

中国科学院深圳先进技术研究院 SHENZHEN INSTITUTE OF ADVANCED TECHNOLOGY CHINESE ACADEMY OF SCIENCES

# Distributed Computing Principles: Security



Most concepts are drawn from Chapter 11

## **Dr. Minxian Xu**

Associate Professor Research Center for Cloud Computing Shenzhen Institute of Advanced Technology, CAS <u>http://www.minxianxu.info/dcp</u>

> 子墨子解带为城,以牒为械,公输盘九设攻城之机变,子 墨子九距之;公输盘之攻械尽,子墨子之守圉有余。 ——《墨子·公输》

# Review



# Q1: What are Name Services and why do we need them?



# Review



- The major operation of a name service is to resolve a name, i.e to lookup the attributes that are bound to the name.
- Name management is separated from other services largely because of the openness of distributed systems, which brings the following motivations:
  - ✗ Unification: Resources managed by different services use the same naming scheme, as in the case of URIs.
  - ✗ Integration: To share resources that were created in different administrative domains requires naming those resources. Without a common naming service, the administrative domains may use entirely different name formats.



Q2: What is the process of name resolution?



# Review



- Name resolution is in general an iterative process. A name either resolves to a set of primitive attributes or it resolves to another name.
- The use of aliases make it possible for resolution cycles to occur and the potential for the resolution process to never terminate. Two solutions to overcome this include:
  - ✗ Abandon the resolution process after some number of iterations.
  - ₭ Require administrators to ensure that no cycles occur





# Q3: What is navigation and what are the approaches to navigation?



#### Review



- When the name service is distributed then a single server may not be able to resolve the name. The resolve request may need to propagate from one server to another, referred to as *navigation*.
- & Classification of different navigation approaches.
  - iterative navigation -- The client makes the request at different servers one at a time. The order of servers visited is usually in terms of domain hierarchy. Always starting at the root server would put excessive load on the root.
  - multicast navigation -- The client multicasts the request to the group (or a subset) of name servers. Only the server that holds the named request returns a result.
  - non-recursive server-controlled navigation -- The client sends the request to a server and the server continues on behalf of the client, as above.
  - recursive server-controlled navigation -- The client sends the request to a server and the server sends the request to another server (if needed) recursively.



# Q4: What is Domain Name System and in what aspects does it improve on a file-based implementation?



#### Review



- The Domain Name System (DNS) is a name service design whose main naming database is used across the Internet.
- & Before DNS, all host names and addresses were held in a single central master file and downloaded by FTP to all computers that required them.
- **&** The problems with the original name service included:
  - ✗ It did not scale to large numbers of computers.
  - ₭ Local organizations wished to administer their own naming systems.
  - ✗ A general name service was needed -- not one that serves only for looking up computer addresses.
- DNS is designed for use in multiple implementations, each of which may have its own name space, though in practice the Internet DNS name space is the one in widespread use.



- 1. 95% of breached records came from only three industries in 2016
  - Government, retail, and technology (high level of personal identifying information contained in their records)
- 2. There is a hacker attack every 39 seconds
- 3. 43% of cyber attacks target small business
  - 64% of companies have experienced web-based attacks. 62% experienced phishing & social engineering attacks. 59% of companies experienced malicious code and botnets and 51% experienced denial of service attacks.

data: https://www.cybintsolutions.com/cyber-security-facts-stats/



- 4. The average cost of a data breach in 2020 exceeded \$150 million
  - As more business infrastructure gets connected, <u>Juniper</u> <u>Research</u> data suggests that cybercrime will cost businesses over \$2 trillion total in 2019.
  - June 2019: The Australian National University has been hit by a massive data hack, with unauthorised access to significant amounts of personal details dating back 19 years.
- 5. Since 2013 there are 3,809,448 records stolen from breaches every day
  - 158,727 per hour, 2,645 per minute and 44 every second of every day reports <u>Cybersecurity Ventures.</u>



