM Google Apr-22 540B
BLOOM BigScience Dec-22 176B
MT-NLG Microsoft and NVIDIA 11-Oct-21 530B
Gopher DeepMind 8-Dec-21 280B
CPM-2 Beijing Academy of Artificial Intelligence Jun-21 198B

GPT-Neo-X-20B EleutherAI Apr-22 20B

inference, as GPT-based models are typically too large and resource-intensive to
be deployed on edge devices or small-scale hardware. Therefore, they are better
suited for cloud-based deployments, which also makes the resource management
for GPT-based model facing some specific challenges. In order to summarize
these challenges and propose corresponding solutions, in this section, we will
identify the unique characteristics of resource management for GPT-based mod-
els and establish evaluation metrics for this specific domain.

1.1 Unique Characteristics of Resource Management for GPT-based
Model

Through extensive research, we identified the following unique characteristics of
resource management for GPT-based model:

Large-scale computational demands due to huge amount of param-
eters and fine-tuning: The GPT-based model typically consists of billions
of parameters, necessitating a substantial amount of computational resources
during both training and inference processes [6]. Training GPT models typically
requires specialized hardware such as Graphics Processing Units (GPUs) or Ten-
sor Processing Units (TPUs) due to the sheer number of calculations involved.
In addition, fine-tuning a pre-trained GPT model on a specific task requires
additional compute resources, as the model needs to adapt to the task through
further training. This complexity makes resource management more intricate, re-
quiring efficient allocation and utilization of computational resources to ensure
the model operates efficiently.

High storage demands to support rapid data access: The GPT-based
model’s large parameter size requires significant storage space to accommodate
model parameters and intermediate computation results. Running these models
can quickly consume all available memory on conventional hardware. Therefore,
resource management must consider how to effectively manage storage resources
to meet the model’s requirements while ensuring rapid data access and process-
ing.
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High-speed network demands to enable efficient parallelism: Dur-
ing model training, the GPT-based model handles vast datasets and performs
complex computations and parameter optimization, demanding fast data trans-
mission and stable network connectivity. In the inference phase, efficient net-
work resource utilization directly impacts inference speed and response time.
The GPT-based model needs to generate outputs based on inputs and provide
results in real-time or near real-time conditions. Hence, network resources are
crucial for achieving fast responses and efficient inference.

Long training and inference processes than traditional AI models:
Traditional AI applications often have lower computational requirements and
faster inference times. However, due to the complexity and scale of the GPT-
based model, its training and inference processes typically require extended peri-
ods. Resource management must consider how to maintain system stability and
performance over an extended duration while ensuring the rational allocation
and utilization of resources.

Dynamic resource demands from varied complexity of tasks: In prac-
tical applications, the resource requirements of the GPT-based model may vary
over time and across different tasks, e.g. machine translation, text summariza-
tion and question answering. These tasks can have dynamic resources demand
due to the different degree of complexity (e.g. difficulty of questions and ex-
pected output length). Resource management must possess dynamic adjustment
capabilities, allowing for the dynamic allocation of computational and storage
resources based on actual demands to adapt to different stages and tasks.

By understanding and addressing these unique characteristics, effective re-
source management strategies can be developed to ensure optimal performance
and utilization of the GPT-based model in various applications.

1.2 Evaluation Metrics for Resource Management for GPT-based
Model

In order to effectively evaluate the resource management of GPT-based model,
we can consider the following metrics:

Resource Utilization: It refers to the degree to which the model effectively
utilizes available resources during the training or inference process. For the GPT-
based model, resources primarily include computational resources (such as CPUs
and GPUs), storage resources (such as memory and disk space), and network
resources. Evaluating resource utilization involves ensuring that the model max-
imizes the use of available resources to improve efficiency and minimize resource
waste. This can be achieved through optimization of scheduling algorithms and
parallel computing techniques. Higher resource utilization indicates efficient uti-
lization of computational, storage, and network resources, enhancing overall sys-
tem performance.

Time Efficiency: It refers to the time taken by the model to complete a set
of given tasks (e.g. makespan metric used in traditional task scheduling). For
the GPT-based models, time efficiency includes both model training time and
inference time. During training, time efficiency focuses on the speed of parameter
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updates on a given dataset. Training time efficiency can be improved through
optimization of scheduling algorithms, distributed training, and hardware accel-
eration. During inference, time efficiency concerns the speed at which the model
processes input data and generates outputs. Inference time directly affects the
real-time performance and responsiveness of the model in practical applications.
Techniques such as parallel computing, batch processing, and hardware opti-
mization can improve inference time efficiency. Higher time efficiency means the
model can complete training and inference tasks more quickly, thereby increasing
overall production efficiency.

