
8

Brownout Approach for Adaptive Management of Resources

and Applications in Cloud Computing Systems: A Taxonomy

and Future Directions

MINXIAN XU and RAJKUMAR BUYYA, The University of Melbourne, Australia

Cloud computing has been regarded as an emerging approach to provisioning resources and managing ap-
plications. It provides attractive features, such as an on-demand model, scalability enhancement, and man-
agement cost reduction. However, cloud computing systems continue to face problems such as hardware
failures, overloads caused by unexpected workloads, or the waste of energy due to inefficient resource uti-
lization, which all result in resource shortages and application issues such as delays or saturation. A paradigm,
the brownout, has been applied to handle these issues by adaptively activating or deactivating optional parts
of applications or services to manage resource usage in cloud computing system. Brownout has successfully
shown that it can avoid overloads due to changes in workload and achieve better load balancing and energy
saving effects. This article proposes a taxonomy of the brownout approach for managing resources and ap-
plications adaptively in cloud computing systems and carries out a comprehensive survey. It identifies open
challenges and offers future research directions.

CCS Concepts: • General and reference → General literature; • Computer systems organization →
Cloud computing; Software and its engineering;

Additional Key Words and Phrases: Cloud computing, adaptive management, brownout, quality of service,
optional services

ACM Reference format:

Minxian Xu and Rajkumar Buyya. 2019. Brownout Approach for Adaptive Management of Resources and
Applications in Cloud Computing Systems: A Taxonomy and Future Directions. ACM Comput. Surv. 52, 1,
Article 8 (January 2019), 27 pages.
https://doi.org/10.1145/3234151

1 INTRODUCTION

Cloud computing has been regarded as one of the most dominant technologies in promoting the
future economy (Irwin 2013). Traditionally, service providers used to establish their own data cen-
ters, making a huge investment to maintain applications and provide services to users. With cloud
computing, resources can be leased by application providers and the applications can be deployed

This work is supported by China Scholarship Council, and Australia Research Council (ARC).
Authors’ address: M. Xu and R. Buyya, Cloud Computing and Distributed Systems (CLOUDS) Laboratory, School of
Computing and Information Systems, The University of Melbourne, Parkville, VIC, 3010, Australia; emails: minxianx@
student.unimelb.edu.au, rbuyya@unimleb.edu.au.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
0360-0300/2019/01-ART8 $15.00
https://doi.org/10.1145/3234151

ACM Computing Surveys, Vol. 52, No. 1, Article 8. Publication date: January 2019.

8:2 M. Xu and R. Buyya

without any upfront costs. Nowadays, many applications are developed for cloud computing sys-
tems, and clouds also provide elastic resources for applications (Son et al. 2017). This feature en-
courages enterprises to migrate their local applications to clouds (Aslanpour et al. 2017).

In addition to traditional requirements, cloud applications are experiencing unpredictable work-
loads because of the dynamic amount of requests and users (Cheng et al. 2016). Thus, cloud com-
puting systems are also required to be designed as robust to handle unexpected events: request
bursts, commonly called flash crowds, can increase the size of requests significantly. For example,
the servers of Weibo, a Chinese web social network website owned by Sina, broke down after a
Chinese celebrity announced his new relationship, the result of the celebrity’s fans flooding into
the website (Koetse 2017).

Similarly, in cloud data centers, unexpected hardware failures are also common issues. In 2016,
severe weather led to the outage of Amazon data centers in Sydney, knocking services of many
companies offline (Patrick Hatch 2016). Moreover, performance interference resulting from co-
located applications and workload consolidations may lead to unexpected performance degrada-
tions (Zhang et al. 2014).

1.1 Need for Adaptive Management in Cloud Computing Systems

To handle these phenomena, applications must be carefully designed and deployed. For instance,
techniques such as autoscaling (Lorido-Botran et al. 2014), data replication (Milani and Navimipour
2016b), workload consolidation (Homsi et al. 2017), and dynamic load balancing (Panwar and
Mallick 2015) are applied to overcome unexpected events only if the available resources are ade-
quate. However, these unexpected events are generally only of relatively short duration, and it is
not economical to provision sufficient capacity at all times. But, without sufficient resource pro-
visioning, applications can be saturated and cause users to experience longer response times or
even no response at all. As a result, service providers may lose customers and revenues. Therefore,
we argue that adaptive management of resources and applications is needed for cloud computing
systems.

With adaptive management of resources and applications, different benefits can be achieved.
Adaptive management can improve the Quality of Service (QoS) guarantee of cloud services. The
QoS guarantee plays a crucial role in system performance for cloud environments (Li et al. 2017),
and cloud computing systems are required to offer QoS guaranteed services (Singh and Chana
2016a; Singh and Chana 2016b). It is a challenging issue for clouds to support various co-located
applications with different QoS constraints and to provision resources efficiently to be adaptive to
users’ dynamic behaviors (Sampaio et al. 2015; Dou et al. 2017). It is reported that 53% of mobile
users abandon pages that have no response within three seconds. Therefore, Google firmly rec-
ommends a one-second web page loading time to improve users’ experience (Everts 2016). QoS of
applications can be improved by dynamically adding or removing hosts via adaptive management.

Energy efficiency of cloud computing systems can be improved by adaptive management. It has
become a major problem in the IT industry that huge amounts of energy are consumed by cloud
data centers (Mastelic et al. 2015). The rise and evolution of complicated computation-intensive
applications have promoted the establishment of large cloud data centers that boost the total
amount of power usage (Beloglazov and Buyya 2013). The physical servers deployed in clouds
generate massive amounts of heat and require an environment equipped with powerful air condi-
tioners. One of the key reasons for this huge energy usage is the inefficient utilization of resources
(Beloglazov et al. 2012). Adaptive management is able to improve resource usage so that energy
consumption can be reduced. For example, when there are fewer requests, adaptive management
can reduce energy consumption by consolidating workloads onto fewer active physical machines;
thus idle physical machines can be placed in low-power mode or fully turned off.

ACM Computing Surveys, Vol. 52, No. 1, Article 8. Publication date: January 2019.

Brownout Approach for Adaptive Management in Cloud Computing Systems 8:3

Balancing the loads in cloud computing systems is another objective that can be fulfilled by
adaptive management. Load balancers are regular components of web applications that allow the
system to be scalable and resilient (Randles et al. 2010). Numerous load balancing algorithms have
been introduced by researchers, focusing on different optimization targets ranging from balanc-
ing virtual machine’s load to physical machines, with specific optimizations by both heuristic and
meta-heuristic algorithms (Xu et al. 2017). The purposes of load balancing can be varied, includ-
ing geographical balancing (Liu et al. 2015), electricity costs reduction (Rahman et al. 2014), and
application load balancing in cloud computing systems (Milani and Navimipour 2016a). Adaptive
management can avoid overloads to achieve load balancing.

A promising approach for adaptive management of resources and applications in cloud com-
puting systems is brownout (Klein et al. 2014a). In the field of brownout, applications/services
are extended to two parts: mandatory and optional. The mandatory parts must be kept running all
the time, such as the critical services in the system, including data-relevant services. The optional
parts, on the other hand, need not be active all the time and can be deactivated temporarily to
ensure system performance in the case of flash crowds.

A motivational example of a brownout-enabled application is the E-Commerce system, where
product descriptions are shown along with related products suggested to end users. These related
products are managed by a recommendation engine in the system. The recommendation engine
can be identified as an optional part because it is not strictly necessary for the core function to
work. Indeed, when the system is overloaded, even if the recommendation engine improves the
user experience, it is preferable to deactivate the engine temporarily to obtain a more responsive
website for more users.

1.2 Motivation of Research

Currently, brownout approaches have been applied in cloud computing systems for different opti-
mization objectives, including system robustness improvement, overbooking, load balancing, and
energy efficiency. Therefore, we investigate them in depth as noted here:

• The brownout approach has shown promise in managing applications and resources in
cloud computing systems. Therefore, this article discusses the development and application
of brownout approaches in the cloud computing area.

• We identify the necessity of a literature review to summarize progress in the brownout
approach using adaptive management of resources and applications for cloud computing
systems. Consequently, we have surveyed existing articles relevant to this topic, and we
aim to draw more attention to and encourage efforts in advanced research with brownout
approaches.

1.3 Our Contributions

The major contributions of our work are summarized as follows:

• We propose a taxonomy of brownout-based adaptive management of resources and appli-
cations in cloud computing systems.

• We investigate a comprehensive review of brownout approaches in cloud computing sys-
tems for adaptive management of applications and resources.

• We categorize the studied brownout approaches according to their common features and
properties, and we compare the advantages and limitations of each approach.

• We identify the research gaps and future research directions in brownout-enabled cloud
computing systems.

ACM Computing Surveys, Vol. 52, No. 1, Article 8. Publication date: January 2019.

8:4 M. Xu and R. Buyya

1.4 Related Surveys

A few articles have conducted surveys or taxonomies on resource management in cloud comput-
ing. Kaur and Chana (2015) conducted a comprehensive taxonomy and survey for energy-efficient
scheduling approaches in clouds. Weerasiri et al. (2017)) introduced a survey and taxonomy for
resource orchestration in clouds while not focusing on adaptive resource management. Zhan et al.
(2015) investigated the cloud computing resource scheduling approaches and summarized their
evolution. Mansouri et al. (2017) presented a survey and taxonomy on resource management in
cloud environments, with a focus on the management of storage resources. Singh and Chana
(2016b) proposed a systematic review of QoS-aware automatic resource scheduling approaches
in cloud scenarios.

However, there is no existing survey and taxonomy focusing on the brownout approach. Thus,
our article enhances previous surveys and focuses on the brownout-based approach. It also identi-
fies the open challenges and future research directions in applying brownout in cloud computing
systems for adaptive management of resources and applications.

1.5 Article Structure

The rest of the article is organized as follows: A brief background on cloud computing and adap-
tive management is introduced in Section 2. Then, in Section 3, a discussion on the evolution of
brownout in cloud computing is presented. Section 4 depicts the methodology we applied to look
for suitable related articles. Section 5 discusses the phases and taxonomy of brownout approaches
in cloud computing systems. A review of brownout approaches and their mappings to the phases
is presented in Section 6. Section 7 describes the brownout approach using a perspective model.
Future directions and open challenges are discussed in Section 8. Finally, the conclusions of this
work are given in Section 9.