- 6. Over 75% of healthcare industry has been infected with malware over past years
- 7. Large-scale DDoS attacks increase in size by 500%
- 8. Approximately \$6 trillion is expected to be spent globally on cybersecurity by 2021





- 9. Unfilled cybersecurity jobs worldwide reached 3.5 million by 2021
  - More than <u>300,000 cybersecurity jobs in the U.S. are</u> <u>unfilled</u>, and postings are up 74% over the past five years.
- 10. By 2020 there will be roughly 200 billion connected devices
  - The risk is real with IoT and its growing
  - Smart Healthcare
  - Smart City
  - Smart Transport



# Some Cyber Security Facts



- 11. 95% of cybersecurity breaches are due to human error
  - Cyber-criminals and hackers will infiltrate your company through your weakest link, which is almost never in the IT department.
- 12. Only 38% of global organizations claim they are prepared to handle a sophisticated cyber attack
  - What's worse? An estimated 54 percent of companies say they have experienced one or more attacks in the last 12 months.
- 13. Total cost for cybercrime committed globally has added up to over \$1 trillion dollars in 2018
  - As long as you're connected to the Internet, you can become a victim of cyber attacks.

# Security memes





716 × 960

#### **'Zoom bombers' invade virtual classrooms':** Unauthorized Participants and Disruptions





# **Zoom Challenges**







Security challenge: Data leakages

Security challenge: Privacy shortcomings



Performance challenge: Ensuring quality of service



Reliability challenge: Ensuring availability at all times



Way To Innovation 17

#### https://www.sumologic.com/blog/zoom-security-challenges/



# Learning objectives

- Security model
  - Types of threat

#### Basic techniques

- Cryptographic techniques
  - Secrecy
  - Authentication
  - Certificates and credentials
  - Access control
- Audit trails
- Symmetric and asymmetric encryption concepts
- Digital signatures
- Approaches to secure system design
- Pragmatics and case studies (Kerberos and Secure Socket Layer)



# Why Security is so important in DS?



- Security Goal: Restrict access to information/resources to just to those entities that are authorized to access.
- There is a pervasive need for measures to guarantee the privacy, integrity, and availability of resources in DS.
- Security attacks take various forms: Eavesdropping, masquerading, tampering, and denial of service.
- Designers of secure distributed systems must cope with the exposed interfaces and insecure network in an environment where attackers are likely to have knowledge of the algorithms used to deploy computing resources.
- Cryptography provides the basis for the authentication of messages as well as their secrecy and integrity.

# How is security in real world?



- In the physical world, organisations adopt "security policies" that provide for the sharing of resources within specified limits.
  - Company may permit entry to its building for its employees and for accredited visitors.
  - A security policy for documents may specify groups of employees who can access classes of documents or it may be defined for individual documents and users.
- Security policies are enforced with security mechanisms.
  - Access to building may be controlled by a reception clerk, who issues badges to accredited visitors, and enforced by security guard or by electronic door locks.
- In electronic world, the distinction between security policy and mechanisms is equally important.

# Chapter 2 Revision: Objects and principals





- Object (or resource)
  - Mailbox, system file, part of a commercial web site
- Principal
  - User or process that has authority (rights) to perform actions
  - Identity of principal is important

# Chapter 2 Revision: The enemy





#### Attacks

- On applications that handle financial transactions or other information whose secrecy or integrity is crucial
- Enemy (or adversary)
- Threats

To processes, to communication channels, denial of service

# Chapter 2 Revision: Secure channels







# **Threats and Attacks**



- Security Threats Three broad Classes:
  - Leakage: Acquisition of information by unauthorised recipients
  - Tampering: Unauthorised alteration of information
  - Vandalism: Interference with the proper operation of systems
- Method of Attacks are listed below:
- Eavesdropping A form of leakage
  - obtaining private or secret information or copies of messages without authority.
- Masquerading A form of impersonating
  - assuming the identity of another user/principal i.e, sending or receiving messages using the identity of another principal without their authority.
- Message tampering
  - altering the content of messages in transit
    - man in the middle attack (tampers with the secure channel mechanism)
- Replaying
  - storing secure messages and sending them at a later date
- Denial of service Vandalism
  - flooding a channel or other resource, denying access to others

