Journal Pre-proof
INTERNET

El YBER

Cocv: A compression algorithm for time-series data with continuous
constant values in IoT-based monitoring systems

Shengsheng Lin, Weiwei Lin, Keyi Wu, Songbo Wang, Minxian Xu,
James Z. Wang

PII: S2542-6605(23)00372-4
DOI: https://doi.org/10.1016/j.i0t.2023.101049
Reference: 10T 101049

To appear in: Internet of Things

Received date: 7 January 2023
Revised date: 19 September 2023
Accepted date: 22 December 2023

Please cite this article as: S. Lin, W. Lin, K. Wu et al., Cocv: A compression algorithm for
time-series data with continuous constant values in loT-based monitoring systems, Internet of
Things (2023), doi: https://doi.org/10.1016/.10t.2023.101049.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.iot.2023.101049
https://doi.org/10.1016/j.iot.2023.101049

Cocv: A Compression Algorithm for Time-Series Data with Continuous
Constant Values in IoT-based Monitoring Systems

Shengsheng Lin?, Weiwei Lin®>*, Keyi Wu®, Songbo Wang?, Minxian Xu?, James Z. Wang®

“School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China
bPeng Cheng Laboratory, Shenzhen 518066, China
“South China Normal University, Guangzhou 510631, China
dShenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
¢School of Computing, Clemson University, SC, USA

Abstract

Sensor-generated time-series data now constitutes a significant and growing portion of the world’s data due to the rapid
proliferation of the Internet of Things (IoT). The transmission and storage of such voluminous data have emerged as
enormous challenges. Data compression and reduction strategies have been instrumental in mitigating these chal-
lenges to some extent. However, they have exhibited limitations when applied to real-time IoT-based monitoring
systems. This stems from their failure to adequately consider the stringent requirements of real-time data transmis-
sion and the continuous constant-value redundancy within periodic monitoring data. Consequently, we introduce
a dedicated compression algorithm tailored specifically for time-series data within periodic IoT-based monitoring
systems, namely Cocv. It takes advantage of the continuous constant-value repetition of the time-series data to com-
press data by discarding redundant data points. It can not only compress static batches of data but also dynamically
compress data streams to improve system performance in real-time IoT-based monitoring systems. The offline Cocv
outperforms traditional compressors on gas-leak monitoring data with a compression ratio of 98.5%, maintaining a
decent speed for both compression and decompression. In an actual IoT-based gas-leak monitoring system, the online
Cocv improves handling capacity by 255%, reading speed by 728%, reduces bandwidth consumption by 94%, and
storage space consumption by 98% compared to the original scheme.

Keywords: Compression algorithm, Internet of things, Time-series data, Continuous constant values, gas-leak
monitoring systems

1. Introduction

Thanks to the rapid proliferation of the Internet of Things (IoT) [1, 2], time-series applications have increasingly
widespread, such as smart agriculture [3], anomaly detection [4], underwater wireless monitoring [5], and so on. In
these IoT applications, monitoring systems are a class of systems with real-time transmission of monitoring data to
obtain the latest status of monitored objects. Take the gas-leak monitoring system as an example [6, 7]. The gas-
leak monitoring sensors laid in individual pipelines generate monitoring data points every few seconds, and these
huge data generated day and night need to be transferred to the cloud server for processing and finally stored in time
series database (TSDB). Huge network transmission bandwidth, server handling capacity, and disk storage space are
required in this process. Therefore, how to reduce the cost of time-series data storage and transmission has become
one of the concerns in the community.

Data compression serves as an effective way to mitigate the costs associated with the storage of time-series data,
including both general-purpose and time-series-purpose compression techniques [8, 9]. However, data compression

*Corresponding author
Email addresses: 1inss2000@foxmail . com (Shengsheng Lin), 1inww@scut.edu.cn (Weiwei Lin), 18902306031@163. com (Keyi Wu),
songbo1998@foxmail. com (Songbo Wang), mx.xu@siat.ac.cn (Minxian Xu), jzwang@clemson. edu (James Z. Wang)

Preprint submitted to Internet of Things December 28, 2023

methods are primarily designed for the application at the end of storage (e.g., TSDB), as exemplified in Figure 1(a).
More specifically, a batch of collected static data would be compressed via a designated algorithm and then stored
in the TSDB [10, 11]. While this approach effectively minimizes disk space utilization, the transmission bandwidth
consumption between IoT system modules remains restricted. To reduce the bandwidth consumption in the IoT
system, data reduction solutions have been promoted in recent years [12]. Data reduction represents a technique
aimed at preprocessing and reducing data prior to transmission, thereby reducing the frequency of communication
within the IoT system. However, most existing data reduction techniques are implemented at the gateway or sensor
side. These solutions are typically targeted at non-time-sensitive tasks, where the server allows the edge devices
to accumulate a batch of data and then compress it before transferring it to the cloud server [13]. However, for
systems like gas-leak monitoring systems, each data point needs to be transmitted in real-time to obtain timely status
updates for the monitored object. Therefore, the real-time data transmission requirements of such systems constrain
the application of existing data reduction techniques at the edge.

Additionally, it is essential to note that time series values within IoT-based monitoring systems tend to exhibit pro-
longed periods of slow change. For instance, in the context of gas leak monitoring, the values often persist at a constant
0 for extended durations, as gas leaks are relatively infrequent occurrences. Consequently, the data remain stationary
for extended intervals, indicating the presence of a significant amount of redundant information. Regrettably, exist-
ing compression algorithms do not fully exploit this characteristic, thereby failing to optimize the compression ratio
for such data. The literature [14] noticed this feature and utilized it to reduce the data transmission time between
the server and gateway, but its usefulness is still limited in the gas-leak monitoring system due to the real-time data
transmission requirements.

As a result, the existing compression and data reduction methods still have shortcomings for gas-leak monitoring
systems. In this work, we propose a compression algorithm specifical for time-series data with continuous constant
values (Cocv) in loT-based monitoring systems to fill the gaps. It takes full account of the continuous constant-value
redundancy that exists in monitoring data and achieves compression by discarding superfluous redundant points in
the data stream, as shown in Figure 1(b). Cocv is available in offline and online versions, where the offline version can
compress static batch data to achieve an extreme compression rate, and the online version can be applied to IoT-based
monitoring systems to compress dynamic data streams in real-time. Specifically, compression with online Cocv is a
dynamic and continuous process on the server side, rather than on the edge side in the previous studies. For instance,
a data point will be recorded and discarded by the server when it is considered redundant to be compressed, so that
it does not need to be transferred to TSDB and the users. This improvement can significantly reduce transmission
frequency and bandwidth consumption, and thus greatly improve the performance of the entire application. Further,
by pre-reducing the number of redundant points, other compression techniques or compressors can be overlaid on the
storage side to achieve the ultimate compression ratio. Our experimental results show that offline Cocv outperforms
the traditional compression algorithm, and the application of online Cocv greatly improves the gas-leak monitoring
system’s performance.