2 BACKGROUND

In this section, we briefly introduce the background of cloud computing and adaptive management.

2.1 Cloud Computing

The appearance of cloud computing is regarded as a novel paradigm in the information technology
industry (Buyya et al. 2014). The aim of cloud computing is to provide resources in the form of
utilities like water, gas, and electricity for daily use. Some attractive characteristics including an
on-demand resource provisioning model, scalability enhancement, operational cost reduction, and
convenient access are offered by clouds. All these features enable cloud computing to be appealing
to businesses by eliminating the complexity of service provider provisioning plans and by allow-
ing companies to begin with the minimum resources required. Cloud platforms like EC2, Google
Cloud, and Azure have been built by large infrastructure providers to support applications around
the world with the purpose of assuring that these applications are scalable and available for the
demands of the users (Mell et al. 2011). The cloud customers are allowed to dynamically lease and
unlease on-demand resources based on their requirements.

2.2 Adaptive Management

In the past, a considerable amount of research in adaptive techniques to manage system resources
has been conducted. Adaptive techniques are applied to management issues including protection,
optimization, and recovery. These properties are often featured as self-* characteristics (Moreno
2017).

ACM Computing Surveys, Vol. 52, No. 1, Article 8. Publication date: January 2019.

Brownout Approach for Adaptive Management in Cloud Computing Systems 8:5

Table 1. The Earliest Works in Brownout Approach for Cloud Computing Sytems

in 2014 and Their Citations

Title Citations

“Brownout: Building more robust cloud applications” 84

“The straw that broke the camel’s back: safe cloud overbooking with application brownout” 22

“Improving cloud service resilience using brownout-aware load-balancing” 23

“Control-theoretical load-balancing for cloud applications with brownout” 14

The feedback loop is the essential concept used to develop an adaptive system, one that monitors
its status and its environment and adapts as desired to obtain the required self-* characteristics.
An application’s feedback loop is viewed as an important factor to enable the adaptive manage-
ment of resources (Iglesia and Weyns 2015). In adaptive systems, one favorite representation of
the feedback loop is the Monitor, Analyze, Plan, Execute, and Knowledge (MAPE-K) loop (Arcaini
et al. 2015). In the MAPE-K loop, there are several phases to be accomplished:

1. Monitoring system status and environmental situation in the Monitor phase;
2. Analyzing the collected data and determining whether adaptation is required or not in the

Analyze phase;
3. Planning the approach to adapt the system in the Plan phase;
4. Executing the plan in the Execute phase, where the Knowledge Pool is shared by these four

phases and acts in an integration role (De Lemos et al. 2013).

3 ARTICLE SELECTION METHODOLOGY

In this section, we introduce the approach we followed to find our surveyed articles as well as the
outcome.

3.1 Source of Articles

Related articles were broadly searched in mainstream academic databases, including IEEEXplore,
Springer, Elsevier, ACM Digital Library, ScienceDirect, Wiley Interscience, and Google Scholar.

3.2 Search Method

Our search involved two phases. In the first phase, we used the keywords “Brownout” and “Cloud
Computing” to search the titles and abstracts of research articles. Several results were found, but
the numbers of these articles are quite limited, possibly because although some articles may be
motivated by the mechanism of brownout, they do not use the term in their titles or abstracts.
Thus, in the second phase, inspired by initial brownout research conducted in 2014, we planned
to find other articles. Pioneering works in the brownout approach appearing in 2014 and their
citation numbers1 are presented in Table 1. By investigating articles that cite these four papers, we
found more articles that addressed brownout.

3.3 Outcome

We found 18 research articles focusing on the brownout approach in cloud computing systems for
adaptive management of resources and applications: 77.8% of these research papers were presented
in conferences, 16.6% were published in journals, and 5.6% were presented in symposiums. More-
over, one master’s thesis (Desmeurs 2015) and one PhD thesis (Moreno 2017) have explored this

1This search was conducted on February 5, 2018.

ACM Computing Surveys, Vol. 52, No. 1, Article 8. Publication date: January 2019.

8:6 M. Xu and R. Buyya

Fig. 1. Cloud computing systems with MAPE-K adaption loop.

topic. The contents of these two theses are derived from research articles we found and reviewed,
therefore, they are not included in the following taxonomy and review.

4 BROWNOUT APPROACH

Brownout is inspired by the blackout approach used in emergency cases to cope with loss of or
over-demand for electricity (Tomás et al. 2014). In this section, we introduce the background and
evolution of brownout approach.

4.1 Overview of Brownout Approach

4.1.1 Definition. Brownout is a self-adaptive paradigm that enables or disables optional parts
(application components or services) in the system to handle unpredictable workloads (Klein et al.
2014a). The idea behind the brownout paradigm is to be adaptive: Optional parts might temporar-
ily be deactivated so that the essential functions of the system are ensured and applications avoid
saturation. Deactivating certain optional functions can contribute to increasing the request accep-
tance rate by utilizing those resources for core functions.

Therefore, the brownout paradigm is a method to make the cloud computing system adaptive
to changing workloads. Brownout also allows improved resource utilization while keeping appli-
cations responsive to avoid overloads. Moreover, brownout can be regarded as a special type of
per request admission control, where some requests are fully admitted, while others may only be
admissible without optional services. In the brownout paradigm, the dimmer is a control knob that
takes a value from [0, 1] to represent the probability of running the optional parts and to manage
brownout activities in the system (Klein et al. 2014a).

4.1.2 Architecture Model. The brownout-based scheduling of resources and applications in
cloud computing systems complies with conventional types of adaptive architectures. It is de-
rived from MAPE-K (Arcaini et al. 2015) feedback loop control, using phases, like the Monitor,
Analyze, Plan, Execute, and Knowledge phases illustrated in Figure 1. Cloud computing systems
are the target system of MAPE-K loops and are combined with MAPE-K loops through sensors
and actuators. The responsibilities of each module in MAPE-K are:

• Knowledge module: Describes the whole system at the abstract level by capturing the
major system features and status. The captured information is applied to trigger desirable
adaptations;

• Monitor module: Collects data from sensors and monitors system status continuously.
The collected data are transferred to the Analyze module for further analysis;

• Analyze module: Analyzes the data obtained from the Monitor module and provides ref-
erences for the Plan module. Different analysis methods can be applied in this module;

ACM Computing Surveys, Vol. 52, No. 1, Article 8. Publication date: January 2019.

Brownout Approach for Adaptive Management in Cloud Computing Systems 8:7

Fig. 2. Evolution of brownout approach in cloud computing systems.

• Planning module: Makes plans to change system states to be adaptive to workload
fluctuations;

• Execution module: Implements the plans. Its main role is ensuring the specified system
requirements. In addition, through actuators, it also traces new changes and makes other
plans based on the predefined rules in the knowledge pool.

4.1.3 Brownout Management. The challenges for brownout management include:

• When should optional services be deactivated?
This is relevant to system status. Optional services would be deactivated when some sys-
tem indicators show the system is not running as expected (e.g., the system is becoming
overloaded when requests are bursting).

• How to deactivate optional services?
Services can be processed in different ways. For example, stateless services can be deac-
tivated without any extra efforts. However, for the stateful services, the states should be
recorded and reloaded when they are activated again.

• Which optional services should be deactivated?
This depends on the optional service selection algorithm. The deactivated optional services
can be selected based on the status of services, such as utilization.

4.2 Evolution of Brownout Approaches in Cloud Computing

The optimization of the objectives and metrics of brownout approaches in cloud computing sys-
tems has been investigated and several methods have been proposed over the years. As shown in
Figure 2, we aim to show the evolution and development of brownout approaches in recent years.

ACM Computing Surveys, Vol. 52, No. 1, Article 8. Publication date: January 2019.

8:8 M. Xu and R. Buyya

In 2014, the application of brownout in cloud computing systems was proposed by Klein et al.
(2014a), who introduced brownout as a self-adaptation programming paradigm. They also pro-
posed that brownout can enhance system robustness when unpredictable requests are coming
into the system. Two web application prototypes were presented, RUBiS (RUBiS 2009) and RuB-
BoS (RUBBoS 2005), which have been widely used in follow-up research. This work showed the
effectiveness of the brownout approach, although the experiments were only conducted on a single
machine. Dürango et al. (2014) presented load balancing strategies for application replicas based
on brownout and admission control to maximize application performance and improve system
resilience. However, the limitation is that the modeled application is not generalizable.

To find failures earlier and avoid the limitations of periodic, event-driven monitoring, Klein et al.
(2014b) proposed two load balancing algorithms for brownout-aware services. The results showed
that the proposed algorithm has better performance in fault-tolerance. Maggio et al. (2014) pro-
posed and analyzed several different control strategies for brownout-aware applications to avoid
overloads. Predictions for incoming load and service time are also applied in the proposed policies.
To avoid Service-Level Objective (SLO) violations and unresponsive requests, Nikolov et al. (2014)
presented a platform to manage resources adaptively for elastic clouds based on SLOs, which can
overcome short-time request bursts. The proposed platform can adapt application execution to
corresponding Service-Level Agreements (SLAs). However, faults handling is not considered in
this work. Tomás et al. (2014) combined overbooking and brownout together to improve resource
utilization without application degradation. Like Dürango et al. (2014), this approach is also based
on admission control that gradually adapts applications according to requests.

In 2015, automatic algorithms based on brownout drew more attention. Desmeurs et al. (2015)
presented an event-driven brownout technique to investigate the tradeoffs between utilization and
response time for web applications. Several automatic policies based on machine learning and ad-
mission control were also introduced in this work. This work opens a direction to establish more
energy-efficient cloud data centers, but the results were not evaluated under a real trace. Dupont
et al. (2015) proposed another automatic approach to manage cloud elasticity in both infrastruc-
ture and software. The proposed method takes advantage of the dynamic selection of different
strategies. This approach considers infrastructure level and extends the application of brownout
by applying it to a broader range. Moreno et al. (2015) presented a proactive approach for latency-
aware scheduling under uncertainty to accelerate decision time. The motivation is to apply a for-
mal model to solve the nondeterministic choices of adaptation tactics (disabling different optional
contents). The limitations of this work are (i) this work does not support concurrent tactics, and
(ii) the uncertainty of environment predictions is not considered.