Threats not defeated by secure channels

or other cryptographic techniques



- Denial of service (DoS) attacks
  - Deliberately excessive use of resources to the extent that they are not available to legitimate users
    - E.g. the Internet 'IP spoofing' attack, February 2000
- Trojan horses and other viruses
  - Viruses can only enter computers when program code is imported.
  - But users often require new programs, for example:
    - New software installation
    - Mobile code downloaded dynamically by existing software (e.g. Java applets)
    - Accidental execution of programs transmitted surreptitiously
  - Defences: code authentication (signed code), code validation (type checking, proof), sandboxing.

#### The February 2000 IP Spoofing DDoS attack (creation of IP packets with a false source IP address)





resulting in:



Way To Innovation 27

#### Email

- Traditionally no support for security.
- But it is important to keep messages secret.
- Modern mail clients incorporate cryptography.
- Purchase of goods and services
- Banking transactions
- Micro-transactions
  - Currently access to Web pages is not charged, but the development of Web as a highly quality publishing medium surely needs it.
  - The price of such services may amount to only a fraction of cent and the payment overhead must be low (for this to be feasible).
  - How to manage "fraudulent vendors" who obtain payment with no intension of supplying good.



- Authenticate the vendor to the buyer
- Keep buyer's credit card details secure
- Ensure that content is delivered to the buyer
- Authenticate the identity of account holder before giving them access to their account

# **Designing Secure Systems**



- Immense strides have been made in recent years in the development of cryptographic techniques and their applications, yet design of secure systems remains an inherently difficult task.
  - Aim: exclude <u>all</u> possible attacks and loop holes.
  - This looks like programmer aiming to <u>exclude</u> all bugs from his/her program.
- Security is about avoiding disasters and minimizing mishaps. When designing for security it is necessary to assume the worst.
- The design of security system is an exercise in balancing costs against threats:
  - A cost (computational and network usage) is incurred for their use.
  - Inappropriately specified security measures may exclude legitimate users from performing necessary actions.

Worst case assumptions and design guidelines



- Interfaces are exposed
  - DSs made up of processes with open interfaces
- Networks are insecure
  - Messages sources can be falsified.
- Limit the lifetime and scope of each secret
  - Passwords and keys validity needs to be time restricted.
- Algorithms and code are available to hackers
- Attackers may have access to large resources
- Minimise the trusted base.



- Digital cryptography provides the basis for most computer security mechanisms, but it is important to note that <u>computer security</u> and <u>cryptography</u> are distinct subjects.
  - Cryptography is an art of encoding information in a format that only intended recipient can access.
  - Cryptography can be used to provide a proof of authenticity of information in a manner analogous to the use of signature in conventional transactions.
- We will focus more on security of distributed systems and applications rather than <u>cryptography</u> algorithms.



- Cryptography: encryption and decryption
   Encryption is the process of encoding a magnetic state of encoding
- Encryption is the process of encoding a message in such a way as to hide its contents.
- Modern cryptography includes several secure algorithms for encrypting and decrypting messages. They are based on keys.
- A cryptography key is a parameter used in an encryption algorithm in such a way that the encryption cannot be reversed without a knowledge of the key.

# Hu Fu: a cryptography approach in traditional China



Tiger symbol as a certificate of dispatching troops in Chinese history originated very early.





# **Classes of Cryptography Algorithms**

#### There are two main classes:

#### Shared Secret Keys:

- The sender and recipient share a knowledge of the key and it must not be revealed to anyone.
- Public/Private Key Pair:
  - The sender of a message uses a recipient's public key to encrypt the message.
  - The recipient uses a corresponding private key to decrypt the message.