To summarize, the main contributions of this paper are as follows:

e We propose a specialized compression algorithm for time-series data with continuous constant values, achieved
by discarding superfluous redundant data points.

e We mathematically prove that the proposed algorithm satisfies many desirable properties, including a high
compression ratio, high computational efficiency, and lossless compression, when compressing periodic time-
series data.

e We further refine the initially designed algorithm to an online version capable of operating on the server side.
This adaptation has been successfully implemented in the IoT-based gas-leak monitoring system, leading to
significant improvements in performance.

o Extensive experimental results based on both real-world and synthetic datasets show the proposed offline al-
gorithm outperforms the traditional compression algorithm, and the application of its online version greatly
improves the gas-leak monitoring system’s performance.

The remainder of this paper is organized as follows: In Section 2, we conduct a comprehensive review of the
related literature and present our findings. In Section 3, we introduce the offline Cocv algorithm and prove its desirable

2

[oT ! .'" Server

Gem
N foJoJoJofof AN MR 000001

—

2]

E

©

=

(<}
g
=
a
g,
g

'
'
'
'
'
'
'
'
'
'
'
'
v

IoT .‘" Server \\‘. ST
| ' ‘mmg=.>s |

Sensor ! ; '
g é ; (' 0 dynamic compression f : ; — ;
. : . Oy - | — .
: aa—rg i . - E

' ﬂﬂﬂﬂﬂ R 1 001 '

(b) Cocv (Ours)

Figure 1: Comparison of the data flows in the IoT-based monitoring systems with different setups.

properties mathematically. Then in Section 4, we refine the offline Cocv to the online Cocv capable of operating on
actual IoT-based monitoring systems. In Section 5, the detailed offline and online experiments of Cocv is presented.
Finally, our work is summarized in Section 6.

2. Related work

Numerous research scholars have dedicated considerable effort to advancing the development of compression
algorithms and data reduction techniques in recent decades [8, 12]. To distinguish our work effectively, we will
provide a comprehensive overview of related research.

General and time-series compression algorithms. Traditional general-purpose compressors are characterized
by compression algorithms based on dictionary coding [15, 16], which rely on the identification of shared identi-
cal segments within the data. Examples of such compressors include Gzip [17], Snappy [18], Lz4 [19], and Zstd
[20]. Lossless compression of time-series data capitalizes on the distinctive features of time-series data for enhanced
compression efficiency. Notable examples of dictionary-based compressors incorporating time-series properties are
A-Lzss [21] and D-Lzw [22]. Additionally, Drh [23] and Sprintz [24] are sequential algorithms designed to compress
time series data, employing a sequential combination of fundamental compression techniques, including Huffman
coding [25], Delta coding [26], Run-length coding [27], among others. In recent years, machine learning techniques
have also been explored for time series compression [28, 29, 30]. Dzip [31] stands out as a time series lossless com-
pressor that employs deep neural networks [32] in conjunction with window prediction techniques. It endeavors to
train a corresponding prediction model for the data slated for compression and subsequently retains the prediction
error through arithmetic coding [33], thereby achieving lossless compression of time series data. While these data
compression algorithms have made significant advancements in recent years, they have not been specifically tailored
to address the characteristics of data, such as those found in gas leak monitoring, which exhibit a multitude of re-
dundant data points. In contrast, Cocv capitalizes on precisely this attribute, accomplishing data compression by
discarding superfluous redundant data points.

Data reduction techniques in IoT systems. The application of data reduction methods in IoT systems has
proven its significance over the years [34, 35, 36]. It is worth noting that existing data reduction techniques typically
operate at the edge of [oT systems, with the primary goal of conserving sensor energy and reducing data transmission
overhead [37, 38, 39]. For instance, in wireless sensor networks (WSN) within the context of IoT [40], energy
efficiency is a paramount concern due to the limited energy resources of sensor nodes. Consequently, numerous
data reduction techniques for sensor nodes [41, 42, 43] have been developed, encompassing aggregation-based and
compression-based methods. Additionally, several data reduction techniques are employed at the sensor level to
reduce data transmission overhead [44, 45]. It is noteworthy that these methods often operate in scenarios where

3

sensors can continuously collect data before central compression and reporting, which is not feasible in the context
of gas leak monitoring. In gas leak scenarios, sensors must promptly report their latest status to the server to ensure
safety, with no opportunity to accumulate data for later transmission. In this context, dynamic data stream reduction
executed at the server side, as opposed to the traditional approach, holds significant promise. However, to the best of
our knowledge, such methods are currently lacking, creating a gap in the domain of data reduction techniques within
IoT systems.

In summary, Cocv distinguishes itself from existing compression algorithms and data reduction techniques by
offering a compression algorithm for time-series data streams that excels in reducing redundant data points. The offline
version of Cocv can be employed as a static compression algorithm for batch data compression. Simultaneously, the
online version of Cocv facilitates dynamic data compression on the server side, effectively bridging the gap in data
reduction techniques at the server level.

3. Offline compression algorithm for time-series data with continuous constant values

In this section, we first introduce the overview of Cocv for the offline version and then give the definitions of
required notations and specific algorithm design. At the last, we prove its excellent properties, including high com-
pression rate, low computational complexity, and lossless compression when compressing periodic time-series data.

3.1. Overview of offline Cocv

Using a formal notation [8], time series can be defined as:
TS =[(t1,v1), .- v (tas V)], tiog <t <tig1,vi ER, (D

where 7 is the number of data points and (¢;, v;) is denoted as a time-series data point, of which ¢ is the timestamp and
v; is the value. A time series can be sliced into multiple sequence segments. For such a sequence segment:

TS;;=1[@v),....(t,vjl, J—iz2, 2
if Yk € [, J), satisfy:

e 3)
Ik — k-1 = tiy1 — 1,

then we classify this segment as a continuous constant-value segment (CCS). In the case of an extended CCS, there
exists significant redundancy within its data, allowing for a more concise representation. To be precise, it can be
characterized by its start time, fixed interval, end time, and constant value, which can be used to reconstruct the same
CCS. We observe that the complete description of the entire segment is inherently contained in the first, second, and
last data points of the segment. Thus, theoretically, a CCS can be entirely represented using only these three data
points.

As shown in Figure 2, the overview process of offline Cocv is described. During the compression process, super-
fluous redundant points are deduplicated, and only the segment’s Ist, 2nd, and last data points are retained. In this
way, we can achieve the compression of time-series data with CCSs. During the decompression process, the necessary
information of the CCS (i.e., start time, fixed interval, end time, and constant value) is obtained from the 1st, 2nd, and
last data points. And then the discarded data points can be recalculated back through them. Theoretically, the more
the number and length of CCSs in a time-series data sequence, the better the compression ratio will be obtained.

