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ct

generated time-series data now constitutes a significant and growing portion of the world’s data due to the rap
ation of the Internet of Things (IoT). The transmission and storage of such voluminous data have emerged
us challenges. Data compression and reduction strategies have been instrumental in mitigating these ch
to some extent. However, they have exhibited limitations when applied to real-time IoT-based monitori
. This stems from their failure to adequately consider the stringent requirements of real-time data transm
d the continuous constant-value redundancy within periodic monitoring data. Consequently, we introdu
ated compression algorithm tailored specifically for time-series data within periodic IoT-based monitori
, namely Cocv. It takes advantage of the continuous constant-value repetition of the time-series data to co

ata by discarding redundant data points. It can not only compress static batches of data but also dynamica
ss data streams to improve system performance in real-time IoT-based monitoring systems. The offline Co
orms traditional compressors on gas-leak monitoring data with a compression ratio of 98.5%, maintaining
speed for both compression and decompression. In an actual IoT-based gas-leak monitoring system, the onli

proves handling capacity by 255%, reading speed by 728%, reduces bandwidth consumption by 94%, a
space consumption by 98% compared to the original scheme.

ds: Compression algorithm, Internet of things, Time-series data, Continuous constant values, gas-leak
ring systems

oduction

nks to the rapid proliferation of the Internet of Things (IoT) [1, 2], time-series applications have increasing
read, such as smart agriculture [3], anomaly detection [4], underwater wireless monitoring [5], and so on.
T applications, monitoring systems are a class of systems with real-time transmission of monitoring data

the latest status of monitored objects. Take the gas-leak monitoring system as an example [6, 7]. The ga
nitoring sensors laid in individual pipelines generate monitoring data points every few seconds, and the
ta generated day and night need to be transferred to the cloud server for processing and finally stored in tim
atabase (TSDB). Huge network transmission bandwidth, server handling capacity, and disk storage space a
d in this process. Therefore, how to reduce the cost of time-series data storage and transmission has becom
he concerns in the community.
a compression serves as an effective way to mitigate the costs associated with the storage of time-series da
g both general-purpose and time-series-purpose compression techniques [8, 9]. However, data compressi
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s are primarily designed for the application at the end of storage (e.g., TSDB), as exemplified in Figure 1(
pecifically, a batch of collected static data would be compressed via a designated algorithm and then stor
SDB [10, 11]. While this approach effectively minimizes disk space utilization, the transmission bandwid
ption between IoT system modules remains restricted. To reduce the bandwidth consumption in the I
data reduction solutions have been promoted in recent years [12]. Data reduction represents a techniq
t preprocessing and reducing data prior to transmission, thereby reducing the frequency of communicati

the IoT system. However, most existing data reduction techniques are implemented at the gateway or sens
hese solutions are typically targeted at non-time-sensitive tasks, where the server allows the edge devic
mulate a batch of data and then compress it before transferring it to the cloud server [13]. However, f
like gas-leak monitoring systems, each data point needs to be transmitted in real-time to obtain timely stat
for the monitored object. Therefore, the real-time data transmission requirements of such systems constra

lication of existing data reduction techniques at the edge.
itionally, it is essential to note that time series values within IoT-based monitoring systems tend to exhibit pr

periods of slow change. For instance, in the context of gas leak monitoring, the values often persist at a consta
tended durations, as gas leaks are relatively infrequent occurrences. Consequently, the data remain stationa
nded intervals, indicating the presence of a significant amount of redundant information. Regrettably, exi
pression algorithms do not fully exploit this characteristic, thereby failing to optimize the compression ra

h data. The literature [14] noticed this feature and utilized it to reduce the data transmission time betwe
er and gateway, but its usefulness is still limited in the gas-leak monitoring system due to the real-time da
ssion requirements.
a result, the existing compression and data reduction methods still have shortcomings for gas-leak monitori
. In this work, we propose a compression algorithm specifical for time-series data with continuous consta
Cocv) in IoT-based monitoring systems to fill the gaps. It takes full account of the continuous constant-val
ncy that exists in monitoring data and achieves compression by discarding superfluous redundant points
stream, as shown in Figure 1(b). Cocv is available in offline and online versions, where the offline version c

ss static batch data to achieve an extreme compression rate, and the online version can be applied to IoT-bas
ring systems to compress dynamic data streams in real-time. Specifically, compression with online Cocv i
c and continuous process on the server side, rather than on the edge side in the previous studies. For instan
oint will be recorded and discarded by the server when it is considered redundant to be compressed, so th
not need to be transferred to TSDB and the users. This improvement can significantly reduce transmissi
cy and bandwidth consumption, and thus greatly improve the performance of the entire application. Furth
reducing the number of redundant points, other compression techniques or compressors can be overlaid on t
side to achieve the ultimate compression ratio. Our experimental results show that offline Cocv outperform
itional compression algorithm, and the application of online Cocv greatly improves the gas-leak monitori
s performance.
ummarize, the main contributions of this paper are as follows:

e propose a specialized compression algorithm for time-series data with continuous constant values, achiev
y discarding superfluous redundant data points.