## Uses of Cryptography:

- Secrecy and integrity (to stop eavesdropping and tampering) + also use redundant information (checksums) for maintaining integrity.
- Authentication
- Digital Signatures



| $K_A$                     | Alice's secret key                                      |
|---------------------------|---------------------------------------------------------|
| $K_B$                     | Bob's secret key                                        |
| $K_{AB}$                  | Secret key shared between Alice and Bob                 |
| <i>K</i> <sub>Apriv</sub> | Alice's private key (known only to Alice)               |
| K <sub>Apub</sub>         | Alice's public key (published by Alice for all to read) |
| $\{M\}_K$                 | Message $M$ encrypted with key $K$                      |
| $[M]_K$                   | Message $M$ signed with key $K$                         |

Alice First participant

Bob Second participant

- Carol Participant in three- and four-party protocols
- Dave Participant in four-party protocols
- Eve Eavesdropper

Mallory Malicious attacker

Sara A server

#### Way To Innovation 36

# Secret communication with a shared secret key

Alice wishes to send some information secretly. Alice and Bob share a secret key  $K_{AB}$ .

- 1. Alice uses  $K_{AB}$  and an agreed encryption function  $E(K_{AB}, M)$  to encrypt and send any number of messages  $\{M_i\}_{K_{AB}}$  to Bob.
- Bob reads the encrypted messages using the corresponding decryption function D(K<sub>AB</sub>, M).
   Alice and Bob can go on using K<sub>AB</sub> as long as it is safe to assume that K<sub>AB</sub> has not been *compromised*.

#### Issues:

Scenario 1:

*Key distribution*: How can Alice send a shared key K<sub>AB</sub> to Bob securely?

*Freshness of communication*: How does Bob know that any {M<sub>i</sub>} isn't a copy of an earlier encrypted message from Alice that was captured by Mallory and replayed later? Problem: if the message is a request to pay some money to someone. Mallory might trick Bob into paying twice?







Way To Innovation 37

Bob is a file server; Sara is an authentication service. Sara shares secret key K<sub>A</sub> with Alice and secret key K<sub>B</sub> with Bob.

- 1. Alice sends an (unencrypted) message to Sara stating her identity and requesting a *ticket* for access to Bob. ⊃
- 2. Sara sends a response to Alice.  $\{\{\text{Ticket}\}_{K_B}, K_{AB}\}_{K_A}$ . It is encrypted in  $K_A$  and consists of a ticket (to be sent to Bob with each request for file access) encrypted in  $K_B$  and a new secret key  $K_{AB}$ .
- 3. Alice uses  $K_A$  to decrypt the response.
- 4. Alice sends Bob a request R to access a file:  ${Ticket}_{K_B}$ , Alice, R.
- 5. The ticket is actually  $\{K_{AB}, Alice\}_{KB}$ . Bob uses  $K_B$  to decrypt it, checks that Alice's name matches and then uses  $K_{AB}$  to encrypt responses to Alice.
- This is a simplified version of the Needham and Schroeder (and Kerberos) protocol.
- Timing and replay issues addressed in N-S and Kerberos.
- Not suitable for e-commerce because authentication service doesn't scale...

# Scenario 2: Illustration





The ticket is actually  $\{K_{AB}, Alice\}_{KB}$ .



- It depends upon prior knowledge by the authentication server Sara of Alice's and Bob's keys. This is feasible in a single organisation where Sara run a physically secure computer and is managed by a trusted principal.
  - Not suitable in E-commerce or other wide area applications.
- Usefulness of challenges: They introduced the concept of a *cryptographic challenge*. That means in step 2 of our scenario, where Sara issues a ticket to Allice encypted in Alice's secret key, K<sub>A</sub>.



- Bob has a public/private key pair <K<sub>Bpub</sub>, K<sub>Bpriv</sub>> & establishes K<sub>AB</sub> as follows:
- 1. Alice obtains a certificate that was signed by a trusted authority stating Bob's public key K<sub>Bpub</sub>
- 2. Alice creates a new shared key  $K_{AB}$ , encrypts it using  $K_{Bpub}$  using a public-key algorithm and sends the result to Bob.
- 3. Bob uses the corresponding private key  $K_{Bpriv}$  to decrypt it.