3.2. Notations and algorithm design

Table 1 exhibits the notations in the offline Cocv. Algorithm 1 demonstrates the main process of offline Cocv,
which accepts an uncompressed time-series data stream P and outputs a compressed time-series data stream R. Offline
Cocyv first initializes R to an empty array, and initializes f”, f', f¢,f' to error, 0, 0, O respectively. Line 1 of offline
Cocv iterates through each data point c in the time-series data stream P. In line 2 of the algorithm, if ¢V = f* and
¢’ — f' = f, then it means that a CCS is found and the front point is in the middle of the segment, thus compression
can be performed. Therefore, line 3 of the algorithm discards the original front point and performs f¢ self-increment
to record the length of the CCS. Line 4 implies that the current point is not in the CCS. In lines 5-7 of the algorithm,

4

start time fixed interval constant value end time

Decompression - .
O rccalculation RS

t, vq ty, Vo 3,V tg, Vo ts, Vo t, Vo t7, Vo tg, V3

Figure 2: The overview process of offline Cocv compression and decompression.

Symbol Description

P Uncompressed time-series data stream

R Compressed time-series data stream

D Decompressed time-series data stream

ccl,c Current data point to be compressed, and its timestamp and value

F e Front dat.a point that was compressed, and its timestamp, value, times it has appeared
consecutively, and the time interval

error Signal of system error or outage (e.g., -2)

pointer Pointer to the current data point when decompressing

interval Time interval of the current data stream

R;, R, R} The i-th data point in the compressed data stream, and its timestamp and value

Table 1: The notations of offline Cocv.

if f¢ > 0, then it means that the original front point is the end of the previous CCS, so it needs to be pushed into the
compressed data stream R. In lines 8-10, the current point is pushed into the compressed data stream R, and the value
of £, ', ¢, f is updated to find the next CCS again. In lines 13-14, after the iteration of the time-series data stream
P is completed, if f¢ > 0, then it means that the last point of the data stream is just the end of the last CCS, so that
point is pushed into the compressed data stream. Algorithm 1 finally returns the compressed time-series data stream
R and ends.

Algorithm 2 shows the main process of decompression of offline Cocv, which accepts the compressed time-series
data stream R and outputs the decompressed time-series data stream D. It first initializes pointer to 0. In lines 1 and 2
of the algorithm, if the length of the time-series data stream R is less than or equal to 2, then it means that there must
be no CCS in this data stream (according to Eqn.2, the minimum length of a CCS is 3) and can directly return without
decompression. In lines 4 and 5 of the algorithm, the difference between the timestamps of the 1" and 0™ data points
is recorded as interval, and these two points are directly pushed into the decompressed result stream D. In line 6 of
the algorithm, the first to the penultimate data point in the compressed time-series data stream R is traversed. In lines
7 and 8 of the algorithm, if the next data point is not equal to the value of the current data point, or its timestamp
difference modulo interval is not equal to 0, then it means that the next data point is not an endpoint of a CCS, so it
is directly pushed into the decompression result data stream D. Lines 9-13 imply that the next point and the current
point are the endpoints of a CCS, so the original discarded data points can be recalculated through interval and the
information of these two points. Line 16 of the algorithm recalculates the new interval. Algorithm 2 finally returns

5

Algorithm 1 Offline compression algorithm for time-series data with continuous constant values

Input: Uncompressed time-series data stream P.
Output: Compressed time-series data stream R.
Init: R, 1", f', f¢, f' « 0, error,0,0,0.

for cin P do /* Iterates through the Uncompressed stream */

1:

22 ifc¢'=f"and ¢ — f' = f' then /* A CCS is found and perform compression */
3 L, fe+1

4: else

5: if /> 0 then /* The end of the last CCS */

6: R—RUYf

7 end if

8 R—RUc /* The begin of the following CCS */

9 flecd-f /* Updates variables */

10: IO e, 0

11: end if

12: end for

13: if f¢ > 0 then /* The end of the endmost CCS */
14 ReRUSf

15: end if

Algorithm 2 Offline decompression algorithm for time-series data with continuous constant values
Input: Compressed time-series data stream R.

Output: Decompressed time-series data stream D.

Init: pointer « 0.

1: if |R| < 2 then /* No compression required */

2 D <R

3: else

4 interval < R\ — R}, /* Gets interval */

5 D« DURyUR,;

6 foriinl,...,|R|—2do /* Executes decompression */

7 if R, # R} or (Rf e Ri) % interval # 0 then /* Finds a discrete point */
8 D — DUR;,;

9 else
10: pointer < R!
11: while pointer # R; 4 do /* Finds a compressed CCS and recover it. */
12: pointer < pointer + interval
13: D« DU (pointer, R;)

14: end while
15: end if
16: interval < R! —R! /* Updates interval */
17: end for
18: end if

the decompressed time-series data stream D and ends.

3.3. Desirable properties

Offline Cocv exhibits desirable properties, including high compression rate, low computational complexity, and
lossless compression, when compressing periodic time-series data. We will prove it in the following.

Theorem 1. Offline Cocv exhibits a high compression ratio applicable to periodic time-series data featuring a sub-
stantial number of CCSs.

Proor or TaeoreMm 1. To better describe the compression ratio, we define the compression score CS here:

Compressed_Size

100. 4
Origin_Size) > 100 @)

CS = Compression_S core = (1 —

For a time series, we define L as the total length of the series, N as the number of CCSs inside the time series that
satisfy Eqn.3, Avg_Len as the average length of these CCSs, and Dis_Rate as the total proportion of discontinuous
points that not in those CCSs. For the CCSs with a regular interval, the first segment will be compressed to 3 data
points, while the other segments that follow will be compressed to 2 points. Therefore, we have:

Compressed_Size = L X Dis_Rate + 2 X N + 1.)

And then the compression score for this time series can be expressed as:

L x Dis_Rate +2x N + 1
cs = (1 - 222 “2+ XF % 100. 6)

In addition, the identity of the total points number for the CCSs can be described as:

N X Avg_Len = L X (1 — Dis_Rate). (@)
Substituting it into Eqn.6, we have:

L X Dis_Rate + 2 x xXU=Dis-Rate) 4 4

cs =(- - Avg-Len) x 100. 8)
After simplifying it, we have:
Avg Len—-2 1
CS = ((1 - Dis_Rate) x X5~ = 2y 100. ©)
Avg_Len L

When the length L of this time series tends to infinity, i.e., 1/L tends to infinity small, we have:
CS « Avg_Len, (10)
and
1
o ———. an
Dis_Rate
When compressing periodic time-series data characterized by a significant count of CCSs, specifically exhibiting

alow value of Dis_Rate and a substantial Avg_Len, the Cocv compression method demonstrates remarkable efficiency
in achieving substantial compression ratios.

CcS

Theorem 2. Offline Cocv exhibits low computational complexity.

Proor oF THEOREM 2. In Algorithm 1, lines 2-11 handle the data points within the time-series data stream with an
upper complexity bound of O(1). However, line 1 of the algorithm traverses the time-series data stream denoted as P,
resulting in a complexity of O(|P]) for lines 1-12 collectively. Lines 13-15 involve only simple operations and have a
constant complexity of O(1). Therefore, the overall complexity of Algorithm 1 is determined by O(|P|), which can be
equivalently expressed as O(L).