In 2016, several articles were devoted to improving the adaption of decision time. Pandey et al.
(2016) proposed a hybrid selection methodology that investigates multiple optimization objectives
to balance the tradeoffs between different metrics, such as decision time and optimized results.
A Markov decision process is applied to find the best choice among candidates, which represents
the combination of different disabled optional contents. To overcome the limitations in Moreno
et al. (2015), Moreno et al. (2016) presented an approach aiming to eliminate runtime costs when
constructing the Markov Decision Process (MDP). The MDP is solved via stochastic dynamic pro-
gramming. The results show that the decision time is reduced significantly. However, the requests
are processed in an offline manner.

Some other researchers have focused their attention on energy saving for clouds. Hasan et al.
(2016) introduced a green energy-aware scheduling approach for interactive cloud applications
that allows dynamic adaptation. Each application has three different modes, and each mode has
a different percentage of optional contents. Xu et al. (2016) applied brownout to reduce power
consumption by dynamically and selectively disabling the optional components of applications.

ACM Computing Surveys, Vol. 52, No. 1, Article 8. Publication date: January 2019.

Brownout Approach for Adaptive Management in Cloud Computing Systems 8:9

Fig. 3. Phases of applying the brownout approach in cloud computing systems.

The tradeoffs between energy and discount were investigated, and several heuristic component
selection policies were also proposed.

In 2017, as an extension work of Hasan et al. (2016), Hasan et al. (2017b) investigated multiple
metrics other than energy, including both user experience and performance of the interactive cloud
application. An adaptive application management approach based on dynamically switching ap-
plication modes was proposed to improve the tradeoffs among multiple optimization objectives. In
order to improve the elasticity of the infrastructure by adding or removing resources, Hasan et al.
(2017a) proposed a platform that applies a green energy-aware approach to schedule interactive
applications in clouds. The proposed platform aims to utilize both infrastructure and application
resources to adapt to changing workloads.

5 PHASES AND TAXONOMY OF BROWNOUT-BASED ADAPTIVE MANAGEMENT

In this section, we present the phases and a review of the brownout approach for the adaptive
management of resources and applications in cloud computing systems. According to our surveyed
articles, we have classified the adaptive management of resources and applications using brownout
into five phases: application design, workload scheduling, monitoring, brownout controller design,
and metrics, as demonstrated in Figure 3. These phases can be mapped to the MAPE-K modules
as shown in Figure 1. Application design and workload scheduling correspond to the Knowledge
module to describe the system; monitoring is mapped to the Monitor module to monitor system
status; brownout controller design corresponds to the Analyze, Plan, and Execute modules; and
metrics are mapped to the information obtained from the Sensors. Here, we explain the details of
each phase.

5.1 Application Design

Applications are run in cloud computing systems to provide services for users. To enhance the
system performance in clouds, applications are designed by referring to system configuration and
users requirements. In Figure 4, the categories we used for the application design are (i) application
type, (ii) application domain, (iii) optional parts, and (iv) application deployment.

5.1.1 Application Type. The application can be run locally or remotely while enabled by
brownout. Brownout-enabled applications can be classified into two types according to appli-
cation type: (i) desktop application and (ii) web application. The desktop application represents
the brownout-enabled applications run locally on machines (e.g., a word processing application)
(Alvares et al. 2017). The web application is implemented in the client-server model to provide
web services that the users interact with through the Internet. The typical brownout-enabled web
application is an online shopping system, an application that has been examined in many existing
brownout-related articles (Dürango et al. 2014; Klein et al. 2014a; Maggio et al. 2014).

ACM Computing Surveys, Vol. 52, No. 1, Article 8. Publication date: January 2019.

8:10 M. Xu and R. Buyya

Fig. 4. Taxonomy based on application design.

5.1.2 Application Domain. Applications are implemented to provide functionalities for users.
The developer’s aim is to develop applications efficiently, even as the complexity of applications is
increasing. Adaptive application management in cloud computing systems provides an approach
to manage these complex applications. To manage these applications, the application’s domain
should be identified as applications in different domains have different management requirements.
Applications in the general domain provide functions for general purposes (Xu et al. 2016), such
as scientific calculation applications. Applications in the business domain, which focus on maxi-
mizing the profits of service providers, are more sensitive to certain specific performance metrics.
For example, in an online shopping system, which belongs to the business domain, response time
as a QoS requirement is one of the most critical metrics (Hasan et al. 2017b), since long response
times or unresponsiveness leads to the loss of users.

5.1.3 Optional Parts. In brownout-enabled applications, the optional parts in the applications
are temporarily deactivated to manage resources and applications. The optional parts represent the
scheduling units in the applications. In existing articles, the optional parts are identified as (i) con-
tents, (ii) components, and (iii) containers. Optional web contents on servers are to be showed
selectively to users to save resource usage (Klein et al. 2014a). Components-based applications
deactivate optional components to manage resource utilization (Alvares et al. 2017). In container-
ized clouds, each service is implemented as a container, and the optional containers can be acti-
vated/deactivated based on system status (Xu et al. 2016).

5.1.4 Application Deployment. In cloud computing systems, applications can be deployed on
physical machines (PMs) or virtual machines (VMs). Deploying them directly on PMs enables ap-
plications to have almost the same performance as native systems, especially containerized appli-
cations. One PM can host multiple VMs, and multiple applications can be deployed on the same VM
to improve the usage of shared resources. When applications are deployed on VMs, VM migrations
and VM consolidation can be applied together with brownout to optimize resource utilization (Xu
et al. 2016).

5.2 Workload Scheduling

Workload scheduling aims to schedule and allocate appropriate resources to suitable workloads
according to the SLA defined by end-users and service providers so that the workloads can be
executed efficiently and applications utilize resources efficiently. In Figure 5, the categories we use
for workload scheduling are (i) workload type, (ii) resource type, (iii) dynamicity, (iv) workload
trace, and (v) experiment platform.

ACM Computing Surveys, Vol. 52, No. 1, Article 8. Publication date: January 2019.

Brownout Approach for Adaptive Management in Cloud Computing Systems 8:11

Fig. 5. Taxonomy based on workload scheduling.

5.2.1 Workload Type. The workload type represents the resource requirement of workloads. In
current brownout-relevant articles, most works are focused on scheduling CPU-intensive work-
loads (Dürango et al. 2014; Desmeurs et al. 2015; Dupont et al. 2015) as computation resources
are regarded as the main resource allocated to workloads. Some articles also consider network-
intensive workloads to reduce network latency (Nikolov et al. 2014).

5.2.2 Resource Type. For homogeneous resource types, the resources offered by service
providers are limited to a single type. This configuration simplifies workload scheduling and over-
looks the various characteristics of a workload. The homogeneous configuration is mostly used in
small-scale tests where resource diversity is limited or for the initial research of a novel approach
(Dürango et al. 2014; Klein et al. 2014a). Cloud computing systems are heterogeneous; to take
advantage of this feature, mature service providers offer heterogeneous resources for workload
scheduling. For example, Amazon EC2 has provided more than 50 types of VMs, and these VMs
are categorized into various classifications for different workload types, such as general purpose,
computation-intensive, or memory-intensive (EC2 2018).

5.2.3 Dynamicity. The dynamicity of workload scheduling represents the time when the work-
load information is obtained. The dynamicity of workload scheduling is considered online if the
workload information is only available when the workloads are coming into the system. If all
the workload information is known in advance, and workloads can be rescheduled based on sys-
tem resources, the scheduling process is identified as offline. One example of offline scheduling
is the batch job (Hasan et al. 2016), in which the deadlines of jobs are known and jobs can be
executed with delays based on resource availability. Compared with online workload scheduling,
offline workload scheduling usually achieves more optimized results; however, it is not available
for some scheduling scenarios, such as real-time applications.

5.2.4 Workload Trace. Different workload traces are used to evaluate the performance of
brownout approaches. When brownout was initially proposed, synthetic traces, such as work-
loads generated based on Poisson distribution, were applied. Later, workloads derived from real
traces were also applied. Presently, the popular real traces are from FIFA (FIFA 2014), Wikipedia
(Wikibench 2017), and Planet lab trace (Park and Pai 2006).

5.2.5 Experiments Platform. Both real testbeds and simulations have been conducted to test the
performance of brownout approaches. Experiments under real testbed are more persuasive. The
Grid’5000 platform (Grid5000 2017) has been adopted in several articles; this platform provides
APIs to collect PM utilization and energy consumption data. However, some uncontrolled factors
exist in real testbeds, such as network traffic and unpredictable loads. Therefore, simulation

ACM Computing Surveys, Vol. 52, No. 1, Article 8. Publication date: January 2019.

8:12 M. Xu and R. Buyya

Fig. 6. Taxonomy based on monitoring.

tools provide more feasible options. In addition, with simulations, it is easier to conduct ex-
periments with heterogeneous resources as well as at large-scale sizes. The cloud simulation
toolkit, CloudSim (Buyya et al. 2009), has been used for simulating brownout-enabled workload
scheduling.

5.3 Monitoring

The objective of monitoring is to achieve performance optimization by monitoring resource usage
in a cloud computing system. Therefore, a monitoring component is required to collect system
data and analyze resource utilization information. After analysis, decisions to change the system
status and resource usage are made to ensure that the system satisfies a specific SLA. As shown
in Figure 6, we categorize the components of monitoring as (i) resource usage, (ii) services, (iii)
status, and (iv) execution.

5.3.1 Resource Usage. The monitor in a cloud environment is used to track resource usage,
including CPU, memory, and network usage via monitoring tools. As mentioned in Section 5.2.1,
current brownout-related workload scheduling is focused on handling CPU-intensive and
network-intensive workloads (Klein et al. 2014b; Nikolov et al. 2014). So, monitors in brownout-
enabled systems are mainly monitoring CPU and network resource usage. Two objectives of
monitoring resource usage can be achieved from both users’ and service providers’ perspectives:
users expect their requests to be processed within QoS parameters, and service providers aim to
execute the workloads with minimum resource usage.

5.3.2 Services. Service monitoring gathers information about resource status to check whether
the workload is being executed by applications as desired. Two types of service monitoring exist in
cloud computing systems: One is centralized and the other is distributed. In a centralized moniter, a
central repository is applied to store the collected data, which are not scalable when the number of
monitored targets is increased (Xu et al. 2016). For distributed service monitoring, the monitored
data are stored distributedly to achieve better fault tolerance and load balancing (Alvares et al.
2017).