e mathematically prove that the proposed algorithm satisfies many desirable properties, including a hi
ompression ratio, high computational efficiency, and lossless compression, when compressing periodic tim
eries data.

e further refine the initially designed algorithm to an online version capable of operating on the server sid
his adaptation has been successfully implemented in the IoT-based gas-leak monitoring system, leading
ignificant improvements in performance.

xtensive experimental results based on both real-world and synthetic datasets show the proposed offline
orithm outperforms the traditional compression algorithm, and the application of its online version grea

proves the gas-leak monitoring system’s performance.

remainder of this paper is organized as follows: In Section 2, we conduct a comprehensive review of t
literature and present our findings. In Section 3, we introduce the offline Cocv algorithm and prove its desirab
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Figure 1: Comparison of the data flows in the IoT-based monitoring systems with different setups.

ies mathematically. Then in Section 4, we refine the offline Cocv to the online Cocv capable of operating
oT-based monitoring systems. In Section 5, the detailed offline and online experiments of Cocv is presente
our work is summarized in Section 6.

ted work

erous research scholars have dedicated considerable effort to advancing the development of compressi
ms and data reduction techniques in recent decades [8, 12]. To distinguish our work effectively, we w
a comprehensive overview of related research.
eral and time-series compression algorithms. Traditional general-purpose compressors are characteriz
pression algorithms based on dictionary coding [15, 16], which rely on the identification of shared iden
ments within the data. Examples of such compressors include Gzip [17], Snappy [18], Lz4 [19], and Zs
ossless compression of time-series data capitalizes on the distinctive features of time-series data for enhanc
ssion efficiency. Notable examples of dictionary-based compressors incorporating time-series properties a
[21] and D-Lzw [22]. Additionally, Drh [23] and Sprintz [24] are sequential algorithms designed to compre
ries data, employing a sequential combination of fundamental compression techniques, including Huffm
[25], Delta coding [26], Run-length coding [27], among others. In recent years, machine learning techniqu
so been explored for time series compression [28, 29, 30]. Dzip [31] stands out as a time series lossless co
that employs deep neural networks [32] in conjunction with window prediction techniques. It endeavors

corresponding prediction model for the data slated for compression and subsequently retains the predicti
rough arithmetic coding [33], thereby achieving lossless compression of time series data. While these da
ssion algorithms have made significant advancements in recent years, they have not been specifically tailor
ess the characteristics of data, such as those found in gas leak monitoring, which exhibit a multitude of
t data points. In contrast, Cocv capitalizes on precisely this attribute, accomplishing data compression
ing superfluous redundant data points.
a reduction techniques in IoT systems. The application of data reduction methods in IoT systems h
its significance over the years [34, 35, 36]. It is worth noting that existing data reduction techniques typica
at the edge of IoT systems, with the primary goal of conserving sensor energy and reducing data transmissi
d [37, 38, 39]. For instance, in wireless sensor networks (WSN) within the context of IoT [40], ener
cy is a paramount concern due to the limited energy resources of sensor nodes. Consequently, numero
uction techniques for sensor nodes [41, 42, 43] have been developed, encompassing aggregation-based a

ssion-based methods. Additionally, several data reduction techniques are employed at the sensor level
data transmission overhead [44, 45]. It is noteworthy that these methods often operate in scenarios whe

3
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can continuously collect data before central compression and reporting, which is not feasible in the conte
eak monitoring. In gas leak scenarios, sensors must promptly report their latest status to the server to ensu
with no opportunity to accumulate data for later transmission. In this context, dynamic data stream reducti
d at the server side, as opposed to the traditional approach, holds significant promise. However, to the best
wledge, such methods are currently lacking, creating a gap in the domain of data reduction techniques with
tems.
ummary, Cocv distinguishes itself from existing compression algorithms and data reduction techniques
a compression algorithm for time-series data streams that excels in reducing redundant data points. The offli
of Cocv can be employed as a static compression algorithm for batch data compression. Simultaneously, t
ersion of Cocv facilitates dynamic data compression on the server side, effectively bridging the gap in da
n techniques at the server level.