Turning to Algorithm 2, lines 11-14 represent the most computationally intensive portion. The complexity of

lines 11-14 is tied to the length of the CCS and is expressed as O(IR;”fRi [). This complexity scales relative to the

Interval

length of the CCS. If we denote the average CCS length as Avg_Len, then O(| ﬁ;c‘)r_‘f;'{lD = O(Avg_Len). Additionally,
line 6 of the algorithm has a complexity of O(|R|), equivalently O(Compressed_Size), while the remaining lines
exhibit constant complexity, i.e., O(1). Consequently, the overall complexity of Algorithm 2 can be expressed as
O(Avg_Len x Compressed_Size). By combining Eqn.4 and Eqn.10, we establish that Avg_Len X Compressed_S ize is
proportional to L, implying that the complexity of Algorithm 2 scales as O(L).

The compression and decompression algorithms of offline Cocv exhibit a computational complexity of O(L) each.
This linear relationship with the length of the time-series data sequence indicates that both compression and decom-
pression operations have low computational demands.

Theorem 3. Offline Cocv constitutes a lossless compressor applicable to periodic time-series data.

Proor oF THEOREM 3. A time-series sequence can be partitioned into two distinct components: CCSs with a length
greater than 2 and discrete data points not belonging to these segments. In the context of regular interval time-series
sequences, it is theoretically possible to compress all CCSs into just two discrete endpoints, with the exception of the
first segment, which requires compression to three points. Simultaneously, all discrete points outside of a CCS remain
unaltered. Consequently, the original data transforms into a sequence of discrete points devoid of any initial CCSs.

However, in the extreme case of time-series sequences featuring irregular intervals, it is conceivable that discrete
points might coincide exactly with the endpoints of nonexistent CCSs. In such instances, during the decompression
process, these particular discrete data points will be erroneously interpreted as endpoints of CCSs, inadvertently
reintroducing non-existent CCSs. In this scenario, offline Cocv cannot be considered strictly lossless compression, as
it cannot ensure the consistency of the decompressed data with the original data. Nevertheless, this can be construed
as a linear interpolation to compensate for missing information in practical IoT-based systems, thereby exerting no
significant impact on the system’s operational information.

When dealing with time-series data characterized by fixed equal intervals, Cocv can indeed guarantee lossless
compression and decompression. Each segment generated by the offline Cocv decompression algorithm unquestion-
ably originates from a CCS in the original data. This guarantees the lossless compression attribute of offline Cocv in
cases where the time-series sequence to be compressed adheres to a fixed, equal time interval.

In summary, offline Cocv has the properties of high compression rate, low computational complexity, and lossless
compression applicable to periodic time-series data.

4. Online compression algorithm for time-series data with continuous constant values

Offline Cocv demonstrates remarkable compression capabilities for offline data, but the objective of this research
extends beyond solely mitigating disk storage overhead for continuous constant-value-type time-series data. It also
aims to enhance the overall performance of IoT-based monitoring systems, encompassing aspects such as handling
capacity, data reading time, and bandwidth consumption. Consequently, we refine offline Cocv into an online iteration,
tailored to fulfill the demands of real-time compression within [oT-based monitoring systems. It is noteworthy that
the implementation of online Cocv will reside on the system server side.

We take the gas-leak monitoring system as an example to first introduce the overall architecture and features of
the IoT-based monitoring systems and then describe the improved online Cocv compression algorithm.

4.1. Architecture of loT-based monitoring system

TSDB .| IoT
@ original stream] Sensors
B compressd stream =

4 query data

>4 1 collect data
iy =~———
'IllJ A A l -
Server

Figure 3: A typical architecture of an IoT-based gas-leak monitoring system and its optimized data streams compressed by Cocv.

As shown in Figure 3, a typical gas-leak monitoring system comprises a multitude of sensors, a centralized or
distributed server, and a TSDB. Each sensor collects gas-leak monitoring information from the gas pipe at regular
intervals (e.g., every 10 seconds) and uploads it to the server. The server accepts and analyzes the data uploaded by
these sensors. If the data exhibits abnormality, an early warning notification would be sent to the users. TSDB accepts
the processed data from the server and stores it on the disk. Users query the monitoring data through the server to
query the data stored in TSDB. Usually, the data streams transmitted between different components would consume
huge communication bandwidth and occupy a huge handling capacity of the server before the system architecture was
optimized.

After being optimized by Cocv, the compressed data streams in the IoT-based monitoring system are also shown
in Figure 3, including the data streams transmitted between the server, TSDB, and users. Specifically, a data point
will be recorded and discarded by the server when it is considered redundant to be stored, so that it does not need
to be transferred to TSDB. Similarly, only a small amount of reduced data needs to be transferred when the users
query and the server access the data. The data would be restored by the low-complexity decompression algorithm of
Cocv, which might be a process that will be much faster than reading large amounts of raw data directly. In that way,
the server’s handling capacity, users’ reading time, TSDB’s disk consumption, and bandwidth consumption will gain
significant improvements.

Nonetheless, there exist three challenges within the gas-leak monitoring system that preclude the direct application
of offline Cocv:

(1) Parallel Data Arrival: Due to parallelization, data from multiple sensors may arrive simultaneously. Conse-
quently, the algorithm necessitates refinement to enable concurrent compression of multiple time series.

(2) Sensor Stability: The stability of individual sensors cannot be assured. Each sensor may abruptly go offline
due to hardware or network issues. To address this concern, Cocv requires the integration of a sensor offline
monitoring module, enhancing the overall system’s data integrity. It is worth noting that this module is optional;
the algorithm can still function correctly without it, albeit at the cost of missing sensor offline information.

(3) Server Stability: Similarly, the stability of the server cannot be guaranteed. The server may experience downtime
at any given moment, leading to a disruption in the Cocv algorithm, resulting in significant information loss.
Consequently, online Cocv must incorporate mechanisms to recover lost information following server interruption
and restart.

To accommodate these three challenges, the optimized online compression algorithm will be introduced in the
next section. Notably, the corresponding decompression algorithm is directly derived from Algorithm 2, but it is
crucial to emphasize that the compressed data from each sensor necessitates separate decompression.

4.2. Notations and algorithm design

Table 2 exhibits the notations in the online Cocv. Algorithm 3 shows the main process of online Cocv, which
accepts the sensor set S and the uncompressed time-series data stream P, and then outputs the compressed time-series
data stream R. In line 1 of the algorithm, each sensor in the sensor set S is traversed. In line 2 of the algorithm, if
fs = null, then it means that the sensor s is not initialized, so line 3 initializes it. Line 4 of the algorithm indicates that
sensor s has been initialized, which further indicates that the server has been offline previously. Therefore, lines 5 and
6 of the algorithm push the former information into the time-series data stream R and reinitialize the information of
the sensors. It should be noted that the information of f7, f7, f¢, f! can be stored after the server going offline with the
help of persistence techniques of Redis [46] or other persistence techniques. The sensor offline detection in line 9 is
an optional module and is described in the description of Algorithm 4. Lines 10-26 of Algorithm 3 essentially exhibit
a comparable compression process to that of lines 1-15 in Algorithm 1. Specifically, this involves the identification
and removal of redundant data points within CCSs. They differ in that Algorithm 3 distinguishes which sensor the
current data point belongs to, thus enabling parallelized compression of multiple time series.