5.3.3 Status. To be more specific, monitoring resource utilization is regarded as monitoring the
status of different levels, including PMs (Moreno et al. 2015), VMs (Dupont et al. 2015), and appli-
cations (Tomás et al. 2014). Based on various optimization goals, data are collected from different
levels. For example, to reduce the energy use of cloud computing systems, the power consumption
of PMs should be collected. To improve the response time of requests, it is necessary to obtain the
resource usage of applications.

ACM Computing Surveys, Vol. 52, No. 1, Article 8. Publication date: January 2019.

Brownout Approach for Adaptive Management in Cloud Computing Systems 8:13

Fig. 7. Taxonomy based on brownout controller design.

5.3.4 Execution. To avoid unexpected failures and execute workloads promptly, execution
monitoring has two types: periodic and event-driven. In periodic monitoring, the monitor peri-
odically checks the resource usage and makes decisions on the execution process for the next time
period (Dürango et al. 2014). In an event-driven monitor, changes in the execution process are
triggered once a specific event is detected, as when resource usage is above the predefined over-
loaded threshold (Klein et al. 2014b). The motivation of an event-driven monitor is its real-time
requirement, which is suitable for latency-aware applications.

5.4 Brownout Controller/Dimmer Design

In brownout-enabled systems, the deactivation/activation operations on optional parts are man-
aged by a brownout controller. The brownout controller also has a control knob called a dim-

mer, which represents the probability of optional parts being deactivated. Thus, the design of the
brownout controller is the most important part of a brownout approach. In Figure 7, we have cat-
egorized the classification of brownout controller/dimmer design as (i) parameters, (ii) controller
algorithm, (iii) controller number, and (iv) adaptivity.

5.4.1 Parameters. A brownout controller can be designed based on different parameters. These
parameters can be classified based on system and user perspectives as system performance and
user experience, respectively. If system performance is addressed, the brownout controller is con-
figured with system parameters, such as resource utilization (Dürango et al. 2014). If the brownout
controller aims to optimize user experience, parameters like response time can be designed into a
brownout controller (Klein et al. 2014a).

5.4.2 Controller Algorithm. Similar to the resource scheduling problem, finding the optimal
solutions of which optional parts are to be deactivated/activated by controller algorithms
is computationally expensive. Thus, finding approximate solutions is an alternative to most
proposed approaches. We have classified the surveyed controller algorithms as heuristic and
meta-heuristic. The heuristic algorithms comply with predefined constraints and try to find an
acceptable solution for a particular problem (Talbi 2009). Usually, these constraints are varied for
different problems, and the solutions can be obtained within a limited time. One type of heuristic
algorithms is the greedy algorithm, and it has been adopted in several works (Desmeurs et al.
2015; Dupont et al. 2015; Moreno et al. 2015). Meta-heuristic algorithms are generally applied to
general-purpose problems (Talbi 2009) and have standard procedures for problem construction

ACM Computing Surveys, Vol. 52, No. 1, Article 8. Publication date: January 2019.

8:14 M. Xu and R. Buyya

Fig. 8. Taxonomy based on metrics.

and solving. One example of a meta-heuristic algorithm is the approach based on a Markov
decision process that has been applied in two works (Xu and Buyya 2017; Moreno et al. 2016).

5.4.3 Controller Number. The brownout controller may have single or multiple controllers to
manage the optional parts in cloud computing systems. In Tomás et al. (2014), multiple controllers
are applied in each application; there is a controller, and its dimmer value is calculated based on
its status. Thus, the dimmer values of different applications in Tomás et al. (2014) can be varied.
For overall management, a single controller is applied. For example, in Hasan et al. (2017a), the
dimmer value is calculated as the severity of overloads in the whole data center.

5.4.4 Adaptivity. Adaptivity represents whether the brownout controller is adaptive to changes
in workloads. It is categorized as static and dynamic. In our surveyed approaches, most controllers
are dynamic (Dürango et al. 2014; Maggio et al. 2014; Tomás et al. 2014) and can be dynamically
adapted to changes in the system. Only limited approaches are static (i.e., apply static parameters).
The static brownout controllers easily violate specific SLAs (Hasan et al. 2016; Hasan et al. 2017a).

5.5 Metrics

Different metrics are considered in cloud computing systems to evaluate the performance of dif-
ferent brownout-based approaches. As shown in Figure 8, from our surveyed literature, we have
identified nine metrics: response time, execution time, utilization, availability, decision time, la-
tency, request number, energy, and revenue.

Response time (Dürango et al. 2014; Klein et al. 2014a; Maggio et al. 2014) is the total time elapsed
from when users send requests until they receive a response. The response time can be influenced
by system processing time, which is also relevant to hardware resource utilization. This metric
should be reduced to improve the user experience. Execution time (Alvares et al. 2017; Zhao et al.
2017) is the time required to complete the workload’s execution. Minimizing the execution time
can improve system QoS. Utilization (Nikolov et al. 2014; Tomás et al. 2014) is the actual resource
percentage used to run workloads compared to the total resources provided by the service provider.
Available utilization should be improved to maximize resource usage. Availability (Alvares et al.
2017; Zhao et al. 2017) is the capability of the cloud computing system to guarantee that services
are available with expected performance as well as its ability to handle fatal situations. This met-
ric should be ensured in cloud computing systems (e.g., for 99.9% time, services should run with
expected performance). Decision time (Moreno et al. 2015; Moreno et al. 2016) is the time that a
scheduling algorithm takes to find the optional parts to be deactivated/activated, which is associ-
ated with algorithm design. To find solutions faster, in the online scheduling scenario, the decision
time of an algorithm should be accelerated. Latency (Klein et al. 2014a; Moreno et al. 2015) is the
time delay spent on message communication across the network, which is relevant to hardware
resources and utilization. In business applications, latency is a crucial metric to indicate system
performance. Request number (Dupont et al. 2015; Hasan et al. 2016) is the number of requests
received by the system. The scheduling algorithm has better performance if more requests can be

ACM Computing Surveys, Vol. 52, No. 1, Article 8. Publication date: January 2019.

Brownout Approach for Adaptive Management in Cloud Computing Systems 8:15

Table 2. Summary of Brownout Approaches

Approach Year Author Description Orgranization

COBLB (Dürango et al. 2014) 2014 Durango et al.
Load Balancing with Brownout

and Control Theory
Umea University,

Sweden

SAB (Klein et al. 2014a) 2014 Klein et al.
Robust Cloud Applications with

Brownout
Umea University,

Sweden

EPBH (Klein et al. 2014b) 2014 Klein et al.
Resilience and Load Balancing

with Brownout
Umea University,

Sweden

FPF (Maggio et al. 2014) 2014 Maggio et al. Brownout Prediction
Lund University,

Sweden

CLOUDFARM (Nikolov et al. 2014) 2014 Nikolov et al. Adaptive Resource Management
University of Ulm,

Germany

BOB (Tomás et al. 2014) 2014 Tomas et al. Overbooking with Brownout
Umea University,

Sweden

EDB (Desmeurs et al. 2015) 2015 Desmeurs et al.
Event-Driven Application with

Brownout
Umea University,

Sweden

CAA (Dupont et al. 2015) 2015 Dupont et al. Cloud Elasticity with Brownout INRIA, France

PLA (Moreno et al. 2015) 2015 Moreno et al.
Proactive Self-Adaptation for

Uncertainty Environment
Carnegie Mellon
University, USA

HYB-Q (Hasan et al. 2016) 2016 Hasan et al.
Green Energy for Cloud

Application
INRIA, France

PLA-SDP (Moreno et al. 2016) 2016 Moreno et al.
Decision-Making for Proactive

Self-Adaptation
Carnegie Mellon
University, USA

HYBP (Pandey et al. 2016) 2016 Pandey et al.
Hybrid Planning in

Self-Adaptation
Carnegie Mellon
University, USA

LUFCS (Xu et al. 2016) 2016 Xu et al.
Energy Efficiency in Clouds with

Brownout
University of

Melbourne, Australia

MODULAR (Alvares et al. 2017) 2017 Alvares et al.
Modular Autonomic Manager in

Software Components
INRIA, France

SaaScaler (Hasan et al. 2017b) 2017 Hasan et al.
Power and Performance Scaler

for Applications
INRIA, France

GPaaScaler (Hasan et al. 2017a) 2017 Hasan et al.
Green Energy Aware Scaler for

Interactive Applications
INRIA, France

RLBF (Zhao et al. 2017) 2017 Zhao et al.
Reinforcement Learning for

Software Adaptation
Peking University,

China

BMDP (Xu and Buyya 2017) 2017 Xu et al.
Energy Efficient Clouds with
Markov Decision Process and

Brownout

University of
Melbourne, Australia

served with the same amount of resources. Energy (Xu et al. 2016; Xu and Buyya 2017) is the total
power used for the cloud computing system to provide its services to users. The system should
reduce energy consumption while ensuring QoS. Revenue (Hasan et al. 2017a; Hasan et al. 2016) is
the profit obtained from users when service providers are offering services. The service provider
aims to maximize its revenue while lowering costs.

6 REVIEW OF BROWNOUT APPROACHES

In this section, we conduct a review of brownout-based approaches for adaptive management of
resources and applications in a cloud computing system. To identify the differences in surveyed
articles, we use the taxonomy in Section 5 to map the key features of these approaches. Table 2
shows a summary of selected brownout approaches, and Tables 3 to 7 summarize the comparison of
selected brownout approaches and their categorized classification according to our taxonomy. For

ACM Computing Surveys, Vol. 52, No. 1, Article 8. Publication date: January 2019.