ine compression algorithm for time-series data with continuous constant values

his section, we first introduce the overview of Cocv for the offline version and then give the definitions
d notations and specific algorithm design. At the last, we prove its excellent properties, including high co
n rate, low computational complexity, and lossless compression when compressing periodic time-series data

erview of offline Cocv
ng a formal notation [8], time series can be defined as:

TS = [(t1, v1), . . . , (tn, vn)], ti−1 < ti < ti+1, vi ∈ R, (

is the number of data points and (ti, vi) is denoted as a time-series data point, of which ti is the timestamp a
value. A time series can be sliced into multiple sequence segments. For such a sequence segment:

TS i, j = [(ti, vi), . . . , (t j, v j)], j − i ≥ 2, (
[
i, j), satisfy: {

vk = vi

tk − tk−1 = ti+1 − ti,
(

classify this segment as a continuous constant-value segment (CCS). In the case of an extended CCS, the
ignificant redundancy within its data, allowing for a more concise representation. To be precise, it can
erized by its start time, fixed interval, end time, and constant value, which can be used to reconstruct the sam
e observe that the complete description of the entire segment is inherently contained in the first, second, a

a points of the segment. Thus, theoretically, a CCS can be entirely represented using only these three da

shown in Figure 2, the overview process of offline Cocv is described. During the compression process, sup
edundant points are deduplicated, and only the segment’s 1st, 2nd, and last data points are retained. In th
can achieve the compression of time-series data with CCSs. During the decompression process, the necessa

tion of the CCS (i.e., start time, fixed interval, end time, and constant value) is obtained from the 1st, 2nd, a
a points. And then the discarded data points can be recalculated back through them. Theoretically, the mo
ber and length of CCSs in a time-series data sequence, the better the compression ratio will be obtained.

tations and algorithm design
le 1 exhibits the notations in the offline Cocv. Algorithm 1 demonstrates the main process of offline Co
ccepts an uncompressed time-series data stream P and outputs a compressed time-series data stream R. Offli
rst initializes R to an empty array, and initializes f v, f t, f c, f i to error, 0, 0, 0 respectively. Line 1 of offli
erates through each data point c in the time-series data stream P. In line 2 of the algorithm, if cv = f v a
= f i, then it means that a CCS is found and the front point is in the middle of the segment, thus compressi
performed. Therefore, line 3 of the algorithm discards the original front point and performs f c self-increme
d the length of the CCS. Line 4 implies that the current point is not in the CCS. In lines 5-7 of the algorith

4
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Figure 2: The overview process of offline Cocv compression and decompression.

Symbol Description
P Uncompressed time-series data stream
R Compressed time-series data stream
D Decompressed time-series data stream
c, ct, cv Current data point to be compressed, and its timestamp and value

f , f t, f v, f c, f i Front data point that was compressed, and its timestamp, value, times it has appeared
consecutively, and the time interval

error Signal of system error or outage (e.g., -2)
pointer Pointer to the current data point when decompressing
interval Time interval of the current data stream
Ri,Rt

i,R
v
i The i-th data point in the compressed data stream, and its timestamp and value

Table 1: The notations of offline Cocv.

0, then it means that the original front point is the end of the previous CCS, so it needs to be pushed into t
ssed data stream R. In lines 8-10, the current point is pushed into the compressed data stream R, and the val
t, f c, f i is updated to find the next CCS again. In lines 13-14, after the iteration of the time-series data strea

mpleted, if f c > 0, then it means that the last point of the data stream is just the end of the last CCS, so th
pushed into the compressed data stream. Algorithm 1 finally returns the compressed time-series data strea

nds.
orithm 2 shows the main process of decompression of offline Cocv, which accepts the compressed time-ser
eam R and outputs the decompressed time-series data stream D. It first initializes pointer to 0. In lines 1 and
lgorithm, if the length of the time-series data stream R is less than or equal to 2, then it means that there mu
CS in this data stream (according to Eqn.2, the minimum length of a CCS is 3) and can directly return witho
ression. In lines 4 and 5 of the algorithm, the difference between the timestamps of the 1th and 0th data poin
ded as interval, and these two points are directly pushed into the decompressed result stream D. In line 6
rithm, the first to the penultimate data point in the compressed time-series data stream R is traversed. In lin
of the algorithm, if the next data point is not equal to the value of the current data point, or its timestam

ce modulo interval is not equal to 0, then it means that the next data point is not an endpoint of a CCS, so
tly pushed into the decompression result data stream D. Lines 9-13 imply that the next point and the curre
e the endpoints of a CCS, so the original discarded data points can be recalculated through interval and t
tion of these two points. Line 16 of the algorithm recalculates the new interval. Algorithm 2 finally retur