Algorithm 4 shows the main process of the sensor offline detection algorithm, which accepts the sensor set S and
the fixed interval fixed to detect the sensor offline, and outputs the offline monitoring data stream P to Algorithm 3. In
line 1 of the algorithm, the thread sleeps for fixed to wait for the detection. In lines 2-4 of the algorithm, a new thread
is executed to monitor the sensor’s offline status after each sleep for fixed. In line 5 of the algorithm, each sensor in
the sensor set S is traversed. In lines 6 and 7 of the algorithm, if the front data timestamp exceeds now 2 X fixed or

9

Symbol Description

S,s Set of sensors and its sensor

P Uncompressed time-series data stream

R Compressed time-series data stream

D Decompressed time-series data stream

Cs, Chych Current data point of the sensor s to be compressed, and its timestamp and value
. v sc i | Frontdata point of sensor s that was compressed, and its timestamp, value, times it has appeared

Joo Iss 155 I5 o Js consecutively, and the time interval from the previous point

error Signal of system error or outage (e.g.,-2)

of fline Signal of sensor offline (e.g.,-1)

now Current system time

fixed Fixed interval to detect sensor offline

pointerg Pointer to the current data point of sensor s when decompressing

interval, Time interval of the current data stream of sensor s

R,.R| R} The i-th data point of sensor s that was compressed, and its timestamp and value

Table 2: The notations of online Cocv.

Algorithm 3 Online compression algorithm for time-series data with continuous constant values

Input: Set of sensors S, uncompressed time-series data stream P.
Output: Compressed time-series data stream R.

1: for sin S do

2 if f; = null then /* Initialize uninitialized sensors */
3 v I ;,f; « error,now, 0,0

4 else /* Recording error and reinitialize sensors */
5: R < RU fU(fl + 1,error)

6 v fL S fE e error,now — 1,0,0

7. end if

8: end for

9: execute sensor offline detection (optional)

10: for ¢, in P do /* Executes Cocv’s compression process */
11: if ¢! = fYand ¢!, — f! = f! then

12: Joo S = fi+1

13: else

14: if f7 > 0 then

15: Ry — R, U f

16: end if

17: Ry «— R, Ucy

18 fled-f

19: VoLl L0
20: end if
21: end for
22: for sin S do /* The end of compression process */
23: if f¢ > 0 then
24: R—RUf
25: end if
26: end for

the last data point is offline, then it means that the sensor s is offline now, so it sends the offline information of this
sensor to the stream P.

10

Algorithm 4 Detection algorithm for offline sensor (optional)
Input: Set of sensors S, the fixed interval fixed to detect sensor offline.
Output: The offline monitoring data stream P.
1: sleep(fixed)
2: while true do /* Performs offline detection every fixed */
3 sleep(fixed)
4: new Thread do
5. for sin S do
6
7
8

if fi —now > 2 X fixed or f; = of fline then /* Detects offline and sends signal to main program */
Ps — P U (now, of fline)
end if
9: end for
10: end while

5. Experimental results and discussion

The performance of Cocv is evaluated by experimenting with real data sets and simulated generated data in this
section.

5.1. Experimental setup
5.1.1. Comparison algorithm

The following comparison algorithms are employed to assess the performance of Cocv. These algorithms consist
of four general-purpose compressors, one sequential time-series compressor, and one neural network-based compres-
sion technique.

Gzip [17]: A lossless compression algorithm built on the Deflate methodology. It typically offers a high compres-
sion ratio at the expense of slower compression speeds.

Snappy [18]: A lossless compression algorithm designed for rapid compression with an acceptable compression
ratio.

Lz4 [19]: A lossless compression algorithm optimized for swift compression and decompression operations.

Zstd [20]: A compression algorithm employing Finite State Entropy (FSE), enabling the adjustment of compres-
sion levels from -7 (fastest speed) to 22 (highest compression ratio).

Delta [26]: Utilizes double delta coding on timestamps to compress time-series data.

Dzip [31]: A lossless compression algorithm that incorporates deep neural networks and window prediction tech-
niques.

Cocv_Zstd: A variant of Cocv, which involves applying the Zstd compression algorithm after Cocv. This approach
has the potential to achieve an even more remarkable compression ratio.

5.1.2. Evaluation metrics
The following defined metrics are employed to evaluate the performance of the proposed algorithm in this paper:
Compression Score: This metric quantifies the compression ratio.

C d_Si
Compression_S core = (1 — M) x 100. (12)
Origin_Size

Compression Speed: This metric measures the compression speed.

Origin_Size

Compression_S peed = - —. (13)
Compression_Time
Decompression Speed: This metric evaluates the decompression speed.
Oricin.Si
Decompression_S peed = rgmsize . (14)

Decompression_Time
11

Handling Capacity: This metric gauges the server’s capability to process sensor data uploads per unit of time.

. . Origin_Points_Number
Handling _Capacity = Handling Time " (15)

Reading Speed: This metric measures user retrieval speed.

Origin_Points_Number

Reading S peed = (16)

Reading Time
Bandwidth Consumption: This metric assesses the bandwidth consumption between the server and TSDB.

T jssion_Points_Numb
Bandwidth_Consumption = ransmlsszon‘ om's un er. 17
Handling Time

Storage Consumption: This metric quantifies the TSDB storage space usage.
Storage_Consumption = Storage_Points_Number. (18)

5.1.3. Dataset
Real Data: We obtained real data from a gas-leak monitoring company in China, including measurements from
100 gas-leak monitoring sensors over a period of one month. The information of this dataset is recorded in Table 3.

Size of origin data (KB) Total number of points Number of CCSs Average length of CCSs
121,082 8,242,285 40,700 201

Table 3: The information of the real gas-leak monitoring data.

Synthetic Data: To better evaluate the performance of Cocv, simulated data is also employed. We generated 399
data files in which the rate of discontinuous points rises from 0 to 0.5 and the average length of CCSs rises from 4 to
1000, with each data file containing 864,000 data points.

5.1.4. Experimental environment

The experiments in this section were performed on a CentOS server configured with Intel(R) Xeon(R) Gold 5218
CPU @ 2.30GHz, 256GB RAM, along with TSDB service (10,000 transactions per second) and Redis components
[46]. The experimentation process involved the simulation of a gas-leak monitoring system as illustrated in Figure 3.
This simulation entailed the deployment and utilization of 100 gas-leak monitoring sensors.