8:16 M. Xu and R. Buyya

Table 3. Taxonomy Based on Application Design

Approach Application Type Application Domain Optional Parts Application Deployment

COBLB Web application Business Contents Virtual Machine

SAB Web application Business Contents Virtual Machine

EPBH Web application Business Contents Virtual Machine

FPF Web application Business Components Physical Machine

CLOUDFARM Web application Business Components Physical Machine

BOB Web application Business Contents Virtual Machine

EDB Web application Business Contents Virtual Machine

CAA Web application Business Contents Virtual Machine

PLA Web application Business Contents Virtual Machine

HYB-Q Web application Business Contents Virtual Machine

PLA-SDP Web application Business Contents Virtual Machine

HYBP Web Application Business Contents Virtual Machine

LUFCS Web Application General Components Virtual Machine

MODULAR Desktop Application General Components Physical Machine

SaaScaler Web application Business Contents Virtual Machine

GPaaScaler Web application Business Contents Virtual Machine

RLBF Web application Business Components Physical Machine

BMDP Web Application General Containers Virtual Machine

Table 4. Taxonomy Based on Workload Scheduling

Approach Workload Type Resource Type Dynamicity Trace Experiments Platform

COBLB CPU-intensive Homogeneous Online Synthetic Simulation

SAB CPU-intensive Homogeneous Online Synthetic Real testbed

EPBH CPU-intensive Homogeneous Online Synthetic Real testbed

FPF CPU-intensive Homogeneous Online Synthetic Simulation

CLOUDFARM Network-intensive Heterogeneous Online Synthetic Real testbed

BOB CPU-intensive Homogeneous Online/Offline Real Real testbed

EDB CPU-intensive Homogeneous Online Synthetic Real testbed

CAA CPU-intensive Homogeneous Offline Synthetic Real testbed

PLA CPU-intensive Homogeneous Online Real Real testbed

HYB-Q CPU-intensive Homogeneous Online Real Real testbed

PLA-SDP CPU-intensive Homogeneous Offline Real Real testbed

HYBP CPU-intensive Heterogeneous Online Real Simulation

LUFCS CPU-intensive Heterogeneous Online Real Simulation

MODULAR CPU-intensive Homogeneous Online Synthetic Real testbed

SaaScaler CPU-intensive Homogeneous Online Real Real testbed

GPaaScaler CPU-intensive Homogeneous Online Real Real testbed

RLBF CPU-intensive Homogeneous Online/Offline Synthetic Real testbed

BMDP CPU-intensive Heterogeneous Online Real Simulation

instance, Table 3 shows the comparison based on the taxonomy of application design as presented
in Section 5.1, and Table 7 shows the metrics comparison based on the discussion in Section 5.5.

The Convex Optimization-Based Load Balancing (COBLB) (Dürango et al. 2014) technique ex-
tends the brownout approach for services with multiple replicas, which are copies of applications

ACM Computing Surveys, Vol. 52, No. 1, Article 8. Publication date: January 2019.

Brownout Approach for Adaptive Management in Cloud Computing Systems 8:17

Table 5. Taxonomy Based on Monitoring

Approach Resource Usage Services Status Execution

COBLB CPU Centralized Applications Periodically

SAB CPU Centralized Applications Periodically

EPBH CPU Centralized Applications Event-Driven

FPF CPU Centralized Applications Periodically

CLOUDFARM Network Centralized PMs, Applications Periodically

BOB CPU Centralized Applications Periodically

EDB CPU Centralized Application Event-Driven

CAA CPU Centralized VMs Periodically

PLA CPU Centralized PMs Periodically

HYB-Q CPU Centralized Applications Periodically/Event-Driven

PLA-SDP CPU Centralized PMs Periodically

HYBP CPU Centralized PMs Periodically

LUFCS CPU Centralized PMs Periodically

MODULAR CPU Decentralized PMs Periodically/Event-Driven

SaaScaler CPU Centralized VMs, Applications Periodically/Event-Driven

GPaaScaler CPU Centralized VMs, Applications Periodically

RLBF CPU Centralized PMs Periodically

BMDP CPU Centralized PMs Periodically

Table 6. Taxonomy Based on Brownout Controller/Dimmer Design

Approach Parameters Controller Algorithm Controller Number Adaptivity

COBLB System Performance Heuristic Multiple Dynamic

SAB User-experience Heuristic Multiple Dynamic

EPBH System Performance Heuristic Single Dynamic

FPF User-experience Heuristic Single Dynamic

CLOUDFARM System Performance Heuristic Multiple Dynamic

BOB System Performance Heuristic Multiple Static/Dynamic

EDB System Performance Heuristic Multiple Dynamic

CAA System Performance Heuristic Multiple Dynamic

PLA System Performance Meta-heuristic Single Dynamic

HYB-Q User-experience Heuristic Single Static

PLA-SDP System Performance Meta-heuristic Single Static

HYBP System Performance Meta-heuristic Single Dynamic

LUFCS System Performance Heuristic Multiple Dynamic

MODULAR System Performance Heuristic Multiple Dynamic

SaaScaler User-experience Heuristic Single Static

GPaaScaler User-experience Heuristic Single Static

RLBF System Performance Meta-heuristic Multiple Static/Dynamic

BMDP System Performance Meta-heuristic Multiple Dynamic

providing the same functionalities. These replicas contain optional contents and can be served se-
lectively according to system status. To enhance system load balancing performance, the technique
also collects information about adaptation in replicas. In this technique, all replicas are managed
in queuing systems adopting resource sharing. Response time and the number of requests are
improved by this technique.

ACM Computing Surveys, Vol. 52, No. 1, Article 8. Publication date: January 2019.

8:18 M. Xu and R. Buyya

Table 7. Taxonomy Based on Metrics

Approach
Response

Time
Execution

Time
Utilization Availability

Decision
Time

Latency
Requests
Number

Energy Revenue

COBLB � �
SAB � �

EPBH � �
FPF � �

CLOUDFARM �
BOB � �
EDB � �
CAA � �
PLA � �

HYB-Q � � � �
PLA-SDP � �

HYBP � �
LUFCS � �

MODULAR � �
SaaScaler � � � �

GPaaScaler � � �
RLBF � �
BMDP � �

The Self-Adaptive Brownout (SAB) (Klein et al. 2014a) approach adds a dynamic parameter that
affects user experience and the amount of resources required by the application. This parameter is
adapted based on both workload and available resources to enhance the robustness of applications.
The proposed approach is synthesized with a control theory approach to adaptively determine
when to activate/deactivate optional features in the applications. With control theory, application
behaviors can be predicted, and some system constraints can be guaranteed. In this approach, the
maximum latency is controlled so that latency is reduced. Also, SAB can serve more users with
fewer resources.

Equality Principle-Based Heuristic (EPBH) (Klein et al. 2014b) is focused on enhancing the re-
silience of cloud services when a system faces a resource shortage. Similar to COBLB (Dürango
et al. 2014), this approach is also applied to application replicas. This event-driven approach is
based on heuristics and requires all replicas to have a control parameter (dimmer) value. Accord-
ing to the parameter value, EPBH decides which replicas to receive more load. EPBH has been
proved to improve resilience when a resource shortage is triggered by failures.

The objective of the Feedforward Plus Feedback (FPF) (Maggio et al. 2014) approach is to keep
the average response time below a certain threshold. FPF works by configuring the probability
to serve requests with optional computations. FPF is able to handle requests bursts for cloud
applications and reacts to changes in the resource amount allocated to cloud applications. The
goal of FPF is to obtain the number of currently queued requests from applications and predict
the latency experienced by future requests. The results demonstrate that although FPF spends
effort on obtaining more information, the overloads are mitigated.

CLOUDFARM (Nikolov et al. 2014) is an elastic cloud platform to manage resource reservations
in flexible and adaptive ways based on actual resource demands and predefined SLAs. It provides
flexible SLAs that can be configured dynamically to fulfill the elasticity of cloud computing sys-
tems. Based on SLAs and costs produced by users, the services can be dynamically downgraded

ACM Computing Surveys, Vol. 52, No. 1, Article 8. Publication date: January 2019.

Brownout Approach for Adaptive Management in Cloud Computing Systems 8:19

to avoid bursts so that system utilization and revenue can be improved. CLOUDFARM also intro-
duces an abstract level by using a virtual framework for all applications, which benefits from its
lightweight and dynamic degradation from full mode to degraded mode.

The Brownout OverBooking (BOB) (Tomás et al. 2014) technique is designed to ensure grace-
ful degradation when loads spike and thus avoid overloads in a resource overbooking scenario.
The motivation of BOB is to combine overbooking and brownout together, where the overbook-
ing system takes advantage of application information from brownout and applies deactivation
operations to relieve overloads. In BOB, an overbooking controller is responsible for admitting
or rejecting new requests, and a brownout controller is responsible for adapting the resources
allocated to accepted requests. Higher utilization is achieved while response time is ensured by
BOB.

To ensure application responsiveness, an Event-Driven Brownout (EDB) (Desmeurs 2015) tech-
nique at the application level has been proposed. In this approach, the application is allowed to
run optional codes that are not necessary for key functionalities but that provide extra user expe-
rience. EDB combines machine learning techniques and control theory to dynamically configure
a given threshold that represents the number of pending requests. The configuration operation is
based on application response time. An advance in ensuring response time is achieved without
sacrificing utilization.

The Cloud Automatic Approach (CAA) (Dupont et al. 2015) aims at managing cloud elasticity
in a cross-layered manner. The motivation is to combine infrastructure elasticity and software
elasticity to overcome the conceptual limitations of the IaaS and make software at the SaaS level
involved in the elasticity process. Software at SaaS is running at different levels and can be de-
graded to lower levels when resources are limited. And for resources at the IaaS level, physical
machines can be scaled in and out according to system loads. An advantage in response time is
obtained when the cross-layered method is working in a coordinated way.

The Proactive Latency-Aware (PLA) (Moreno et al. 2015) method addresses the inefficient reac-
tive adaption problem when adaptation has latency. Thus, PLA considers adaptation latency and
applies the probabilistic model to decide adaptations. The main motivation is to use a formal model
to find adaptation decisions which are underspecified through nondeterminism and then resolve
the nondeterministic choices to maximize optimization goals. PLA takes the uncertainty of the
environment into account and predicts needed resources by looking ahead. The effectiveness of
adaptation decisions is significantly improved.

The QoS-aware Hybrid Controller (HYB-Q) (Hasan et al. 2016) technique aims at achieving
green energy-aware scheduling by using both green and brown energy. The target applications
are focused on interactive cloud applications that can be dynamically adapted to available green
energy based on changing conditions. HYB-Q obtains information in a feedback loop about the
number of requests executed under different modes in the previous time period and computes the
current adaptation value. In the controller, the response time and workload changes are period-
ically checked. If the response time rises above the predefined threshold, the user experience is
downgraded to a lower mode to avoid overloads by the controller. It is observed that providers’
revenue is improved and the usage of brown energy is reduced.