5
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hm 1 Offline compression algorithm for time-series data with continuous constant values
Uncompressed time-series data stream P.
: Compressed time-series data stream R.
f v, f t, f c, f i ← ∅, error, 0, 0, 0.
c in P do /* Iterates through the Uncompressed stream */
f cv = f v and ct − f t = f i then /* A CCS is found and perform compression */

f t, f c ← ct, f c + 1
lse

if f c > 0 then /* The end of the last CCS */
R← R ∪ f

end if
R← R ∪ c /* The begin of the following CCS */
f i ← ct − f t /* Updates variables */
f v, f t, f c ← cv, ct, 0

nd if
for

c > 0 then /* The end of the endmost CCS */
← R ∪ f
if

hm 2 Offline decompression algorithm for time-series data with continuous constant values
Compressed time-series data stream R.
: Decompressed time-series data stream D.
inter ← 0.
| ≤ 2 then /* No compression required */
← R

nterval← Rt
1 − Rt

0 /* Gets interval */
← D ∪ R0 ∪ Ri

or i in 1, . . . , |R| − 2 do /* Executes decompression */
if Rv

i+1 , Rv
i or
(
Rt

i+1 − Rt
i

)
% interval , 0 then /* Finds a discrete point */

D← D ∪ Ri+1
else

pointer ← Rt
i

while pointer , Rt
i+1 do /* Finds a compressed CCS and recover it. */

pointer ← pointer + interval
D← D ∪

(
pointer,Rv

i

)

end while
end if
interval← Rt

i+1 − Rt
i /* Updates interval */

nd for
if

ompressed time-series data stream D and ends.

sirable properties
ine Cocv exhibits desirable properties, including high compression rate, low computational complexity, a
compression, when compressing periodic time-series data. We will prove it in the following.

m 1. Offline Cocv exhibits a high compression ratio applicable to periodic time-series data featuring a su
number of CCSs.

6
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f Theorem 1. To better describe the compression ratio, we define the compression score CS here:

CS = Compression S core = (1 − Compressed S ize
Origin S ize

) × 100. (

me series, we define L as the total length of the series, N as the number of CCSs inside the time series th
Eqn.3, Avg Len as the average length of these CCSs, and Dis Rate as the total proportion of discontinuo
hat not in those CCSs. For the CCSs with a regular interval, the first segment will be compressed to 3 da
while the other segments that follow will be compressed to 2 points. Therefore, we have:

Compressed S ize = L × Dis Rate + 2 × N + 1. (

n the compression score for this time series can be expressed as:

CS = (1 − L × Dis Rate + 2 × N + 1
L

) × 100. (

ion, the identity of the total points number for the CCSs can be described as:

N × Avg Len = L × (1 − Dis Rate). (

ting it into Eqn.6, we have:

CS = (1 −
L × Dis Rate + 2 × L×(1−Dis Rate)

Avg Len + 1

L
) × 100. (

mplifying it, we have:

CS = ((1 − Dis Rate) × Avg Len − 2
Avg Len

+
1
L

) × 100. (

he length L of this time series tends to infinity, i.e., 1/L tends to infinity small, we have:

CS ∝ Avg Len, (1

CS ∝ 1
Dis Rate

. (1

en compressing periodic time-series data characterized by a significant count of CCSs, specifically exhibiti
alue of Dis Rate and a substantial Avg Len, the Cocv compression method demonstrates remarkable efficien
ving substantial compression ratios.

m 2. Offline Cocv exhibits low computational complexity.

f Theorem 2. In Algorithm 1, lines 2-11 handle the data points within the time-series data stream with
omplexity bound of O(1). However, line 1 of the algorithm traverses the time-series data stream denoted as
g in a complexity of O(|P|) for lines 1-12 collectively. Lines 13-15 involve only simple operations and have
t complexity of O(1). Therefore, the overall complexity of Algorithm 1 is determined by O(|P|), which can
ently expressed as O(L).
ning to Algorithm 2, lines 11-14 represent the most computationally intensive portion. The complexity
-14 is tied to the length of the CCS and is expressed as O(| Rt

i+1−Rt
i

Interval |). This complexity scales relative to t

f the CCS. If we denote the average CCS length as Avg Len, then O(| Rt
i+1−Rt

i
Interval |) = O(Avg Len). Additional

f the algorithm has a complexity of O(|R|), equivalently O(Compressed S ize), while the remaining lin
constant complexity, i.e., O(1). Consequently, the overall complexity of Algorithm 2 can be expressed
Len×Compressed S ize). By combining Eqn.4 and Eqn.10, we establish that Avg Len×Compressed S ize
ional to L, implying that the complexity of Algorithm 2 scales as O(L).
compression and decompression algorithms of offline Cocv exhibit a computational complexity of O(L) eac
ear relationship with the length of the time-series data sequence indicates that both compression and deco

n operations have low computational demands.