5.2. Experimental result of offline Cocv

Figure 4 illustrates the compression performance of the offline Cocv algorithm and several comparative algo-
rithms when applied to real gas-leak monitoring data. The findings demonstrate that offline Cocv attains a top-tier
compression ratio, surpassing conventional general-purpose compression algorithms such as Gzip, Lz4, and Snappy
by a significant margin, all while maintaining a reasonable compression speed. Zstd, benefiting from the novel finite-
state entropy technique, also achieves commendable results in terms of compression ratio and compression speed. In
the case of Delta, which serves as a sequential compression algorithm designed for time-series data, it fails to achieve
a favorable compression ratio for this particular data type. This may be attributed to Delta’s necessity to store each
data point even after size reduction, resulting in minimal space savings in comparison to the substantial redundancy
present in the data. Concerning Dzip, a deep learning data compression framework, it likewise attains an almost ideal
compression ratio. Nonetheless, questions persist regarding its practical applicability due to its unsatisfactory com-
pression and decompression speed. This drawback arises from the considerable time required for training a matching
model tailored to the data intended for compression.

Overall, Cocv achieves a near-optimal compression ratio while maintaining a decent compression and decompres-
sion speed that meets practical needs compared with these algorithms. In addition, by stacking Cocv and Zstd, a more

12

— 400
[! Compression Score 99. 94 99. 86
100 4 == 97Tms7 = 28.5 an -
—B— Compression Speed F.B_ :— :] £ : 7 350
@ —M— Decompression Speed ! | | |]]
S g0 f | 1 | 1 { - 300
(e} | | | | | 1
& : Cb Edwe
| | 1 T
= 804 (%8 - A =
S . m m - 0! b 1 H202
a : [. o N a=)
[}
AR R - C B g S
S~ N I] !] i | !] =
g o/ 6o.82 P I R P B
s 60 | ! r | e [A——n
&) . / - 55. 12] \m.! I / :\r. 1 50
N | | . I] ! ! 1 I 1
A Pl EEREL
| | L L 1 L |
T T T T T T T T
Gzip Lz4 Snappy Zstd Delta Dzip Cocv Cocv_Zstd

Figure 4: Compression performance of offline Cocv and other algorithms on the real data collected from a Chinese gas-leak monitoring company.

100 100 -
v—a—/V——v./v—/v/w/'V"""’ Aatbt 2L M AN MR
-~ Gzip
O 90 7 90
g o Lzd 2
3 --+-- Snappy 3
v —— Rl g] - w2
30 e - Zstd 804
= o .
o Delta 3
% Cocv %
%2} %2]
o 7049 o 704
8 g
= 5
g 3
3 PP o S 2t gy S S
S 60 60 s oy
. ke S S Y S R T' Y Aeoa e . Aea A4
A, ®T AT Aok -AT
A’ " ‘..A AT
50 504
T T
504540353025201510 9 8 7 6 5 4 3 2 1 0 R IR R N R R RNE SRR SR NI
. . . N
Rate of Discontinuous Points (%) Average Length of CCSs
(a) Impact of the Rate of Discontinuous Points (b) Impact of Average Length of CCSs

Figure 5: Compression score of offline Cocv and other comparison algorithms on the synthetic data.

extreme compression ratio can be achieved without much speed loss. Not only Zstd but also any other algorithms can
be overlaid with the Cocv algorithm to achieve higher compression ratios according to the actual requirement.

The results of Figure 5 show the effect of the compression ratio of offline Cocv and other compared algorithms as
the rate of discontinuous points and the average length of CCSs change. Figure 6 shows the effect of the compression
ratio of offline Cocv as the rate of discontinuous points and the average length of CCSs change simultaneously.
It can be found that as the rate of discontinuous points decreases and the average length of CCSs increases, the
compression score of offline Cocv increases, while the other compared algorithms remain the same or only increase a
little. Specifically, Cocv will outperform most of the comparison algorithms when the rate of discontinuous points is
below 10% and the average length of continuous segments exceeds 100. Therefore, Cocv can perform satisfactorily
in the face of time-series data with obvious constant-value continuity, such as gas-leak monitoring data, temperature
sensing data, disk usage, and other time-series data with abundant continuous-constant values.

5.3. Experimental result of online Cocv

We have applied the enhanced online Cocv methodology to an actual IoT-based gas-leak monitoring system, which
comprises a TSDB with a maximum write capacity of 10,000 transactions per second (TPS) and a Redis component.
The performance improvements resulting from the implementation of online Cocv are presented in Table 4. Notably,

13

Q100g WO1SSD 2dwo)

Figure 6: Compression score of offline Cocv with different rates of discontinuous points (rise from 0% to 50%) and average length of continuous
segments (rise from 4 to 1000).

Handling Capacity Reading Speed Bandwidth Consumption Storage Consumption
Original Scheme 9,036 269,982 9,036 8,242,285
Online Cocv 32,102 2,235,499 479 12,3621
Improve 255% 728% 94% 98%

Table 4: The improvement achieved by the online Cocv over the original scheme.

the online Cocv solution has demonstrated substantial enhancements in various aspects of the system’s performance,
encompassing handling capacity, reading speed, bandwidth consumption, and storage consumption.

Furthermore, Figure 7 provides a detailed illustration of the performance outcomes under different system con-
figurations. In a synchronous setup, online Cocv exhibits a remarkable 108x increase in handling capacity and a
6x enhancement in reading speed compared to the original scheme. Importantly, it maintains nearly constant band-
width consumption while achieving a substantial 98% reduction in storage consumption. This observed performance
gain is primarily attributed to the synchronous mode’s predominant network bandwidth bottleneck, where Cocv’s
impact on bandwidth consumption remains relatively consistent with the original scheme. Nevertheless, substantial
improvements are observed in other performance metrics.

Conversely, when operating in asynchronous mode, the system bottleneck shifts to the single-threaded CPU. Un-
der these conditions, online Cocv enhances the handling capacity by 58%, reading speed by 722%, reduces bandwidth
consumption by 97%, and lowers storage consumption by 98% compared to the original scheme. In pursuit of op-
timizing system performance, IoT-based systems generally opt for asynchronous multi-threaded operation. In this
mode, the original approach experiences a bottleneck in the write speed of the TSDB, while the online Cocv approach
encounters a bottleneck in CPU execution speed. Consequently, online Cocv yields substantial improvements, in-
cluding a 255% increase in handling capacity, a 728% improvement in reading speed, a 94% reduction in bandwidth
consumption, and a 98% decrease in storage consumption when compared to the original scheme. As a result, online
Cocv emerges as a powerful tool for significantly enhancing the performance of IoT-based monitoring systems.

Consequently, it is evident that both offline Cocv and online Cocv exhibit satisfactory performance. Offline Cocv
yields exceptional compression ratios and high compression speeds when applied to offline batch data. Moreover, the
utilization of online Cocv in loT-based monitoring systems leads to a significant enhancement in performance.