Cost Efficiency: The cost of the GPT-based model mainly includes compu-
tational cost, storage cost, and network transmission cost. Computational cost
evaluation primarily considers the computational resource expenses required by
the model. This includes model complexity, computational workload, and the
hardware used. Lower computational costs imply relatively lower computational
resource expenses required for specific tasks, reducing resource investments. Stor-
age cost refers to the expenses associated with storage resources needed for the
model, including model parameters, intermediate results, and cached data. Stor-
age cost can be measured based on the model’s size and the capacity of the
storage devices used. Lower storage costs indicate that the model occupies a
relatively smaller storage space, reducing storage resource demands and related
expenses. Network transmission cost involves the expenses associated with net-
work resources for data transmission during the model training or inference
process, including model parameter transmission, training data transmission,
and inference result transmission. Lower network transmission costs mean the
model efficiently utilizes network resources, reducing data transmission time and
bandwidth expenses.

This paper aims to highlight the specific challenges in resource management
for GPT-based models and propose corresponding solutions. The main contri-
butions of this paper are as follows:

• we summarize the specific challenges in resource management for GPT-
based model and provide a detailed description of these challenges.

• We propose a comprehensive resource management framework for the GPT-
based model that comprises seven different functional components.

• we present three resource management algorithms specifically designed for
the GPT-based model to optimize the resource usage based on different objec-
tives including resource utilization, load balancing and energy efficiency.

The rest of this paper is organized as follows: In Section 2, we will summarize
the specific challenges in resource management for GPT-based model. By high-
lighting these challenges, we aim to provide directions for corresponding solu-
tions. To facilitate effective resource management, in Section 3, we will propose
a comprehensive resource management framework for the GPT-based model.
Additionally, in Section 4, we will introduce three resource management algo-
rithms specifically tailored to the GPT-based model. Finally, we will conclude
this work and discuss several future research directions for resource management
for GPT-based model in Section 5.
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2 Specific Challenges in Resource Management for
GPT-based Model

By identifying the unique characteristics of resource management for GPT-based
model, we summarized the specific challenges in resource management for GPT-
based model deployed on clouds [9] [14] [5] [8] [16] [10]. For a more visual rep-
resentation, we presented these specific challenges in Figure 2. We noted some
main challenges such as performance prediction and control, global manage-
ability, resource heterogeneity, scalable resource management system, resource
pricing strategies, model reliability, model parallelism and data parallelism, and
we will discuss the details in the following sections.

Fig. 2. Challenges in Resource Management for GPT-based Model
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2.1 Performance Prediction and Control

The GPT-based model, constructed based on the Transformer architecture, has
a large parameter size and complex structure. This complexity leads to signifi-
cant computational requirements and the need for a large number of parameters
for training and inference. Different tasks typically have varying complexities,
resource demands, and performance expectations for the model. Even under the
same workload and resource configuration, the performance of the model can
be influenced by task characteristics and data properties. Additionally, different
workloads and resource configurations can lead to variations in resource allo-
cation, data parallelism, and other aspects that influence performance. These
factors make it challenging to predict and control the behavior and performance
of the model under different workloads and resource configurations.

2.2 Global Manageability

Global manageability refers to effectively managing and coordinating resources,
including computational resources, storage resources, and network resources, in
large and complex cloud environments. In the context of GPT-based model ap-
plications, challenges in achieving global manageability primarily manifest in the
following aspects:

Resource scheduling and allocation: Given the massive computational,
storage, and network resource requirements of the GPT-based model, efficient
resource scheduling and allocation algorithms are needed. This includes dynamic
resource allocation across different data centers and geographical locations to
meet user demands and service-level agreements.

Resource monitoring and optimization: Achieving global manageabil-
ity requires real-time monitoring of resource usage, performance metrics, and
health status, coupled with automated techniques for resource adjustments and
optimization. Such monitoring mechanisms help maintain efficient resource uti-
lization, ensure load balancing, and optimize performance bottlenecks, thereby
enhancing overall system performance.