7
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m 3. Offline Cocv constitutes a lossless compressor applicable to periodic time-series data.

f Theorem 3. A time-series sequence can be partitioned into two distinct components: CCSs with a leng
than 2 and discrete data points not belonging to these segments. In the context of regular interval time-ser
es, it is theoretically possible to compress all CCSs into just two discrete endpoints, with the exception of t
ment, which requires compression to three points. Simultaneously, all discrete points outside of a CCS rema
d. Consequently, the original data transforms into a sequence of discrete points devoid of any initial CCSs.
ever, in the extreme case of time-series sequences featuring irregular intervals, it is conceivable that discre
ight coincide exactly with the endpoints of nonexistent CCSs. In such instances, during the decompressi

, these particular discrete data points will be erroneously interpreted as endpoints of CCSs, inadverten
ucing non-existent CCSs. In this scenario, offline Cocv cannot be considered strictly lossless compression,
t ensure the consistency of the decompressed data with the original data. Nevertheless, this can be constru
ear interpolation to compensate for missing information in practical IoT-based systems, thereby exerting
ant impact on the system’s operational information.
en dealing with time-series data characterized by fixed equal intervals, Cocv can indeed guarantee lossle
ssion and decompression. Each segment generated by the offline Cocv decompression algorithm unquestio
ginates from a CCS in the original data. This guarantees the lossless compression attribute of offline Cocv
here the time-series sequence to be compressed adheres to a fixed, equal time interval.

ummary, offline Cocv has the properties of high compression rate, low computational complexity, and lossle
ssion applicable to periodic time-series data.

ine compression algorithm for time-series data with continuous constant values

ine Cocv demonstrates remarkable compression capabilities for offline data, but the objective of this resear
beyond solely mitigating disk storage overhead for continuous constant-value-type time-series data. It al
enhance the overall performance of IoT-based monitoring systems, encompassing aspects such as handli

y, data reading time, and bandwidth consumption. Consequently, we refine offline Cocv into an online iteratio
to fulfill the demands of real-time compression within IoT-based monitoring systems. It is noteworthy th

lementation of online Cocv will reside on the system server side.
take the gas-leak monitoring system as an example to first introduce the overall architecture and features

-based monitoring systems and then describe the improved online Cocv compression algorithm.

chitecture of IoT-based monitoring system

igure 3: A typical architecture of an IoT-based gas-leak monitoring system and its optimized data streams compressed by Cocv.

8
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shown in Figure 3, a typical gas-leak monitoring system comprises a multitude of sensors, a centralized
ted server, and a TSDB. Each sensor collects gas-leak monitoring information from the gas pipe at regu
s (e.g., every 10 seconds) and uploads it to the server. The server accepts and analyzes the data uploaded
nsors. If the data exhibits abnormality, an early warning notification would be sent to the users. TSDB accep
cessed data from the server and stores it on the disk. Users query the monitoring data through the server
he data stored in TSDB. Usually, the data streams transmitted between different components would consum
mmunication bandwidth and occupy a huge handling capacity of the server before the system architecture w
ed.
er being optimized by Cocv, the compressed data streams in the IoT-based monitoring system are also show
re 3, including the data streams transmitted between the server, TSDB, and users. Specifically, a data po
recorded and discarded by the server when it is considered redundant to be stored, so that it does not ne
ansferred to TSDB. Similarly, only a small amount of reduced data needs to be transferred when the use
nd the server access the data. The data would be restored by the low-complexity decompression algorithm
hich might be a process that will be much faster than reading large amounts of raw data directly. In that w
er’s handling capacity, users’ reading time, TSDB’s disk consumption, and bandwidth consumption will ga
ant improvements.
etheless, there exist three challenges within the gas-leak monitoring system that preclude the direct applicati
e Cocv:

allel Data Arrival: Due to parallelization, data from multiple sensors may arrive simultaneously. Cons
ntly, the algorithm necessitates refinement to enable concurrent compression of multiple time series.
sor Stability: The stability of individual sensors cannot be assured. Each sensor may abruptly go offli
to hardware or network issues. To address this concern, Cocv requires the integration of a sensor offli

nitoring module, enhancing the overall system’s data integrity. It is worth noting that this module is option
algorithm can still function correctly without it, albeit at the cost of missing sensor offline information.
ver Stability: Similarly, the stability of the server cannot be guaranteed. The server may experience downtim
ny given moment, leading to a disruption in the Cocv algorithm, resulting in significant information lo

nsequently, online Cocv must incorporate mechanisms to recover lost information following server interrupti
restart.