14

35000
32102 2500000
300004 [—J w/o Cocv | == 2295262 2235499
[] w/ Cocv L w/o Cocv
2000000 w/ Cocv
225000
= -]
[S]]
g 8 1500000
20000 B
3 N
o0 ; oo
5 15000 1 L2022 5
;é "g 1000000 4
= 10000 4 9462 9036 ~ 699593
500000
5000 | 27911 26998
1752 9019
0 16 | | 0 !
Sync_ST Async_ST Async_MT Sync_ST Async_ST Async_MT
(a) Handling Capacity (b) Reading Speed
9000000
10000 1 8242285 8242285
| 9462 — — —
= :;:';()Cg((;iv S 9036 8000000 - w/o Cocv
| =
Z 5000 £ 7000000 L] ¥/ Cocv
o, e]
§ g 6000000 4
= = i
S 6000 7 £ 5000000
&) g]
< < 1000000
o 4000 A & 1
'; © 3000000
L
= S]
+ 2000000
< 4
S 2000 2]
479 1000000 4
0 1618 223 . o 186050 g0 123621 123621
T t T T
Sync_ ST Async_ ST Async MT Sync_ST Async_ST Async_ MT
(c) Bandwidth Consumption (d) Storage Consumption

Figure 7: The evaluation of IoT-based monitoring systems’ performance with various system configurations: (i) Synchronous Single-Threading
Mode (Sync_ST), (ii) Asynchronous Single-Threading Mode (Async_ST), and (iii) Asynchronous Multithreading Mode (Async_MT).

6. Conclusion and future work

In this paper, we propose Cocv, a compression algorithm for time-series data with continuous constant values in
IoT-based monitoring systems. Cocv is designed to improve the performance of IoT-based monitoring systems by
reducing redundancy in the time-series data. Cocv satisfies many desirable properties, including a high compression
ratio, high computational efficiency, and lossless compression for time-series data with a regular time interval. In the
offline scenario, Cocv achieves a compression ratio of 98.5%, which substantially outperforms the traditional general-
purpose compressors. In the online scenario of a periodic IoT-based gas-leak monitoring system, Cocv improves
handling capacity by 255%, reading speed by 728%, reduces bandwidth consumption by 94%, and storage space
consumption by 98% compared to the original scheme. In future work, we aspire to extend Cocv to non-periodic
IoT-based monitoring systems, aiming to enhance the practical effectiveness of Cocv. Furthermore, exploring the
application of Cocv on the sensor side is also a promising direction worth investigating.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could
have appeared to influence the work reported in this paper.

15

Acknowledgements

This work is supported by National Natural Science Foundation of China (620721878), Guangdong Special

Project for Marine Economy Development (GDNRC[2022]17), Guangzhou Development Zone Science and Tech-
nology Project (2021GH10), and Major Key Project of PCL (PCL2021A09).

References
[1] H. K. Apat, R. Nayak, B. Sahoo, A comprehensive review on internet of things application placement in fog computing environment, Internet
of Things 23 (2023) 100866. doi:https://doi.org/10.1016/j.i0t.2023.100866.
URL https://wuw.sciencedirect.com/science/article/pii/S2542660523001890
[2] A. A. Laghari, K. Wu, R. A. Laghari, M. Ali, A. A. Khan, A review and state of art of internet of things (iot), Archives of Computational
Methods in Engineering (2021) 1-19.
[3] A. K. M. Al-Qurabat, Z. A. Mohammed, Z. J. Hussein, Data traffic management based on compression and mdl techniques for smart
agriculture in iot, Wireless Personal Communications 120 (3) (2021) 2227-2258.
[4] W.Wu, L. He, W. Lin, Y. Su, Y. Cui, C. Maple, S. Jarvis, Developing an unsupervised real-time anomaly detection scheme for time series with
multi-seasonality, IEEE Transactions on Knowledge and Data Engineering 34 (9) (2022) 4147-4160. doi:10.1109/TKDE.2020.3035685.
[5] G. A. M. Jawad, A. K. M. Al-Qurabat, A. K. Idrees, Maximizing the underwater wireless sensor networks’ lifespan using btc and mnp5
compression techniques, Annals of Telecommunications (2022) 1-21.
[6] M. Meribout, Gas leak-detection and measurement systems: Prospects and future trends, IEEE Transactions on Instrumentation and Mea-
surement 70 (2021) 1-13. doi:10.1109/TIM.2021.3096596.
[7]1 L. Dong, Z. Qiao, H. Wang, W. Yang, W. Zhao, K. Xu, G. Wang, L. Zhao, H. Yan, The gas leak detection based on a wireless monitoring
system, IEEE Transactions on Industrial Informatics 15 (12) (2019) 6240-6251. doi:10.1109/T11.2019.2891521.
[8] G. Chiarot, C. Silvestri, Time series compression survey, ACM Comput. Surv. 55 (10) (feb 2023). doi:10.1145/3560814.
URL https://doi.org/10.1145/3560814
[9] U. Jayasankar, V. Thirumal, D. Ponnurangam, A survey on data compression techniques: From the perspective of data quality, cod-
ing schemes, data type and applications, Journal of King Saud University - Computer and Information Sciences 33 (2) (2021) 119-140.
doi:https://doi.org/10.1016/j.jksuci.2018.05.006.
[10] C. Wang, J. Qiao, X. Huang, S. Song, H. Hou, T. Jiang, L. Rui, J. Wang, J. Sun, Apache iotdb: A time series database for iot applications,
Proc. ACM Manag. Data 1 (2) (jun 2023). doi:10.1145/3589775.
URL https://doi.org/10.1145/3589775
[11] J. Xiao, Y. Huang, C. Hu, S. Song, X. Huang, J. Wang, Time series data encoding for efficient storage: A comparative analysis in apache
iotdb, Proc. VLDB Endow. 15 (10) (2022) 2148-2160. doi:10.14778/3547305.3547319.
URL https://doi.org/10.14778/3547305.3547319
[12] L. Pioli, C. F. Dorneles, D. D. de Macedo, M. A. Dantas, An overview of data reduction solutions at the edge of iot systems: a systematic
mapping of the literature, Computing (2022) 1-23.
[13] I. D. 1. Saeedi, A. K. M. Al-Qurabat, Perceptually important points-based data aggregation method for wireless sensor networks, Baghdad
Science Journal 19 (4) (2022) 0875-0875.
[14] K. Sari, M. Riasetiawan, The implementation of timestamp, bitmap and rake algorithm on data compression and data transmission from iot
to cloud, in: 2018 4th International Conference on Science and Technology (ICST), 2018, pp. 1-6. doi:10.1109/ICSTC.2018.8528698.
[15] J.Ziv, A. Lempel, A universal algorithm for sequential data compression, IEEE Transactions on information theory 23 (3) (1977) 337-343.
[16] J. Ziv, A. Lempel, Compression of individual sequences via variable-rate coding, IEEE transactions on Information Theory 24 (5) (1978)
530-536.
[17] G. Jean-loup, A. Mark, The gzip home page, https://www.gzip.org/, accessed September 16, 2023 (2003).
[18] H. G. Steinar, Snappy — a fast compressor/decompressor, http://google.github.io/snappy/, accessed September 16, 2023 (2015).
[19] C. Yann, 1z4/1z4: Extremely fast compression algorithm, https://github.com/1z4/1z4/, accessed September 16, 2023 (2017).
[20] C. Yann, Zstandard - real-time data compression algorithm, https://facebook.github.io/zstd/, accessed September 16, 2023 (2017).
[21] J. Pope, A. Vafeas, A. Elsts, G. Oikonomou, R. Piechocki, I. Craddock, An accelerometer lossless compression algorithm and energy anal-
ysis for iot devices, in: 2018 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), 2018, pp. 396—401.
doi:10.1109/WCNCW.2018.8368985.
[22] T.L.Le, M.-H. Vo, Lossless data compression algorithm to save energy in wireless sensor network, in: 2018 4th International Conference on
Green Technology and Sustainable Development (GTSD), IEEE, 2018, pp. 597-600.
[23] H. S. Mogahed, A. G. Yakunin, Development of a lossless data compression algorithm for multichannel environmental monitoring systems,
in: 2018 XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE), IEEE, 2018,
pp. 483-486.
[24] D. Blalock, S. Madden, J. Guttag, Sprintz: Time series compression for the internet of things, Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies 2 (3) (2018) 1-23.
[25] D. A. Huffman, A method for the construction of minimum-redundancy codes, Proceedings of the IRE 40 (9) (1952) 1098-1101.
[26] T. Suel, Delta compression techniques, Encyclopedia of Big Data Technologies 63 (2019).
[27] S.Hardi, B. Angga, M. Lydia, I. Jaya, J. Tarigan, Comparative analysis run-length encoding algorithm and fibonacci code algorithm on image
compression, in: Journal of Physics: Conference Series, Vol. 1235, IOP Publishing, 2019, p. 012107.
[28] Z.Zheng, Z. Zhang, A temporal convolutional recurrent autoencoder based framework for compressing time series data, Applied Soft Com-