2.3 Resource Heterogeneity

Resource heterogeneity refers to the existence of various types or characteristics
of resources within the same system or environment. These resources can include
computational resources (such as CPUs, GPUs, and TPUs), storage resources
(such as disks and solid-state drives), network resources (such as bandwidth and
latency), and others. Resource heterogeneity implies differences in performance,
scale, power consumption, and cost among these resources. For the GPT-based
model, resource heterogeneity poses the following challenges:

Resource dependencies: Resource dependencies refer to the interdepen-
dencies and associations among different types of resources. In resource manage-
ment, it is necessary to consider these dependencies and employ suitable resource
allocation algorithms to optimize the synergistic effects among resources, thereby
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improving overall system performance. For example, in the GPT-based model,
the supply of computational resources must match the capacity of storage re-
sources and network bandwidth to ensure efficient data transmission and smooth
model operation. By fully considering resource dependencies, resource allocation
and utilization can be optimized, maximizing the system’s potential.

Resource interoperability: Different types of resources are often pro-
vided by different vendors and technologies, necessitating addressing the chal-
lenge of resource interoperability. This involves establishing standards and pro-
tocols to ensure seamless integration and interaction among different types of re-
sources, improving system compatibility and interoperability. Additionally, data
and model transfer and sharing across different resources need to be addressed
to enable collaborative work across resources.

2.4 Scalable Resource Management System

With the development of the GPT-based model, its scale has increased signifi-
cantly, demanding huge computational resources. Moreover, as the GPT-based
model is widely applied, data centers face concurrent requests and high through-
put demands. Therefore, a highly scalable computing and storage infrastructure
is required to support model execution and handle massive data. Furthermore,
the resource management system must scale across multiple dimensions to han-
dle resource management in large-scale data centers. The GPT-based model
requires efficient management and allocation of computational, storage, and net-
work resources, as well as task scheduling, to meet the training and inference
requirements of the model. Additionally, the resource management system needs
to dynamically allocate and flexibly expand resources to accommodate different
application scenarios with varying scales and complexities. These requirements
pose important challenges to the resource management system for the GPT-
based model.

2.5 Resource Pricing Strategies

Resource pricing strategies are crucial for the GPT-based model as they directly
impact resource utilization, user satisfaction, and vendor profitability. However,
several challenges exist in resource pricing strategies.

Firstly, accurately determining resource costs is a challenge. Resource costs
are influenced by factors such as the vendor, geographical location, and usage
volume. Therefore, a comprehensive consideration of these factors is required to
ensure that resource pricing covers actual costs and attracts user adoption.

Secondly, balancing the supply-demand relationship is another challenge.
Vendors aim to obtain revenues through resource sales while ensuring stable
supply, while users seek resources at reasonable prices and sufficient support
during peak demand. Therefore, resource pricing strategies need to strike a bal-
ance between supply and demand, meeting user needs while ensuring vendor
profitability.
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Additionally, achieving fair resource allocation and pricing is also a challenge.
In multi-user environments, resources must be allocated on-demand to different
users and priced based on usage. Given the variations in user demands and usage
patterns, assuring fair resource allocation and pricing becomes a complicated
problem.

2.6 Model Reliability

Due to the complexity of the GPT-based model, such as its large scale and
long training processes, model failures during operation are inevitable. To en-
sure model reliability, systems must implement fault detection and fault toler-
ance mechanisms to handle resource failures or interruptions promptly. Fault
detection mechanisms proactively identify potential system failures by monitor-
ing model performance metrics, resource utilization, and other key parameters.
Fault tolerance mechanisms include data backup and recovery strategies to en-
sure data integrity and service continuity. Data backup strategies involve regular
backups of the GPT-based model parameters, training data, and other related
data to ensure available backup data for recovery in case of failures. Recovery
strategies ensure quick system recovery and maintain the continuity of user ex-
perience after failures or interruptions. Through these mechanisms, the system
can rapidly detect and respond to faults, reducing the risks of system downtime
and data loss, thus ensuring the reliability of the GPT-based model.

2.7 Model Parallelism and Data Parallelism

In model parallelism, challenges primarily include:
Model partitioning: The GPT-based model typically has a large scale,

consisting of billions or even hundreds of billions of parameters. Partitioning
such a massive GPT-based model into sub-models suitable for parallel processing
is a challenge. Model partitioning needs to consider the dependencies within
the model structure and the communication requirements among parameters to
ensure correctness and efficiency in parallel computation.