As an extension work of PLA (Moreno et al. 2015), the Proactive Latency-Aware with Markov
Decision Process (PLA-SDP) (Moreno et al. 2016) takes advantage of the probabilistic property
of the Markov decision process to adapt application functionalities. To eliminate the runtime
overhead of constructing MDP, stochastic dynamic programming is applied to solve MDP. The
decision time is vitally reduced while the same results are obtained.

The objective of Hybrid Planning (HYBP) (Pandey et al. 2016) is to find tradeoffs between time-
liness and optimality of solutions to adapt application modes. HYBP combines two approaches

ACM Computing Surveys, Vol. 52, No. 1, Article 8. Publication date: January 2019.

8:20 M. Xu and R. Buyya

together to achieve the best balance between conflicts. One is deterministic planning and the other
is Markov decision process planning, which can be fitted in different cases. In case a fast response
is required, deterministic planning is applied. When the time is adequate, MDP planning is ap-
plied to generate an optimal solution. Simulated experiments have shown that HYBP can improve
system performance by balancing these tradeoffs.

The Lowest Utilization First Component Selection (LUFCS) policy (Xu et al. 2016) is a heuristic
technique to save data center power usage via dynamically deactivating application components.
Those components with lower utilization are selected with higher priority until the sum of these
components’ utilization equals the expected utilization reduction. This technique is combined with
VM consolidation to decrease the active number of hosts. The discount is also considered for users
if some services are not provided. Therefore, there is a tradeoff between saved energy and revenue,
which is investigated by LUFCS.

The MODULAR (Alvares et al. 2017) approach leverages the modularity feature of the
component-based system to strengthen domain-specific language applications. Domain-specific
language has high-level constructs to describe the configurations and executed policies of the tar-
get system. With the brownout mechanism, the components can be transferred from a nominal
configuration to a degraded one, which incurs different loads for the system. Thus, through dy-
namic reconfiguration, the system becomes self-adaptive.

Compared with HYB-Q (Hasan et al. 2016) that focuses on green energy usage, the SaaScaler
(Hasan et al. 2017b) approach analyzes the tradeoff between power and performance by consider-
ing green energy usage for interactive cloud applications. SaaScaler can satisfy different metrics.
Considering these metrics, three levels of user experience are defined, and capacity requirements
are dynamically adjusted among these levels to serve more users. Experiments conducted in real
testbed show that energy consumption is reduced while performance and revenues are improved
by carefully tuning applications.

GPaaScaler (Hasan et al. 2017a) considers adaptation both at the infrastructure and application
levels by using a green energy source. At the infrastructure level, resources are added or removed
according to applications’ resource demand. While the applications are dynamically changing their
service levels according to performance and green energy availability, these adaptations are im-
plemented separately and can be coordinated. Lower costs and less usage of brown energy are
achieved.

The objective of the Reinforcement Learning-Based Framework (RLBF) (Zhao et al. 2017) ap-
proach is to overcome the limitations of rule-based adaptation in which decisions are only made
based on static rules. Based on reinforcement learning, RLBF enables automatic learning rules
with various optimization objectives in an offline manner. Additionally, the rules can also evolve
according to real-time information for online adaptation in selecting optional services to run. The
efficiency and effectiveness of the adaptation process are improved by this approach.

Aiming at improving the tradeoffs mentioned in Xu et al. (2016), another brownout-based ap-
proach was proposed using the Markov Decision Process (Xu and Buyya 2017). Called BMDP, it
aims to select better combinations of deactivated application components. With MDP, the solution
space is increased and more possible solutions are found. To reduce the solution space and avoid
the curse of dimensioning, key states that can reduce energy consumption are identified. Taking
advantage of MDP, a better tradeoff between energy and revenue is fulfilled.

To summarize the merits and demerits of the reviewed brownout approaches, a comparison of
the advantages and limitations of each brownout approach is presented in Table 8. For example,
the COBLB (Dürango et al. 2014) approach achieves better resilience but the adopted application
model is not generalizable.

ACM Computing Surveys, Vol. 52, No. 1, Article 8. Publication date: January 2019.

Brownout Approach for Adaptive Management in Cloud Computing Systems 8:21

Table 8. Comparison of Brownout Approaches

Approach Objectives Advantages Limitations

COBLB
Load balancing for Cloud

applications
Resilience is improved

Application model is not
general

SAB
Enhance robustness of Cloud

applications
Support more users with

fewer resources
Only tested on a single

machine

EPBH Improve resilience Response time is reduced
Parameters are chosen

empirically

FPF Mitigate overloads Prediction is applied
Only validated with

simulations

CLOUDFARM Improve elasticity
SLA is ensured when there

are bursts
Faults handling is not

considered

BOB Resource overbooking
Improve resource utilization

without application
degradation

Scalability is not discusses

EDB
Balance utilization and

response time
Utilization is improved and

response time is ensured
Not evaluated with real

workloads

CAA Manage elasticity
Elasticity is improved at both
infrastructure and software

levels
Limited number of tactics

PLA Accelerate decision time Latency is reduced
Concurrent tactics are not

supported

HYB-Q
Green energy provisioning for
interactive cloud application

Brown energy is saved
Non-interactive cloud
applications are not

investigated

PLA-SDP Accelerate decision time Decision time is reduced
Not available for online

requests

HYBP
Balance decision time and

optimality
Decision time is reduced Not validated in real testbed

LUFCS
Energy efficient management
of application at component

level

Energy consumption is
reduced

Not all combinations of
deactivated components are

accessed

MODULAR Manage modular components
System availability is

improved
The availability for other

applications is not discussed

SaaScaler
Investigate tradeoffs between

energy and performance
Energy is reduced and QoS is

improved
Resources addition or removal

are not flexible

GPaaScaler Reduce energy consumption Energy is saved
Not available for real-time

requests

RLBF
Enhance flexibility of

approach
Better adaptation

effectiveness is achieved
Convergence time is not

analyzed

BMDP
Improve trade-off between

energy and discount
Trade-off between energy and

discount is improved
Not validated in real testbed

7 A PERSPECTIVE MODEL

The brownout approach has shown its ability to improve applications and resources management
to handle changes in workloads. However, the tradeoffs between workload handling and perfor-
mance degradation must be considered. Several optimization objectives are usually considered
together to investigate these tradeoffs. The primary research problems are:

1. How do we enable a brownout approach in a cloud computing system?
2. How do we enable brownout to manage resources and applications adaptively?
3. How do we balance the tradeoffs between different metrics when applying brownout?

ACM Computing Surveys, Vol. 52, No. 1, Article 8. Publication date: January 2019.

8:22 M. Xu and R. Buyya

Fig. 9. Perspective model of applying brownout in cloud computing systems.

To deal with these issues, we need a brownout-enabled mechanism for adaptive management.
We propose a perspective model of a brownout-enabled cloud computing system for adaptive
resource scheduling as shown in Figure 9.

From the users’ perspective, users interact with the system and submit their requests for services
to the system. The users may have constraints for the submitted requests, such as QoS constraints
or budget. From the service providers’ perspective, these workloads generated by users are exe-
cuted by applications.

Applications are provided by service providers to offer services to users, and these applications
are managed by the application hosting engine (e.g., Docker (Docker 2017b) and Apache Tomcat
(Tomcat 2018)). Applications can be deployed on either a virtualized platform (virtual resources) or
a cloud infrastructure (physical resources). The host application engine can be a container-based
management platform (e.g., Docker Swarm (Docker 2018), Kubernetes (2018), or Mesos (2018)),
which provides management of container-based applications. A virtualized platform manages vir-
tualized resources (e.g., the VMs managed by VMware (2018)). As for resource allocation and provi-
sioning in a cloud infrastructure, these can be managed by infrastructure management platforms,
such as OpenStack (2018).

To deal with research problem (1), the applications can be composed of optional and mandatory
components/services. The optional components/services should be identified by service providers
and can be activated/deactivated by the brownout controller. For instance, in Docker Swarm, the
services can be deployed via a configuration file (Docker 2017a) and the file can set the service
with the feature “optional.”

To resolve research problem (2), a brownout controller is required based on the MAPE-K archi-
tecture model, and it fits into the feedback loop of the MAPE-K model, as introduced in Figure 1.
As described in Section 4.1.2, it has modules (Monitor, Analyze, Plan, and Execute) to achieve
adaptation with the cloud computing system. Sensors and Actuators are used to interact with the

ACM Computing Surveys, Vol. 52, No. 1, Article 8. Publication date: January 2019.

Brownout Approach for Adaptive Management in Cloud Computing Systems 8:23

cloud computing system. Sensors collect information from different levels in the cloud computing
system, including the application hosting engine, virtualized platform, and cloud infrastructure.
The Sensors devices can be attached to hardware (e.g., power meter). The collected information is
provided to the Monitor module.

After analyzing the information in Analyze module, the Plan module makes decisions for
applying brownout control operations in which the brownout-based scheduling policies are
implemented. Based on these decisions, the Execute module applies brownout via actuators to the
application hosting engine and the virtualized platform to enable/disable optional components/
services. These operations can be fulfilled via the APIs provided by the application hosting engine
or virtualized platform.

To handle research problem (3), the Knowledge pool in MAPE-K model is applied to store the
predefined objectives (e.g., load balancing, energy efficiency, or SLA constraints) and tradeoffs (e.g.,
between energy use and SLA). The rules in the Knowledge pool, such as SLA rules, can be updated
according to brownout-based policies.

8 FUTURE RESEARCH DIRECTIONS

Although significant progress has been achieved in applying brownout to cloud computing sys-
tems and the adaptive management of resources and applications is improved, there are still some
research gaps and challenges in this area to be further explored. They are discussed here.

• For resource management using brownout, current works mostly focus on management of
computation resources. More resource types, like memory, network, and storage, need to be
considered as parameters to form more comprehensive resource management. For example,
the brownout approach can be applied to manage data-intensive applications.

• Brownout has been applied to optimization goals including load balancing and energy effi-
ciency. In addition to these optimization goals, other goals such as more complicated cost-
aware resource scheduling scenarios and more QoS metrics can be applied with brownout.

• Presently, there is a lack of standard benchmarks for performance evaluation of brownout-
based approaches. A benchmark is needed to test the performance of new algorithms and
compare these with other approaches having the same optimization objective.

• The scalability of the brownout controller can be improved by using distributed controllers.
The centralized controller can be a bottleneck for the whole system. Therefore, distributed
controllers design can be investigated.