(If they want to be sure that the message hasn't been tampered with, Alice can add an agreed value to it and Bob can check it.)

Mallory might intercept Alice's initial request to a key distribution service for Bob's public-key certificate and send a response containing his own public key. He can then intercept all the subsequent messages.



Alice wants to publish a document M in such a way that anyone can verify that it is from her.

- 1. Alice computes a fixed-length digest of the document Digest(M).
- 2. Alice encrypts the digest in her private key, appends it to M and makes the resulting signed document (M,  $\{Digest(M)\}_{KApriv}$ ) available to the intended users.
- 3. Bob obtains the signed document, extracts M and computes Digest(M).
- 4. Bob uses Alice's public key to decrypt  $\{\text{Digest}(M)\}_{K_{\text{Apriv}}}$  and compares it with his computed digest. If they match, Alice's signature is verified.



#### **Transcript**

Student: Minxian Xu

COMP90015: Distributed Systems: 95 marks
....



Way To Innovation 42

Computed message digest: {491103ea18660f4c4d9f3c32af5d28f5}<sub>KUniMelbpriv</sub>

IBM (employer) uses UniMelb's public key to decrypt {Digest(M)}  $_{KUniMelbpriv}$  and compares it with his computed digest of Transcript content. If they match, UniMelb's signature is verified. Then IBM trusts and hires you<sup>(i)</sup> Algo MD5 128 bit from: <u>https://www.freeformatter.com/message-digest.html</u> The MD5 <u>hashing algorithm</u> is a one-way cryptographic <u>function</u> that accepts a message of any length as input and returns as output a fixed-length <u>digest</u> value to be used for <u>authenticating</u> the original message.



Message M, key K, published encryption functions E, D

#### Symmetric (secret key)

 $E(K, M) = \{M\}_{\kappa}$ 

Same key for E and D

D(K, E(K, M)) = M

Way To Innovation 43

M must be hard (infeasible) to compute if K is not known.

Usual form of attack is brute-force: try all possible key values for a known pair

M,  $\{M\}_{K}$ . Resisted by making K sufficiently large ~ 128 bits

#### Asymmetric (public key)

Separate encryption and decryption keys: Ke, Kd

 $D(K_{d}, E(K_{e}, M)) = M$ 

depends on the use of a *trap-door function* to make the keys. E has high computational cost. Very large keys > 512 bits

#### Hybrid protocols - used in SSL (now called TLS)

Uses asymmetric crypto to transmit the symmetric key that is then used to encrypt a session.

# Public Key Infrastructure (PKI)



- PKI allows you to know that a given public key belongs to a given user
- PKI builds on asymmetric encryption:
  - Each entity has two keys: public and private
  - Data encrypted with one key can only be decrypted with other.
  - The private key is known only to the entity
- The public key is given to the world encapsulated in a X.509 certificate



Public Key Infrastructure (PKI) Overview

X.509 Certificates Certificate Authorities (CAs) Certificate Policies Namespaces Requesting a certificate Certificate Request Registration Authority







Way To Innovation 46

Certificate: a statement signed by an appropriate authority. Certificates require:

- An agreed standard format
- Agreement on the construction of chains of trust.
- Expiry dates, so that certificates can be revoked.

#### Public-key certificate for Bob's Bank

| 1. Certificate type      | Public key                                      |
|--------------------------|-------------------------------------------------|
| 2. <i>Name</i> .         | Bob's Bank                                      |
| 3. Public key:           | $K_{Bpub}$                                      |
| 4. Certifying authority. | Fred – The Bankers Federation                   |
| 5. Signature.            | $\{Digest(field \ 2 + field \ 3)\}_{K_{Fpriv}}$ |



SubjectDistinguished Name, Public KeyIssuerDistinguished Name, SignaturePeriod of validityNot Before Date, Not After DateAdministrative informationVersion, Serial NumberExtended InformationVersion, Serial Number