puting 147 (2023) 110797. doi:https://doi.org/10.1016/j.as0c.2023.110797.
URL https://wuw.sciencedirect.com/science/article/pii/S1668494623008153

16

[29]

[30]
[31]
(32]

(33]
[34]

(35]

(36]

(37]
(38]

(391
[40]
[41]
[42]
(43]
[44]
[45]

[46]

H. Feng, R. Ma, L. Yan, Z. Ma, Spatiotemporal prediction based on feature classification for multivariate floating-point time series lossy
compression, Big Data Research 32 (2023) 100377. doi:https://doi.org/10.1016/j.bdr.2023.100377.

URL https://wuw.sciencedirect.com/science/article/pii/S2214579623000102

Y. Mao, Y. Cui, T.-W. Kuo, C. J. Xue, Accelerating general-purpose lossless compression via simple and scalable parameterization, in:
Proceedings of the 30th ACM International Conference on Multimedia, 2022, pp. 3205-3213.

M. Goyal, K. Tatwawadi, S. Chandak, I. Ochoa, Dzip: Improved general-purpose loss less compression based on novel neural network
modeling, in: 2021 Data Compression Conference (DCC), IEEE, 2021, pp. 153-162.

K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

I. H. Witten, R. M. Neal, J. G. Cleary, Arithmetic coding for data compression, Communications of the ACM 30 (6) (1987) 520-540.

C. Zhang, Y. Miao, Q. Xie, Y. Guo, H. Du, X. Jia, Privacy-preserving deduplication of sensor compressed data in distributed fog computing,
IEEE Transactions on Parallel and Distributed Systems 33 (12) (2022) 4176-4191. doi:10.1109/TPDS.2022.3179992.

Y. Gao, L. Chen, J. Han, G. Wu, S. Liu, Similarity-based deduplication and secure auditing in iot decentralized storage, Journal of Systems
Architecture 142 (2023) 102961. doi:https://doi.org/10.1016/j.sysarc.2023.102961.

URL https://wuw.sciencedirect.com/science/article/pii/S1383762123001406

M. A. de Oliveira, A. M. da Rocha, F. E. Puntel, G. G. H. Cavalheiro, et al., Time series compression for iot: A systematic literature review,
Wireless Communications and Mobile Computing 2023 (2023).

J.D. A. Correa, A. S. R. Pinto, C. Montez, Lossy data compression for iot sensors: A review, Internet of Things 19 (2022) 100516.

A. A. Sadri, A. M. Rahmani, M. Saberikamarposhti, M. Hosseinzadeh, Data reduction in fog computing and internet of things: A systematic
literature survey, Internet of Things (2022) 100629.

A. K. M. Al-Qurabat, C. Abou Jaoude, A. K. Idrees, Two tier data reduction technique for reducing data transmission in iot sensors, in: 2019
15th International Wireless Communications & Mobile Computing Conference (IWCMC), IEEE, 2019, pp. 168-173.

A. K. M. Al-Qurabat, S. A. Abdulzahra, An overview of periodic wireless sensor networks to the internet of things, in: IOP Conference
Series: Materials Science and Engineering, Vol. 928, IOP Publishing, 2020, p. 032055.

W. B. Nedham, A. K. M. Al-Qurabat, An improved energy efficient clustering protocol for wireless sensor networks, in: 2022 International
Conference for Natural and Applied Sciences (ICNAS), IEEE, 2022, pp. 23-28.

S. A. Abdulzahra, A. K. M. Al-Qurabat, A. K. Idrees, Compression-based data reduction technique for iot sensor networks, Baghdad Science
Journal 18 (1) (2021) 0184-0184.

A. K. M. Al-Qurabat, S. A. Abdulzahra, A. K. Idrees, Two-level energy-efficient data reduction strategies based on sax-lzw and hierarchical
clustering for minimizing the huge data conveyed on the internet of things networks, The Journal of Supercomputing (2022) 1-47.

M. R. Chowdhury, S. Tripathi, S. De, Adaptive multivariate data compression in smart metering internet of things, IEEE Transactions on
Industrial Informatics 17 (2) (2020) 1287-1297.

Y. Xu, Y. Li, Q. Zhang, Z. Yang, Age-optimal hybrid temporal-spatial generalized deduplication and arq for satellite-integrated internet of
things, IEEE Internet of Things Journal (2022).

S. Salvatore, Redis is an in-memory database that persists on disk, https://github.com/redis/redis/, accessed September 16, 2023
(2009).

17

Time-series data in the monitoring system remains a constant value for a
continuous period.

Utilize the continuous constant-value redundancy that exists in time series to
compress data.

Dynamic compression of data streams by dropping redundant data points on the
IoT server side.

Improve lot-based monitoring system performance by dynamic data compression.

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

L1 The authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:

	Cocv: A compression algorithm for time-series data with continuous constant values in IoT-based monitoring systems
	Data availability