Synchronization and communication overhead: Synchronization and
communication are required among sub-models on different devices to ensure
the transfer and aggregation of gradient information during training and enable
effective parameter updates. Synchronization and communication operations can
introduce additional computational and communication overhead, impacting the
efficiency and performance of parallel computation.

Load balancing: Proper distribution of computational load is crucial for
model parallelism to ensure balanced computation across devices. Load imbal-
ance can result in computational resource waste and decreased efficiency.

In data parallelism, challenges primarily include:
Data partitioning and distribution: The GPT-based model has massive

training data, and partitioning the data into multiple parts and distributing
them to different devices is a challenge. Data partitioning needs to consider
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data balance and distribution efficiency to ensure the quality and performance
of parallel training.

Data synchronization and consistency: In data parallel computation,
model synchronization and consistency are crucial to ensure accurate parame-
ter updates. Efficient data synchronization mechanisms are key to ensuring the
effectiveness of parallel training.

Training speed limitations: In data parallel computation, the training
speed may be limited by the slowest device. If some devices have slower compu-
tation speeds, it will affect the overall training efficiency and speed.

3 Resource Management Framework for GPT-based
Model

In response to the specific challenges faced by the GPT-based model and based
on the characteristics of resource management for GPT-based model, we pro-
pose a comprehensive resource management framework. This framework aims to
effectively manage critical resources such as computational resources, storage re-
sources, and network bandwidth required by the GPT-based model, thereby im-
proving overall model efficiency and ensuring model reliability and service qual-
ity. Figure 3 demonstrates our resource management framework for the GPT-
based model. The resource management framework is divided into several key
components, including Resource Monitor, GPT Task Scheduler, Resource Allo-
cator, GPT Task Profiler, Synchronizer, QoS Manager, and Resource Adaptor.
The following will provide detailed introductions for each of these components.

Resource Monitor: The Resource Monitor is responsible for real-time mon-
itoring of computational resources (e.g. CPU, GPU, memory), network resources
(e.g. bandwidth utilization, network latency), and storage resources (e.g. disk)
in the system. It collects and analyzes real-time resource usage and performance
data, providing real-time feedback and reports to support task scheduling and re-
source allocation decisions. It also offers visual representations to show resource
usage and performance metric trends.

GPT Task Scheduler: The GPT Task Scheduler handles task scheduling
based on requests from the GPT task queue. It considers task priority, resource
requirements, timeliness, and related constraints to select suitable GPT-based
model instances for task scheduling. By employing appropriate scheduling algo-
rithms, it determines the execution order of tasks and assigns them to available
GPT model instances.

Resource Allocator: The Resource Allocator dynamically manages sys-
tem resources based on task resource requirements, system resource availability,
and load conditions. It employs intelligent resource allocation strategies to meet
the execution needs of tasks. Additionally, the Resource Allocator may utilize
resource prediction and load forecasting models to predict task resource require-
ments and system load conditions, enabling more accurate resource allocation
and adjustments.



Resource Management for GPT-based Model on Clouds 11

Fig. 3. Resource Management Framework for GPT-based Model

GPT Task Profiler: The GPT Task Profiler extracts attributes and require-
ments of GPT tasks for better understanding and handling. The functionalities
of the task profiler include:

1) Task Attribute Extraction: The GPT Task Profiler extracts task types,
input data features (e.g. text length, language style, domain-specific vocabu-
lary), and requirements for answering. These attributes contribute to better
task understanding, enabling customized parameter settings for corresponding
GPT model instances and providing essential references for subsequent data
processing and answer generation.

2) Model Resource Requirement Analysis: The GPT Task Profiler analyzes
the resource requirements of GPT tasks, including computational resources and
storage resources. By evaluating the resource requirements of GPT tasks, the
GPT Task Profiler provides accurate foundations for resource allocation and
scheduling.
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3) QoS Requirement Extraction: The GPT Task Profiler identifies QoS re-
quirements of GPT tasks, such as response time, text generation speed, and
answer accuracy. It transfers these requirements to the QoS Manager for evalu-
ation and management of task QoS requirements.

Synchronizer: The Synchronizer ensures reasonable resource allocation and
smooth execution of GPT tasks by employing distributed consistency protocols.
The Synchronizer includes the following functionalities:

1) Distributed Lock Management: The Synchronizer uses distributed lock
mechanisms to prevent conflicts and competitions for shared resources. This
ensures that only one thread or process can gain exclusive access to resources at
a time.