It provides a public key to a named entity called the subject. The binding is in the signature, which is issued by another entity called issuer (CA, Certificate Authority)





#### Similar to passport or driver's license



# An example of Certificate



```
Certificate:
                                                                 Validity Start
  Data:
    Version: 3 (0x2)
    Serial Number: 28 (0x1c)
    Signature Algorithm: md5WithRSAEncryption
    Issuer: C=US, O=Globus, CN=Globus Certification Authority
    Validity_
     Not Before: Apr 22 19:21:50 2020 GMT
       Not After : Apr 22 19:21:50 2030 GMT
    Subject: /O=Grid/O=Globus/OU=cis.unimelb.edu.au/CN=Rajkumar Buyya
    Subject Public Key Info:
       Public Key Algorithm: RSAEncryption
       RSA Public Key: (1024 bit)
         Modulus (1024 bit):
           00:bf:4c:9b:ae:51:e5:ad:ac:54:4f:12:52:3a:69:
            <snip>
           b4:e1:54:e7:87:57:b7:d0:61
         Exponent: 65537 (0x10001)
Signature Algorithm: md5WithRSAEncryption
    59:86:6e:df:dd:94:5d:26:f5:23:c1:89:83:8e:3c:97:fc:d8:
    <snip>
    8d:cd:7c:7e:49:68:15:7e:5f:24:23:54:ca:a2:27:f1:35:17:
```

# Certificates as credentials



- Certificates can act as credentials
  - Evidence for a principal's right to access a resource
- The two certificates shown in the last slide could act as credentials for Alice to operate on her bank account
  - She would need to add her public key certificate

| Alice's bank account certificate                                                |                                                                    |  |  |  |  |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|--|
| <ol> <li>Certificate type</li> <li>Name:</li> </ol>                             | Account number<br>Alice                                            |  |  |  |  |
| <ol> <li>Account:</li> <li>Certifying authority.</li> <li>Signature.</li> </ol> | 6262626<br>Bob's Bank<br>$\{Digest(field 2 + field 3)\}_{K_{n-1}}$ |  |  |  |  |
| Public-key certificate for Bob's Bank                                           |                                                                    |  |  |  |  |
| 1. Certificate type                                                             | Public key                                                         |  |  |  |  |
| 2. <i>Name</i> :                                                                | Bob's Bank                                                         |  |  |  |  |
| 3. Public key:                                                                  | $K_{Bpub}$                                                         |  |  |  |  |
| 4. Certifying authority.                                                        | Fred – The Bankers Federation                                      |  |  |  |  |
| 5. Signature.                                                                   | $\{Digest(field \ 2 + field \ 3)\}_{K_{Fpriv}}$                    |  |  |  |  |



#### Protection domain

- A set of <resource, rights> pairs
- Two main approaches to implementation:
  - Access control list (ACL) associated with each object
    - E.g. Unix file access permissions 🥏
    - For more complex object types and user communities, ACLs can complex

| drwxr-xr-x | gfc22 | staff   | 264    | Oct | 30 | 16 <b>:</b> 57 | Acrobat User Data       |
|------------|-------|---------|--------|-----|----|----------------|-------------------------|
| -rw-rr     | gfc22 | unknown | 0      | Nov | 1  | 09:34          | Eudora Folder           |
| -rw-rr     | gfc22 | staff   | 163945 | Oct | 24 | 00:16          | Preview of xx.pdf       |
| drwxr-xr-x | gfc22 | staff   | 264    | Oct | 31 | 13:09          | iTunes                  |
| -rw-rr     | gfc22 | staff   | 325    | Oct | 22 | 22:59          | list of broken apps.rtf |

- Capabilities associated with principals
  - Like a key allowing the holder access to certain operations on a specified resource.
  - Format: <resource id, permitted operations, authentication code>



Secures communication with servers on a local network

- Developed at MIT in the 1980s to provide security across a large campus network > 5000 users
- based on Needham Schroeder protocol
- Standardized and now included in many operating systems