• The cost model could be improved by considering more parameters. An integrated model
considering more cost-aware parameters will be attractive for service providers.

• Most experiments are tested on RUBiS, but more prototype systems based on target systems
other than RUBis should be introduced to show the broader applicability of brownout.

• Rather than considering a single data center, the brownout approach for cloud computing
systems can be extended to multiple data centers to deal with multicloud challenges, such
as geographical load balancing. The knowledge pool in the perspective model can be used
to track the availability of the system when the system is scaled.

• The decision and execution times of the brownout-based algorithm to find optional parts
for deactivation can be reduced by using machine learning methods. For example, based
on response time constraints, requests can be clustered by machine learning algorithms
(K-means) for further execution on the same type of machines to improve resource usage.

• The overhead and runtime complexity of heuristic and meta-heuristic approaches is not
discussed in our surveyed works, but should be investigated.

ACM Computing Surveys, Vol. 52, No. 1, Article 8. Publication date: January 2019.

8:24 M. Xu and R. Buyya

We summarize the future research directions identified as follows:

• Integration with containers: Containers have the flexible ability to provide services with
isolated functions, and their quick start and stop operations enable the brownout approach
to work efficiently. Therefore, integrating brownout with containers is a promising direction
to improve scheduling performance.

• Exploring more scenarios: Brownout has been used for load balancing, energy efficiency,
latency-awareness, and cost-awareness in cloud computing systems. Additionally, more
scenarios, such as sustainable cloud computing systems with brownout, can be investigated
to reduce carbon emissions.

• Combined with existing approaches: Brownout can be combined with VM consolidation
to achieve better resource management effects (Xu et al. 2016; Xu and Buyya 2017). It is
reasonable to expect better results when combining brownout with other validated resource
management techniques, such as DVFS for energy efficiency.

• Apply brownout with other application models: As current works primarily focus on
web applications, it is important to explore how brownout approaches can be applied in
other application composition models such as Map-Reduce, bag of tasks application, and
stream processing.

• Implementing the perspective model: Figure 9 shows a perspective model to resolve
the research problems when applying brownout in cloud computing systems. Implement-
ing a prototype system based on this model significantly advances research in the brownout
arena. To implement the perspective model, some open source software (e.g., Docker, Open-
Stack) can be applied.

9 SUMMARY AND CONCLUSION

Brownout is a novel paradigm for self-adaptation that enables optional parts in the system to be
temporarily disabled in order to deal with changing situations. In addition, it has been shown to
be a promising approach to improve system performance and user experience. This article intro-
duces a review and taxonomy of brownout-based adaptive resource and application management
for cloud computing systems. A taxonomy is presented according to five phases: (i) application
design, (ii) workload scheduling, (iii) monitoring, (iv) a brownout controller/dimmer design, and
(v) metrics. The taxonomy of each phase is summarized based on the different classifications of
brownout approaches. Then, a comprehensive review of existing brownout approaches is pre-
sented. Furthermore, a comparison of the advantages and limitations of the surveyed brownout
approaches is also made. Finally, future directions for and open challenges to brownout-based
approaches to managing resources and applications in cloud computing systems are given.

Our analysis shows that brownout can be applied in cloud computing systems to meet different
optimization objectives. The brownout approach also provides a new option for adaptive manage-
ment of resources and applications. This article shows the progress of brownout since it was first
applied to clouds, and it also helps readers to understand the research gap existing in this area.
One promising direction is to combine brownout with other existing techniques to achieve better
system performance.

ACKNOWLEDGMENTS

We thank anonymous reviewers for their excellent comments on improving the paper. We also
thank Dr. Sukhpal Singh Gill, Jungmin Jay Son, and Shashikant Ilager for their suggestions on
improving this paper.

ACM Computing Surveys, Vol. 52, No. 1, Article 8. Publication date: January 2019.

Brownout Approach for Adaptive Management in Cloud Computing Systems 8:25

REFERENCES

Frederico Alvares, Gwenaël Delaval, Eric Rutten, and Lionel Seinturier. 2017. Language support for modular autonomic
managers in reconfigurable software components. In Proceedings of the 2017 IEEE International Conference on Autonomic

Computing. IEEE, 271–278.
Paolo Arcaini, Elvinia Riccobene, and Patrizia Scandurra. 2015. Modeling and analyzing MAPE-K feedback loops for self-

adaptation. In Proceedings of the 10th International Symposium on Software Engineering for Adaptive and Self-Managing

Systems. 13–23.
Mohammad Sadegh Aslanpour, Mostafa Ghobaei-Arani, and Adel Nadjaran Toosi. 2017. Auto-scaling web applications in

clouds. Journal of Network Computer Applications 95 (2017), 26–41.
Anton Beloglazov, Jemal Abawajy, and Rajkumar Buyya. 2012. Energy-aware resource allocation heuristics for efficient

management of data centers for cloud computing. Future Generation Computer Systems 28, 5 (2012), 755–768.
Anton Beloglazov and Rajkumar Buyya. 2013. Managing overloaded hosts for dynamic consolidation of virtual machines

in cloud data centers under quality of service constraints. IEEE Transactions on Parallel and Distributed Systems 24, 7
(2013), 1366–1379.

Rajkumar Buyya, Rodrigo N Calheiros, Jungmin Son, Amir Vahid Dastjerdi, and Young Yoon. 2014. Software-defined cloud
computing: Architectural elements and open challenges. In Proceedings of the 2014 International Conference on Advances

in Computing, Communications and Informatics. 1–12.
Rajkumar Buyya, Rajiv Ranjan, and Rodrigo N. Calheiros. 2009. Modeling and simulation of scalable Cloud computing

environments and the CloudSim toolkit: Challenges and opportunities. In Proceedings of the International Conference on

High Performance Computing and Simulation. 1–11.
Dazhao Cheng, Jia Rao, Changjun Jiang, and Xiaobo Zhou. 2016. Elastic power-aware resource provisioning of heteroge-

neous workloads in self-sustainable datacenters. IEEE Transactions on Computer 65, 2 (2016), 508–521.
Rogério De Lemos, Holger Giese, Hausi A. Müller, Mary Shaw, Jesper Andersson, Marin Litoiu, Bradley Schmerl, Gabriel

Tamura, Norha M Villegas, Thomas Vogel, et al. 2013. Software engineering for self-adaptive systems: A second research
roadmap. In Software Engineering for Self-Adaptive Systems II, Rogério De Lemos, Holger Giese, Hausi A. Müller, and
Mary Shaw (Eds.). 1–32.

David Desmeurs. 2015. Algorithms for Event-Driven Application Brownout. Master Thesis, Umea University.
David Desmeurs, Cristian Klein, Alessandro Vittorio Papadopoulos, and Johan Tordsson. 2015. Event-driven application

brownout: Reconciling high utilization and low tail response times. In Proceedings of the 2015 International Conference

on Cloud and Autonomic Computing. 1–12.
Docker. 2017a. Docker Compose file version 3 reference. Retrieved March 27, 2018 from https://docs.docker.com/compose/

compose-file/.
Docker. 2017b. Docker Documentation | Docker Documentation. Retrieved March 27, 2018 from https://docs.docker.com/.
Docker. 2018. Swarm mode overview | Docker Documentation. Retrieved March 27, 2018 from https://docs.docker.com/

engine/swarm/.
Wanchun Dou, Xiaolong Xu, Shunmei Meng, Xuyun Zhang, Chunhua Hu, Shui Yu, and Jian Yang. 2017. An energy-aware

virtual machine scheduling method for service QoS enhancement in clouds over big data. Concurrency and Computation:

Practice and Experience 29, 14 (2017), 1–20.
Simon Dupont, Jonathan Lejeune, Frederico Alvares, and Thomas Ledoux. 2015. Experimental analysis on autonomic strate-

gies for cloud elasticity. In Proceedings of the 2015 IEEE International Conference on Cloud and Autonomic Computing.
81–92.

Jonas Dürango, Manfred Dellkrantz, Martina Maggio, Cristian Klein, Alessandro Vittorio Papadopoulos, Francisco
Hernández-Rodriguez, Erik Elmroth, and Karl-Erik Årzén. 2014. Control-theoretical load-balancing for cloud appli-
cations with brownout. In Proceedings of the 2014 IEEE 53rd Annual Conference on Decision and Control. 5320–5327.

Amazon EC2. 2018. Amazon Web Services. Retrieved March 27, 2018 from https://aws.amazon.com/ec2/.
Tammy Everts. 2016. Google: 53 longer than 3 seconds to load. Retrieved March 27, 2018 from https://www.soasta.com/

blog/google-mobile-web-performance-study/.
FIFA. 2014. 1998 World Cup Web Site Access Logs - The Internet Traffic Archive. Retrieved March 27, 2018 from

http://ita.ee.lbl.gov/html/contrib/WorldCup.html.
Grid5000. 2017. Grid5000:Home. Retrieved Aril 10, 2018 from https://www.grid5000.fr/mediawiki/index.php/Grid5000:

Home.
M. D. Sabbir Hasan, Frederico Alvares, and Thomas Ledoux. 2017a. GPaaScaler: Green energy aware platform scaler for

interactive cloud application. In Proceedings of the 10th ACM International Conference on Utility and Cloud Computing.
79–89.

M. D. Sabbir Hasan, Frederico Alvares, Thomas Ledoux, and Jean-Louis Pazat. 2017b. Investigating energy consumption
and performance trade-off for interactive cloud application. IEEE Transactions on Sustainable Computing 2, 2 (2017),
113–126.

ACM Computing Surveys, Vol. 52, No. 1, Article 8. Publication date: January 2019.

8:26 M. Xu and R. Buyya

M. D. Sabbir Hasan, Frederico Alvares de Oliveira, Thomas Ledoux, and Jean-Louis Pazat. 2016. Enabling green energy
awareness in interactive cloud application. In Proceedings of the 2016 IEEE International Conference on Cloud Computing

Technology and Science. 414–422.
Soamar Homsi, Shuo Liu, Gustavo A Chaparro-Baquero, Ou Bai, Shaolei Ren, and Gang Quan. 2017. Workload consolidation

for cloud data centers with guaranteed QoS using request reneging. IEEE Transactions on Parallel and Distributed Systems

28, 7 (2017), 2103–2116.
Didac Gil De La Iglesia and Danny Weyns. 2015. MAPE-K formal templates to rigorously design behaviors for self-adaptive

systems. ACM Transactions on Autonomous and Adaptive Systems 10, 3 (2015), 1–31.
Neil Irwin. 2013. These 12 technologies will drive our economic future. Retrieved March 27, 2018 from https://www.

washingtonpost.com/news/wonk/wp/2013/05/24/these-12-technologies-will-drive-our-economic-future/?utm_term=
.e5ad3815c7eb.