2) Task State Synchronization: The Synchronizer ensures consistent task
states across different nodes through distributed consistency protocols. This in-
cludes task states such as start, pause, terminate, and completion. By efficient
negotiation and communication, the Synchronizer promptly updates and shares
task state information, enabling other components to accurately understand task
execution progress.

3) Transaction Handling: The Synchronizer employs distributed consistency
protocols for transactional processing of resource management operations. This
means that resource allocation, release, and scheduling operations are atomic
and maintain system consistency. Even in the event of failures or anomalies, the
Synchronizer can perform rollbacks or recovery operations, ensuring the reliabil-
ity and correctness of resource management.

4) Fault Recovery: The Synchronizer handles node failures and network
anomalies through distributed consistency protocols. It detects node failures and
takes corresponding measures, such as re-election or reallocation of resources, to
maintain system availability and stability.

QoS Manager: The QoS Manager evaluates and manages the Quality of
Service (QoS) requirements of GPT tasks. The QoS Manager includes the fol-
lowing functionalities:

1) QoS Requirement Evaluation: The QoS Manager receives GPT task QoS
requirement information from the GPT Task Profiler, such as response time,
processing time, and answer accuracy requirements. It evaluates and quantifies
these requirements to understand different task QoS demands.

2) QoS Optimization Strategy Formulation: Based on the QoS requirements
of GPT tasks and constraints of system resources, the QoS Manager formulates
corresponding optimization strategies. It considers the urgency of GPT tasks and
QoS requirements, combined with system resource availability and constraints,
to provide guidance and suggestions for the GPT Task Scheduler and Resource
Allocator. By adjusting resource allocation priorities, scheduling algorithm pa-
rameters, and other strategies, the QoS Manager ensures that QoS requirements
of GPT tasks are met.

3) QoS Monitoring and Feedback: The QoS Manager monitors the real-time
performance of GPT tasks and QoS metrics. It regularly checks QoS indicators,
such as response time, processing time, and accuracy, and compares them with
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GPT task QoS requirements. If the QoS requirements are not met, the QoS
Manager initiates appropriate resource adjustments and optimizations.

Resource Adaptor: The Resource Adaptor is responsible for dynamic re-
source scaling based on system load, GPT task demands, and resource usage. It
uses adaptive algorithms and prediction models to automatically adjust resource
allocation for GPT tasks, achieving dynamic resource expansion and contraction.
When the system load or task demands increase, the Resource Adaptor auto-
matically scales up resources to meet the requirements and maintain system
performance. Conversely, during low system load or reduced task demands, it
timely scales down resources to reduce waste. By optimizing resource allocation
through the Resource Adaptor, resource distribution becomes more flexible and
intelligent, capable of adapting to dynamically changing resource demands.

4 Resource Management Algorithms for GPT-based
Model

Based on our resource management framework for GPT-based model, we pro-
pose three resource management algorithms: Maximization of Compute Resource
Utilization, Load Balancing, and Power-efficient optimization, as the resource
utilization, load balancing efficiency and power efficiency are the most dominant
concerns of resource scheduling approaches [15] [13] [2] [1]. These algorithms aim
to allocate available nodes for user requests to achieve efficient resource manage-
ment. Through these algorithms, we can maximize the utilization of computing
resources, achieve load balancing, and optimize energy consumption. The table 2
provides the definitions of variables used in the algorithms.

4.1 Maximization of Compute Resource Utilization

The goal of algorithm 1 is to optimize the task-to-node assignment by maximiz-
ing the utilization of computing resources. Taking into account the threshold of
node resources, the algorithm prioritizes nodes with high resource utilization to
serve the requests, thereby avoiding resource waste and maximizing the utiliza-
tion of node resources. The optimization objective equation for the algorithm is
given in (1).

max

k∑
i=1

u(Ni)

k
, (1)

where u(Ni) denotes the compute resource utilization of node Ni,
k∑

i=1

denotes

the summation over the compute resource utilization of each node, and k denotes
the number of available nodes.