Internet RFC 1510, OSF DCE

BSD UNIX, Linux, Windows 2000, XP, Windows 8, Windows 10

- Kerberos server creates a shared secret key for any required server and sends it (encrypted) to the user's computer
- User's password is the initial secret shared with Kerberos

# System architecture of Kerberos





Needham - Schroeder protocol 1. A->S: A, B,  $N_A$ 2. S->A:  $\{N_A, B, K_{AB}, \{K_{AB}, A\}_{KB}\}_{KA}$ 3. A->B:  $\{K_{AB}, A\}_{KB}$ 4. B->A:  $\{N_B\}_{KAB}$ 5. A->B:  $\{N_B - 1\}_{KAB}$ 

Step A once per login sessionStep B once per server sessionStep C once per server transaction



Way To Innovation 54

- Kerberos protocol is too costly to apply on each NFS operation
- Kerberos is used in the mount service:
  - to authenticate the user's identity
  - User's UserID and GroupID are stored at the server with the client's IP address

#### For each file request:

- UserID and GroupID are sent encrypted in the shared session key
- The UserID and GroupID must match those stored at the server
- IP addresses must also match
- This approach has some problems
  - can't accommodate multiple users sharing the same client computer
  - all remote filestores must be mounted each time a user logs in

# Case study: The Secure Socket Layer (SSL)



Key distribution and secure channels for Internet commerce

- Hybrid protocol; depends on public-key cryptography
- Originally developed by Netscape Corporation (1994) and supported by most browsers and is widely used in Internet commerce.
- Extended and adopted as an Internet standard with the name Transport Level Security (TLS) – RFC 2246
- Provides the security in all web servers and browsers and in secure versions of Telnet, FTP and other network applications

#### Key Feature

Negotiable encryption and authentication algorithms. In an open network we should NOT assume that all parties use the same client software or all client/server software includes a particular encryption algorithms.

#### Design requirements

- Secure communication without prior negotiation or help from 3rd parties
- Free choice of crypto algorithms by client and server
- communication in each direction can be authenticated, encrypted or both

# Bootstrapped secure communication



- To meet the need for secure communication without previous negotiation/help from 3<sup>rd</sup> parties, the secure channel is established using a hybrid schemes.
- The secure channel is fully configurable.
- The details of TLS protocols are standardized and several software libraries and toolkits are available to support it [www.openssl.org]
- TLS consists of two layers:
  - TLS Record Protocol Layer: implements a secure channel, encrypting and authenticating messages transmitted through any connection oriented protocol. It is realized at session layer.
  - Handshake Layer: Containing Handshake protocol and two other related protocols that establish and maintain a TLS session (i.e., secure channel) between client and server.
  - Both are implemented by software libraries at application level in the client and the server.









| Component                   | Description                                         | Example                                        |
|-----------------------------|-----------------------------------------------------|------------------------------------------------|
| Key exchange method         | the method to be used for exchange of a session key | RSA with public-key certificates               |
| Cipher for data<br>transfer | the block or stream cipher to be used for data      | IDEA (International Data Encryption Algorithm) |
| Message digest function     | for creating message<br>authentication codes (MACs) | SHA (Secure Hash Algorithm)                    |







On October 31, 2008, Satoshi Nakamoto released the Bitcoin White Paper outlining a purely peer to peer electronic cash/digital asset transfer system. This is the first popular implementation of Blockchain and is attributed as birthing today's Blockchain industry. Since then, additional Blockchains have been popularized, Ethereum, various Hyperledger project solutions, as well as numerous others including "Blockchain like" solutions such as GuardTime's KSI products



Blockchain is a system comprised of..