accommodate these three challenges, the optimized online compression algorithm will be introduced in t
ction. Notably, the corresponding decompression algorithm is directly derived from Algorithm 2, but it
to emphasize that the compressed data from each sensor necessitates separate decompression.

tations and algorithm design

le 2 exhibits the notations in the online Cocv. Algorithm 3 shows the main process of online Cocv, whi
the sensor set S and the uncompressed time-series data stream P, and then outputs the compressed time-ser
eam R. In line 1 of the algorithm, each sensor in the sensor set S is traversed. In line 2 of the algorithm,
ll, then it means that the sensor s is not initialized, so line 3 initializes it. Line 4 of the algorithm indicates th
s has been initialized, which further indicates that the server has been offline previously. Therefore, lines 5 a

algorithm push the former information into the time-series data stream R and reinitialize the information
ors. It should be noted that the information of f v

s , f t
s , f c

s , f i
s can be stored after the server going offline with t

persistence techniques of Redis [46] or other persistence techniques. The sensor offline detection in line 9
nal module and is described in the description of Algorithm 4. Lines 10-26 of Algorithm 3 essentially exhi

arable compression process to that of lines 1-15 in Algorithm 1. Specifically, this involves the identificati
oval of redundant data points within CCSs. They differ in that Algorithm 3 distinguishes which sensor t
data point belongs to, thus enabling parallelized compression of multiple time series.
orithm 4 shows the main process of the sensor offline detection algorithm, which accepts the sensor set S a
d interval f ixed to detect the sensor offline, and outputs the offline monitoring data stream P to Algorithm 3.
f the algorithm, the thread sleeps for f ixed to wait for the detection. In lines 2-4 of the algorithm, a new thre
ted to monitor the sensor’s offline status after each sleep for f ixed. In line 5 of the algorithm, each sensor

sor set S is traversed. In lines 6 and 7 of the algorithm, if the front data timestamp exceeds now 2 × f ixed

9
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1: for
2: i
3:
4: e
5:
6:
7: e
8: end
9: exe

10: for
11: i
12:
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21: end
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26: end
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ol Description
Set of sensors and its sensor
Uncompressed time-series data stream
Compressed time-series data stream
Decompressed time-series data stream

cv
s Current data point of the sensor s to be compressed, and its timestamp and value

f v
s , f c

s , f i
s

Front data point of sensor s that was compressed, and its timestamp, value, times it has appeare
consecutively, and the time interval from the previous point
Signal of system error or outage (e.g.,-2)

e Signal of sensor offline (e.g.,-1)
Current system time
Fixed interval to detect sensor offline

rs Pointer to the current data point of sensor s when decompressing
als Time interval of the current data stream of sensor s

i
,Rv

si
The i-th data point of sensor s that was compressed, and its timestamp and value

Table 2: The notations of online Cocv.

hm 3 Online compression algorithm for time-series data with continuous constant values
Set of sensors S , uncompressed time-series data stream P.
: Compressed time-series data stream R.
s in S do

f fs = null then /* Initialize uninitialized sensors */
f v
s , f t

s , f c
s , f i

s ← error, now, 0, 0
lse /* Recording error and reinitialize sensors */

R← R ∪ fs ∪ ( f t
s + 1, error)

f v
s , f t

s , f c
s , f i

s ← error, now − 1, 0, 0
nd if
for

cute sensor offline detection (optional)
cs in P do /* Executes Cocv’s compression process */
f cv

s = f v
s and ct

s − f t
s = f i

s then
f t
S , f c

s ← ct
s, f c

s + 1
lse

if f c
s > 0 then

Rs ← Rs ∪ fs

end if
Rs ← Rs ∪ cs

f i
s ← ct

s − f t
s

f v
s , f t

s , f c
s ← cv

s, c
t
s, 0

nd if
for

s in S do /* The end of compression process */
f f c

s > 0 then
R← R ∪ f

nd if
for

data point is offline, then it means that the sensor s is offline now, so it sends the offline information of th
o the stream P.