Algorithm 1 takes as input a queue of GPT model requests, a list of available
nodes, and a threshold value that determines the maximum utilization allowed
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Table 2. Variable Definitions

Variable Definition

gptRequestQueue A queue containing GPT model requests that need to be
processed.

availableNodes A list of available nodes that can be used to process the
GPT model requests.

threshold A utilization threshold (0 to 1) that determines the max-
imum utilization allowed for each resource on a node.

allocationMap A dictionary that maps each GPT model request to an
allocated node.

request The current GPT model request being processed.
node The current node being processed.
computeDemand The required compute resource for a request.
memoryDemand The required memory resource for a request.
storageDemand The required storage resource for a request.
computeCapacity The compute resource capacity of a node.
memoryCapacity The memory resource capacity of a node.
storageCapacity The storage resource capacity of a node.
computeDemandPercentage The percentage of compute resource requested by the cur-

rent request, relative to the compute resource capacity of
the current node.

memoryDemandPercentage The percentage of memory resource requested by the cur-
rent request, relative to the memory resource capacity of
the current node.

storageDemandPercentage The percentage of storage resource requested by the cur-
rent request, relative to the storage resource capacity of
the current node.

computeUtilization The compute resource utilization of a node.
memoryUtilization The memory resource utilization of a node.
storageUtilization The storage resource utilization of a node.
allocated A flag indicating whether a request has been allocated to

a node or not.
minPower The minimum power value among all the scanned nodes.

for each resource on a node. The algorithm aims to maximize the utilization of
compute resources while ensuring that the utilization of each resource on a node
does not exceed the specified threshold.

To achieve this, the algorithm first estimates the resource demand of each
request in the queue by calling the function request.estimateResourceDemand()
for each request (line 4). It then sorts the queue in descending order of compute
resource demand (line 6) and the available nodes in descending order of compute
utilization (line 7).

For each request in the queue, the algorithm attempts to allocate a node that
can satisfy the request’s resource demands without exceeding the threshold for
any resource. It does this by iterating over each available node and computing
the percentage of compute, memory, and storage resources that would be con-
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sumed by the request if it were allocated to that node (lines 11-14). If the node’s
compute, memory, and storage utilizations, plus the percentage of resources de-
manded by the request, are all less than or equal to the threshold, the node is
allocated to the request (lines 15-20).

If no available node can satisfy the request’s resource demands, the algo-
rithm creates a new node, allocates it to the request, and updates its utilization
accordingly (lines 25-30).

The algorithm returns a dictionary, allocationMap, where each key is a GPT
request and each value is the node allocated to that request.

4.2 Load Balancing

The purpose of algorithm 2 is to optimize the selection of tasks to nodes by
balancing the load across nodes. Considering the thresholds of node resources,
this algorithm prioritizes serving requests from nodes with lower resource utiliza-
tion, thereby ensuring load balancing in the system. The optimization objective
equation for the algorithm is given in (2).

min

√√√√1

k

k∑
i=1

(u(Ni)− ū)2, (2)

where k denotes the number of available nodes, u(Ni) denotes the compute
resource utilization of node Ni, and ū denotes the average compute resource
utilization across all available nodes.

Algorithm 2 is similar to Algorithm 1, but the difference lies in sorting the
list of available nodes in ascending order of compute resource utilization. This
prioritizes the allocation to nodes with lower utilization rates. Other steps remain
the same as Algorithm 1.

4.3 Power-efficient Optimization

The purpose of algorithm 3 is to optimize the selection of tasks to nodes by
minimizing energy consumption, aiming to minimize the total energy consump-
tion of available nodes. This algorithm prioritizes serving requests on nodes with
the lowest energy consumption, thus achieving power-efficient optimization. The
optimization objective formula for the algorithm is given in (3).

min

k∑
i=1

power(Ni), (3)

where k denotes the number of available nodes and power(Ni) denotes the power
consumption of node Ni.

Algorithm 3 requires two input parameters: the request queue gptRequestQueue
and the list of available nodes availableNodes (Line 1). The output is the allo-
cation mapping allocationMap (Line 2).
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Algorithm 1 Maximization of Compute Resource Utilization for GPT requests

1: Input: gptRequestQueue, availableNodes, threshold
2: Output: allocationMap
3: for each request in gptRequestQueue do
4: request.estimateResourceDemand() ▷ Estimate resource demand for each

request
5: end for
6: gptRequestQueue.sortByDescendingComputeResourceDemand() ▷ Sort requests

by descending compute resource demand
7: availableNodes.sortByDescendingComputeUtilization() ▷ Sort available nodes by

descending compute utilization
8: allocationMap← {}
9: for each request in gptRequestQueue do
10: allocated ← false
11: for each node in availableNodes do
12: computeDemandPercentage ← request.computeResourceDemand /

node.computeCapacity
13: memoryDemandPercentage ← request.memoryResourceDemand /

node.memoryCapacity
14: storageDemandPercentage ← request.storageResourceDemand /

node.storageCapacity
15: if (node.computeUtilization + computeDemandPercentage ≤ threshold)

and (node.memoryUtilization + memoryDemandPercentage ≤ threshold) and
(node.storageUtilization + storageDemandPercentage ≤ threshold) then