Tarandeep Kaur and Inderveer Chana. 2015. Energy efficiency techniques in cloud computing: A survey and taxonomy.
ACM Computing Surveys (CSUR) 48, 2 (2015), 1–46.

Cristian Klein, Martina Maggio, Karl-Erik Årzén, and Francisco Hernández-Rodriguez. 2014a. Brownout: Building more
robust cloud applications. In Proceedings of the 36th International Conference on Software Engineering. 700–711.

Cristian Klein, Alessandro Vittorio Papadopoulos, Manfred Dellkrantz, Jonas Dürango, Martina Maggio, Karl-Erik Årzén,
Francisco Hernández-Rodriguez, and Erik Elmroth. 2014b. Improving cloud service resilience using brownout-aware
load-balancing. In Proceedings of the 2014 IEEE 33rd International Symposium on Reliable Distributed Systems. 31–40.

Manya Koetse. 2017. Weibo servers down after Lu Han announces new relationship. Retrieved March 27, 2018 from
https://www.whatsonweibo.com/weibo-servers-lu-han-announces-new-relationship/.

Kubernetes. 2018. Production-grade container orchestration - Kubernetes. Retrieved June 12, 2018 from https://kubernetes.
io/.

Hongjian Li, Guofeng Zhu, Yuyan Zhao, Yu Dai, and Wenhong Tian. 2017. Energy-efficient and QoS-aware model based
resource consolidation in cloud data centers. Cluster Computing (2017), 1–11.

Zhenhua Liu, Minghong Lin, Adam Wierman, Steven Low, and Lachlan LH Andrew. 2015. Greening geographical load
balancing. IEEE/ACM Transactions on Networking 23, 2 (2015), 657–671.

Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A. Lozano. 2014. A review of auto-scaling techniques for elastic appli-
cations in cloud environments. Journal of Grid Computing 12, 4 (2014), 559–592.

Martina Maggio, Cristian Klein, and Karl-Erik Årzén. 2014. Control strategies for predictable brownouts in cloud comput-
ing. IFAC Proceedings Volumes 47, 3 (2014), 689–694.

Yaser Mansouri, Adel Nadjaran Toosi, and Rajkumar Buyya. 2017. Data storage management in cloud environments: Tax-
onomy, survey, and future directions. ACM Computing Surveys (CSUR) 50, 6 (2017), 1–51.

Toni Mastelic, Ariel Oleksiak, Holger Claussen, Ivona Brandic, Jean-Marc Pierson, and Athanasios V. Vasilakos. 2015. Cloud
computing: Survey on energy efficiency. ACM Computing Surveys (CSUR) 47, 2 (2015), 1–36.

Peter Mell, Tim Grance, et al. 2011. The NIST definition of cloud computing. (2011).
Mesos. 2018. Apache Mesos. Retrieved June 12, 2018 from http://mesos.apache.org/.
Alireza Sadeghi Milani and Nima Jafari Navimipour. 2016a. Load balancing mechanisms and techniques in the cloud en-

vironments: Systematic literature review and future trends. Journal of Network and Computer Applications 71 (2016),
86–98.

Bahareh Alami Milani and Nima Jafari Navimipour. 2016b. A comprehensive review of the data replication techniques in
the cloud environments: Major trends and future directions. Journal of Network and Computer Applications 64 (2016),
229–238.

Gabriel A. Moreno. 2017. Adaptation Timing in Self-Adaptive Systems. PhD Thesis, Carnegie Mellon University.
Gabriel A. Moreno, Javier Cámara, David Garlan, and Bradley Schmerl. 2015. Proactive self-adaptation under uncertainty:

A probabilistic model checking approach. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engi-

neering. 1–12.
Gabriel A. Moreno, Javier Cámara, David Garlan, and Bradley Schmerl. 2016. Efficient decision-making under uncertainty

for proactive self-adaptation. In Proceedings of the 2016 IEEE International Conference on Autonomic Computing. 147–156.
Vladimir Nikolov, Steffen Kächele, Franz J. Hauck, and Dieter Rautenbach. 2014. Cloudfarm: An elastic cloud platform with

flexible and adaptive resource management. In Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility

and Cloud Computing. 547–553.
OpenStack. 2018. Open source software for creating private and public clouds. Retrieved March 27, 2018 from https://www.

openstack.org/.
Ashutosh Pandey, Gabriel A. Moreno, Javier Cámara, and David Garlan. 2016. Hybrid planning for decision making in

self-adaptive systems. In Proceedings of the 2016 IEEE 10th International Conference on Self-Adaptive and Self-Organizing

Systems. 130–139.

ACM Computing Surveys, Vol. 52, No. 1, Article 8. Publication date: January 2019.

Brownout Approach for Adaptive Management in Cloud Computing Systems 8:27

Reena Panwar and Bhawna Mallick. 2015. Load balancing in cloud computing using dynamic load management algorithm.
In Proceedings of the 2015 IEEE International Conference on Green Computing and Internet of Things. 773–778.

KyoungSoo Park and Vivek S. Pai. 2006. CoMon: A mostly-scalable monitoring system for PlanetLab. ACM SIGOPS Oper-

ating Systems Review 40, 1 (2006), 65–74.
Tim Biggs and Patrick Hatch. 2016. Banks, websites down as wild weather knocks out Amazon Web Services. Retrieved

March 27, 2018 from http://www.afr.com/technology/banks-websites-down-as-wild-weather-knocks-out-amazon-
web-services-20160605-gpc8ob.

Ashikur Rahman, Xue Liu, and Fanxin Kong. 2014. A survey on geographic load balancing based data center power man-
agement in the smart grid environment. IEEE Communications Surveys and Tutorials 16, 1 (2014), 214–233.

Martin Randles, David Lamb, and A. Taleb-Bendiab. 2010. A comparative study into distributed load balancing algorithms
for cloud computing. In Proceedings of the 2010 IEEE 24th International Conference on Advanced Information Networking

and Applications Workshops. 551–556.
RUBBoS. 2005. RUBBoS: Bulletin Board Benchmark. Retrieved March 27, 2018 from http://jmob.ow2.org/rubbos.html.
RUBiS. 2009. RUBiS. RUBiS: Rice University bidding system. Retrieved March 27, 2018 from http://rubis.ow2.org/.
Altino M. Sampaio, Jorge G. Barbosa, and Radu Prodan. 2015. PIASA: A power and interference aware resource management

strategy for heterogeneous workloads in cloud data centers. Simulation Modelling Practice and Theory 57 (2015), 142–160.
Sukhpal Singh and Inderveer Chana. 2016a. EARTH: Energy-aware autonomic resource scheduling in cloud computing.

Journal of Intelligent and Fuzzy Systems 30, 3 (2016), 1581–1600.
Sukhpal Singh and Inderveer Chana. 2016b. QoS-aware autonomic resource management in cloud computing: A systematic

review. ACM Computing Surveys (CSUR) 48, 3 (2016), 1–46.
Jungmin Son, Amir Vahid Dastjerdi, Rodrigo N. Calheiros, and Rajkumar Buyya. 2017. SLA-aware and energy-efficient

dynamic overbooking in sdn-based cloud data centers. IEEE Transactions on Sustainable Computing 2, 2 (2017), 76–89.
El-Ghazali Talbi. 2009. Metaheuristics: From Design to Implementation. Vol. 74. John Wiley and Sons.
Luis Tomás, Cristian Klein, Johan Tordsson, and Francisco Hernández-Rodríguez. 2014. The straw that broke the camel’s

back: Safe cloud overbooking with application brownout. In Proceedings of the 2014 IEEE International Conference on

Cloud and Autonomic Computing. 151–160.
Tomcat. 2018. Apache Tomcat - Welcome! Retrieved March 13, 2018 from http://tomcat.apache.org/.
VMware. 2018. VMware - Official Site. Retrieved March 27, 2018 from https://www.vmware.com/.
Denis Weerasiri, Moshe Chai Barukh, Boualem Benatallah, Quan Z. Sheng, and Rajiv Ranjan. 2017. A taxonomy and survey

of cloud resource orchestration techniques. ACM Computing Surveys (CSUR) 50, 2 (2017), 1–41.
Wikibench. 2017. Retrieved March 15, 2018 from http://www.wikibench.eu/wiki/2007-10/.
Minxian Xu and Rajkumar Buyya. 2017. Energy efficient scheduling of application components via brownout and ap-

proximate Markov decision process. In Proceedings of the 15th International Conference on Service-Oriented Computing.
206–220.

Minxian Xu, Amir Vahid Dastjerdi, and Rajkumar Buyya. 2016. Energy efficient scheduling of cloud application components
with brownout. IEEE Transactions on Sustainable Computing 1, 2 (2016), 40–53.

Minxian Xu, Wenhong Tian, and Rajkumar Buyya. 2017. A survey on load balancing algorithms for virtual machines
placement in cloud computing. Concurrency and Computation: Practice and Experience 29, 12 (2017), 4123–4138.

Zhi-Hui Zhan, Xiao-Fang Liu, Yue-Jiao Gong, Jun Zhang, Henry Shu-Hung Chung, and Yun Li. 2015. Cloud computing
resource scheduling and a survey of its evolutionary approaches. ACM Computing Surveys (CSUR) 47, 4 (2015), 1–33.

Yunqi Zhang, Michael A. Laurenzano, Jason Mars, and Lingjia Tang. 2014. Smite: Precise QoS prediction on real-system
smt processors to improve utilization in warehouse scale computers. In Proceedings of the 47th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture. 406–418.
Tianqi Zhao, Wei Zhang, Haiyan Zhao, and Zhi Jin. 2017. A reinforcement learning-based framework for the generation

and evolution of adaptation rules. In Proceedings of the 2017 IEEE International Conference on Autonomic Computing.
103–112.

Received April 2018; revised June 2018; accepted June 2018

ACM Computing Surveys, Vol. 52, No. 1, Article 8. Publication date: January 2019.