10
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hm 4 Detection algorithm for offline sensor (optional)
Set of sensors S , the fixed interval f ixed to detect sensor offline.
: The offline monitoring data stream P.
p( f ixed)

ile true do /* Performs offline detection every f ixed */
leep( f ixed)
ew Thread do
or s in S do

if f t
s − now ≥ 2 × f ixed or f v

s = o f f line then /* Detects offline and sends signal to main program *
Ps ← Ps ∪ (now, o f f line)

end if
nd for
while

erimental results and discussion

performance of Cocv is evaluated by experimenting with real data sets and simulated generated data in th
.

perimental setup
omparison algorithm
following comparison algorithms are employed to assess the performance of Cocv. These algorithms cons

general-purpose compressors, one sequential time-series compressor, and one neural network-based compre
hnique.
p [17]: A lossless compression algorithm built on the Deflate methodology. It typically offers a high compre
io at the expense of slower compression speeds.
ppy [18]: A lossless compression algorithm designed for rapid compression with an acceptable compressi

[19]: A lossless compression algorithm optimized for swift compression and decompression operations.
d [20]: A compression algorithm employing Finite State Entropy (FSE), enabling the adjustment of compre
els from -7 (fastest speed) to 22 (highest compression ratio).
ta [26]: Utilizes double delta coding on timestamps to compress time-series data.
p [31]: A lossless compression algorithm that incorporates deep neural networks and window prediction tec

v Zstd: A variant of Cocv, which involves applying the Zstd compression algorithm after Cocv. This approa
potential to achieve an even more remarkable compression ratio.

valuation metrics
following defined metrics are employed to evaluate the performance of the proposed algorithm in this pape

ession Score: This metric quantifies the compression ratio.

Compression S core = (1 − Compressed S ize
Origin S ize

) × 100. (1

ession Speed: This metric measures the compression speed.

Compression S peed =
Origin S ize

Compression T ime
. (1

pression Speed: This metric evaluates the decompression speed.

Decompression S peed =
Origin S ize

Decompression T ime
. (1

11
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ng Capacity: This metric gauges the server’s capability to process sensor data uploads per unit of time.

Handling Capacity =
Origin Points Number

Handling T ime
. (1

g Speed: This metric measures user retrieval speed.

Reading S peed =
Origin Points Number

Reading Time
. (1

idth Consumption: This metric assesses the bandwidth consumption between the server and TSDB.

Bandwidth Consumption =
Transmission Points Number

Handling T ime
. (1

e Consumption: This metric quantifies the TSDB storage space usage.

S torage Consumption = S torage Points Number. (1

ataset
l Data: We obtained real data from a gas-leak monitoring company in China, including measurements fro
-leak monitoring sensors over a period of one month. The information of this dataset is recorded in Table 3

Size of origin data (KB) Total number of points Number of CCSs Average length of CCSs
121,082 8,242,285 40,700 201

Table 3: The information of the real gas-leak monitoring data.

thetic Data: To better evaluate the performance of Cocv, simulated data is also employed. We generated 3
s in which the rate of discontinuous points rises from 0 to 0.5 and the average length of CCSs rises from 4
ith each data file containing 864,000 data points.

xperimental environment
experiments in this section were performed on a CentOS server configured with Intel(R) Xeon(R) Gold 52
2.30GHz, 256GB RAM, along with TSDB service (10,000 transactions per second) and Redis componen

he experimentation process involved the simulation of a gas-leak monitoring system as illustrated in Figure
ulation entailed the deployment and utilization of 100 gas-leak monitoring sensors.

perimental result of offline Cocv

ure 4 illustrates the compression performance of the offline Cocv algorithm and several comparative alg
when applied to real gas-leak monitoring data. The findings demonstrate that offline Cocv attains a top-t
ssion ratio, surpassing conventional general-purpose compression algorithms such as Gzip, Lz4, and Snap
nificant margin, all while maintaining a reasonable compression speed. Zstd, benefiting from the novel fini
tropy technique, also achieves commendable results in terms of compression ratio and compression speed.
of Delta, which serves as a sequential compression algorithm designed for time-series data, it fails to achie
ble compression ratio for this particular data type. This may be attributed to Delta’s necessity to store ea

int even after size reduction, resulting in minimal space savings in comparison to the substantial redundan
in the data. Concerning Dzip, a deep learning data compression framework, it likewise attains an almost ide
ssion ratio. Nonetheless, questions persist regarding its practical applicability due to its unsatisfactory co
n and decompression speed. This drawback arises from the considerable time required for training a matchi
ailored to the data intended for compression.
rall, Cocv achieves a near-optimal compression ratio while maintaining a decent compression and decompre
ed that meets practical needs compared with these algorithms. In addition, by stacking Cocv and Zstd, a mo

12
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Figure 5: Compression score of offline Cocv and other comparison algorithms on the synthetic data.