16: allocationMap[request] ← node ▷ Allocate request to the current node
17: node.computeUtilization += computeDemandPercentage ▷ Update

node’s compute utilization
18: node.memoryUtilization += memoryDemandPercentage ▷ Update

node’s memory utilization
19: node.storageUtilization += storageDemandPercentage ▷ Update node’s

storage utilization
20: allocated ← true
21: break
22: end if
23: end for
24: if not allocated then
25: newNode ← createNewNode() ▷ Create a new node
26: availableNodes.append(newNode) ▷ Add the new node to the list of

available nodes
27: allocationMap[request] ← newNode ▷ Allocate request to the new node
28: newNode.computeUtilization += computeDemandPercentage
29: newNode.memoryUtilization += memoryDemandPercentage
30: newNode.storageUtilization += storageDemandPercentage
31: allocated ← true
32: end if
33: end for
34: return allocationMap ▷ Return the allocation mapping
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Algorithm 2 Load Balancing Algorithm for GPT requests

1: Input: gptRequestQueue, availableNodes, threshold
2: Output: allocationMap
3: for each request in gptRequestQueue do
4: request.estimateResourceDemand() ▷ Estimate resource demand for each

request
5: end for
6: gptRequestQueue.sortByDescendingComputeResourceDemand() ▷ Sort requests

by descending compute resource demand
7: availableNodes.sortByAscendingComputeUtilization() ▷ Sort available nodes by

ascending compute utilization
8: allocationMap← {}
9: for each request in gptRequestQueue do
10: allocated ← false
11: for each node in availableNodes do
12: computeDemandPercentage ← request.computeResourceDemand /

node.computeCapacity
13: memoryDemandPercentage ← request.memoryResourceDemand /

node.memoryCapacity
14: storageDemandPercentage ← request.storageResourceDemand /

node.storageCapacity
15: if (node.computeUtilization + computeDemandPercentage ≤ threshold)

and (node.memoryUtilization + memoryDemandPercentage ≤ threshold) and
(node.storageUtilization + storageDemandPercentage ≤ threshold) then

16: allocationMap[request] ← node ▷ Allocate request to the current node
17: node.computeUtilization += computeDemandPercentage ▷ Update

node’s compute utilization
18: node.memoryUtilization += memoryDemandPercentage ▷ Update

node’s memory utilization
19: node.storageUtilization += storageDemandPercentage ▷ Update node’s

storage utilization
20: allocated ← true
21: break
22: end if
23: end for
24: if not allocated then
25: newNode ← createNewNode() ▷ Create a new node
26: availableNodes.append(newNode) ▷ Add the new node to the list of

available nodes
27: allocationMap[request] ← newNode ▷ Allocate request to the new node
28: newNode.computeUtilization += computeDemandPercentage
29: newNode.memoryUtilization += memoryDemandPercentage
30: newNode.storageUtilization += storageDemandPercentage
31: allocated ← true
32: end if
33: end for
34: return allocationMap ▷ Return the allocation mapping
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Firstly, the algorithm creates an empty allocation mapping allocationMap
(Line 3), and iterates through each request in the request queue, using the es-
timateResourceDemand() function to estimate its resource demand (Line 4-5).
Then, the algorithm sorts the request queue in descending order based on the
resource demand, to handle requests that require more resources first (Line 7).
Next, the algorithm iterates through each request in the request queue and at-
tempts to allocate it to the node with the minimum energy consumption among
the available nodes. For each request, the algorithm iterates through the avail-
able node list and checks if the current node has enough resources to fulfill the
request. If it does, the algorithm calculates the energy consumption of the node
processing that request and compares it with the current minimum energy con-
sumption. If the energy consumption is less than the current minimum value, the
allocated node and minimum energy consumption are updated. After iterating
through all the nodes for each request, the algorithm adds the allocated node to
the allocation mapping allocationMap (Line 8-23). Finally, the algorithm returns
the allocationMap, which indicates the mapping of each request to its assigned
node (Line 24).