- Transactions
- Immutable ledgers
- Decentralized peers
- Encryption processes
- Consensus mechanisms
- Optional Smart Contracts

#### Let's explore these concepts



## Transactions



 As with enterprise transactions today, Blockchain is a historical archive of decisions and actions taken
 Proof of history, provides provenance

#### Notable transaction use cases

Land registration – Replacing requirements for research of Deeds (Sweden Land Registration)

Personal Identification – Replacement of Birth/Death certificates, Driver's Licenses, Social Security Cards (Estonia)

Transportation – Bills of Lading, tracking, Certificates of Origin, International Forms (Maersk/IBM)

Banking – Document storage, increased back office efficiencies (UBS, Russia's Sberbank)

Manufacturing – Cradle to grave documentation for any assembly or sub assembly

Food distribution – Providing location, lot, harvest date Supermarkets can pin point problematic food (Walmart)

Audits - Due to the decentralized and immutable nature of Blockchain, audits will fundamentally change.

Demo – https://andersbrownworth.com/blockchain

## Immutable



- As with existing databases, Blockchain retains data via transactions
- The difference is that once written to the chain, the blocks can be changed, but it is extremely difficult to do so. Requiring rework on all subsequent blocks and consensus of each.
- The transaction is, immutable, or indelible
- In DBA terms, Blockchains are Write and Read only
- Like a ledger written in ink, an error would be be resolved with another entry



Rather than the centralized "Hub and Spoke" type of network, Blockchain is a decentralized peer to peer network. Where each NODE has a copy of the ledger.

Legacy Network Centralized DB Blockchain Network Distributed Ledgers





# Encryption



- Standard encryption practices
- Some Blockchains allow for "BYOE" (Bring Your Own Encryption)
- Only as good as the next hardware innovation
- All blocks are encrypted
- Some Blockchains are public, some are private
  - Public Blockchains are still encrypted, but are viewable to the public, e.g. <u>https://www.blocktrail.com/BTC</u>
  - Private Blockchains employ user rights for visibility, e.g.
    - Customer Writes and views all data
    - Auditors View all transactions
    - Supplier A Writes and views Partner A data
    - Supplier B Writes and views Partner B data

# Consensus



- Ensures that the next block in a blockchain is the one and only version of the truth
- Keeps powerful adversaries from derailing the system and successfully forking the chain
- Many Consensus mechanisms, each with pros and cons

**Consensus Mechanism** 

Proof of Work

**Proof of State** 

Proof of Elapsed Time

**Proof of Activity** 

Proof of Burn

**Proof of Capacity** 

**Proof of Importance** 

And others....



Way To Innovation

## Computer code

# Provides business logic layer prior to block submission

| Blockchain  | Smart Contracts? | Language |                              |
|-------------|------------------|----------|------------------------------|
| Bitcoin     | No               |          |                              |
| Ethereum    | Yes              | Solidity |                              |
| Hyperledger | Yes              | Various  | GoLang, C++,<br>etc, depends |
| Others      | Depends          | Depends  |                              |



A shared ledger technology allowing any participant in the business network to see the system of record (ledger)

Ensuring appropriate visibility; transactions are secure, authenticated & verifiable

**Blockchain Essentials** 

- 1. A business problem to be solved
  - That cannot be solved with more mature technologies
- 2. An identifiable business network
  - With Participants, Assets and Transactions
- 3. A need for trust
  - Consensus, Immutability, Finality or Provenance

All parties agree to network verified transaction

Business terms embedded in transaction database & executed with transactions

Negative Indicators, Anti-Patterns

- 1. Need high performance (millisecond) transactions
- 2. Small organization (no business network)
- 3. Looking for a database replacement
- 4. Looking for a messaging replacement
- 5. Looking for transaction processing replacement
- 6. Process and metrics are not clear within the ecosystem
- 7. Value, velocity and/or variability are not present

# Summary



- Threats for the security in distributed systems are pervasive.
- It is essential to protect the resources, communication channels and interfaces of distributed systems and applications against attacks.
- This is achieved by the use of access control mechanisms and secure channels.
- Public-key and secret-key cryptography provide the basis for authentication and for secure communication.
- Kerberos and SSL are widely-used system components that support secure and authenticated communication.



# Demo Client-Server Encryption