compression ratio can be achieved without much speed loss. Not only Zstd but also any other algorithms c
laid with the Cocv algorithm to achieve higher compression ratios according to the actual requirement.
results of Figure 5 show the effect of the compression ratio of offline Cocv and other compared algorithms
of discontinuous points and the average length of CCSs change. Figure 6 shows the effect of the compressi
offline Cocv as the rate of discontinuous points and the average length of CCSs change simultaneous
e found that as the rate of discontinuous points decreases and the average length of CCSs increases, t

ssion score of offline Cocv increases, while the other compared algorithms remain the same or only increas
pecifically, Cocv will outperform most of the comparison algorithms when the rate of discontinuous points
0% and the average length of continuous segments exceeds 100. Therefore, Cocv can perform satisfactor

ace of time-series data with obvious constant-value continuity, such as gas-leak monitoring data, temperatu
data, disk usage, and other time-series data with abundant continuous-constant values.

perimental result of online Cocv

have applied the enhanced online Cocv methodology to an actual IoT-based gas-leak monitoring system, whi
ses a TSDB with a maximum write capacity of 10,000 transactions per second (TPS) and a Redis compone
formance improvements resulting from the implementation of online Cocv are presented in Table 4. Notab
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Compression score of offline Cocv with different rates of discontinuous points (rise from 0% to 50%) and average length of continu
(rise from 4 to 1000).

Handling Capacity Reading Speed Bandwidth Consumption Storage Consumption
inal Scheme 9,036 269,982 9,036 8,242,285

ine Cocv 32,102 2,235,499 479 12,3621
rove 255% 728% 94% 98%

Table 4: The improvement achieved by the online Cocv over the original scheme.

ne Cocv solution has demonstrated substantial enhancements in various aspects of the system’s performan
assing handling capacity, reading speed, bandwidth consumption, and storage consumption.

thermore, Figure 7 provides a detailed illustration of the performance outcomes under different system co
ons. In a synchronous setup, online Cocv exhibits a remarkable 108× increase in handling capacity and
ancement in reading speed compared to the original scheme. Importantly, it maintains nearly constant ban
onsumption while achieving a substantial 98% reduction in storage consumption. This observed performan
primarily attributed to the synchronous mode’s predominant network bandwidth bottleneck, where Cocv
on bandwidth consumption remains relatively consistent with the original scheme. Nevertheless, substant
ements are observed in other performance metrics.
versely, when operating in asynchronous mode, the system bottleneck shifts to the single-threaded CPU. U
e conditions, online Cocv enhances the handling capacity by 58%, reading speed by 722%, reduces bandwid
ption by 97%, and lowers storage consumption by 98% compared to the original scheme. In pursuit of o

g system performance, IoT-based systems generally opt for asynchronous multi-threaded operation. In th
he original approach experiences a bottleneck in the write speed of the TSDB, while the online Cocv approa
ters a bottleneck in CPU execution speed. Consequently, online Cocv yields substantial improvements,
a 255% increase in handling capacity, a 728% improvement in reading speed, a 94% reduction in bandwid
ption, and a 98% decrease in storage consumption when compared to the original scheme. As a result, onli
erges as a powerful tool for significantly enhancing the performance of IoT-based monitoring systems.

sequently, it is evident that both offline Cocv and online Cocv exhibit satisfactory performance. Offline Co
xceptional compression ratios and high compression speeds when applied to offline batch data. Moreover, t
on of online Cocv in IoT-based monitoring systems leads to a significant enhancement in performance.
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(d) Storage Consumption

The evaluation of IoT-based monitoring systems’ performance with various system configurations: (i) Synchronous Single-Thread
nc ST), (ii) Asynchronous Single-Threading Mode (Async ST), and (iii) Asynchronous Multithreading Mode (Async MT).

clusion and future work

his paper, we propose Cocv, a compression algorithm for time-series data with continuous constant values
ed monitoring systems. Cocv is designed to improve the performance of IoT-based monitoring systems
g redundancy in the time-series data. Cocv satisfies many desirable properties, including a high compressi
igh computational efficiency, and lossless compression for time-series data with a regular time interval. In t
cenario, Cocv achieves a compression ratio of 98.5%, which substantially outperforms the traditional gener
compressors. In the online scenario of a periodic IoT-based gas-leak monitoring system, Cocv improv

g capacity by 255%, reading speed by 728%, reduces bandwidth consumption by 94%, and storage spa
ption by 98% compared to the original scheme. In future work, we aspire to extend Cocv to non-period
ed monitoring systems, aiming to enhance the practical effectiveness of Cocv. Furthermore, exploring t
tion of Cocv on the sensor side is also a promising direction worth investigating.
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 Time-series  data  in  the  monitoring  system  remains  a  constant  value  for  a
continuous period.


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Utilize  the  continuous constant-value  redundancy that  exists  in  time series  to
compress data.
Dynamic compression of data streams by dropping redundant data points on the
IoT server side.
Improve Iot-based monitoring system performance by dynamic data compression.
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