5 Conclusions and Future Research Directions

In this paper, we first introduced popular GPT-based models, identified the
unique characteristics of resource management for GPT-based model, and dis-
cussed corresponding evaluation metrics. Based on this, we further analyzed
specific challenges in resource management for GPT-based model. To achieve ef-
fective resource management, we also introduced a comprehensive resource man-
agement framework consisting of several key components. Additionally, based on
our resource management framework, we proposed three scheduling algorithms
specifically designed for the GPT-based model for different objectives. Finally,
we explored future research directions for resource management for GPT-based
model , highlighting some potential areas worth investigating. We hope that re-
search in these areas will draw the attention of researchers and drive continuous
innovation and development in resource management for GPT-based model .

Although the GPT-based model has developed rapidly and gained widespread
applications in various fields, there is still significant room for improvement in
resource management for GPT-based model. In the future, we need to explore
more efficient and intelligent resource management techniques and optimization
strategies to meet the growing resource demands of the GPT-based model. We
summarize several future research directions for resource management for GPT-
based model as follows:

Specialized Hardware for GPT-based Model: As the scale of the GPT-
based model continues to increase, the computational demands also grow. Fu-
ture research will focus on providing higher-performance hardware support for
the GPT-based model. Manufacturers can develop specialized AI chips (such as
GPUs, FPGAs, etc.) optimized for the characteristics of the GPT-based model
to meet the demands of large-scale parallel computations.
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Algorithm 3 Power-efficient Algorithm for GPT requests

1: Input: gptRequestQueue, availableNodes
2: Output: allocationMap
3: allocationMap ← {} ▷ Initialize an empty mapping of requests to nodes
4: for each request in gptRequestQueue do
5: request.estimateResourceDemand() ▷ Estimate resource demand for each

request
6: end for
7: gptRequestQueue.sortByDescendingResourceDemand() ▷ Sort requests by

descending resource demand
8: for each request in gptRequestQueue do
9: minPower ←∞ ▷ Initialize minimum power to positive infinity
10: allocatedNode ← NULL ▷ Initialize the allocated node to NULL
11: for each node in availableNodes do
12: if node has enough resources for request then ▷ Check if the node has

enough resources for the request
13: power ← estimatePower(node, request) ▷ Estimate power consumption

for allocating request to the node
14: if power < minPower then ▷ Update the minimum power and

allocated node if a more power-efficient option is found
15: allocatedNode ← node
16: minPower ← power
17: end if
18: end if
19: end for
20: if allocatedNode ̸= NULL then ▷ Allocate the request to the most

power-efficient node
21: allocationMap[request] ← allocatedNode
22: end if
23: end for
24: return allocationMap ▷ Return the allocation mapping

Benchmarks for Performance Evaluation: Currently, there is a lack of
standardized benchmarks for resource management for GPT-based model, and
existing evaluation metrics are not comprehensive. Future efforts should establish
more comprehensive test suites to evaluate resource management from multiple
dimensions.

Resource Utilization Maximization: Future research needs to investigate
more efficient resource management techniques to maximize the utilization of re-
sources by the GPT-based model. Cloud data centers suffer from the issue in low
resource utilization. This can be achieved through dynamic resource allocation,
resource sharing, and parallel computing algorithms designed for GPT-based
models.

Scheduling Algorithms and Metrics: To effectively perform task schedul-
ing and resource management, future research needs to design specialized schedul-
ing and optimization algorithms for the GPT-based model. These algorithms
should consider task priorities, resource constraints, and optimization metrics to
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achieve better resource allocation and task scheduling strategies. Additionally,
attention should be paid to scheduling algorithm metrics, such as throughput,
response time, task completion rate to evaluate the effectiveness of the algo-
rithms. Moreover, novel metrics can also be proposed to measure the metrics
suitable for resource provisioning algorithms for GPR-based model.

Security Management: As the GPT-based model is widely used in vari-
ous fields now, security concerns in resource management become increasingly
prominent. Future research directions include: 1) data privacy to ensure effec-
tive protection of user data during the GPT-based model training and inference
to avoid data breaches. 2) model security to prevent malicious attackers from
tampering with the GPT-based model to protect the integrity and reliability
of model parameters and prevent degradation of model performance. 3) sys-
tem security to implement security measures to protect computational resources
from malicious attacks, preventing resource abuse, occupation, or damage, and
ensuring the reliability of resource management.
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