
Distributed Objects Programming

- Remote Invocation

Some concepts are
drawn from Chapter 5

Dr. Minxian Xu
Associate Professor

Research Center for Cloud Computing

Shenzhen Institute of Advanced Technology, CAS

http://www.minxianxu.info/dcp-uestc

Sun Java online tutorials:

http://java.sun.com/docs/books/tutorial/rmi/

1

别酒青门路，归轩白马津。相知无远近，万里尚为邻。
——（唐）张九龄

 Introduction to Distributed Objects

 Remote Method Invocation (RMI) Architecture

 RMI Programming and a Sample Example:
 Server-Side RMI programming

 Client-Side RMI programming

 Advanced RMI Concepts
 Security Policies

 Exceptions

 Dynamic Loading

 A more advanced RMI application
 Math Server

 RPC and Summary

Outline

2

Sockets

 A socket is defined as an endpoint for communication.

 Concatenation of IP address and port

 The socket 161.25.19.8:1625 refers to port 1625 on host

161.25.19.8

 Communication consists between a pair of sockets.

 Considered a low-level form of communication between

distributed processes.

 Sockets allow only an unstructured stream of bytes to be

exchanged. It is the responsibility of the client or server

application to impose a structure on the data.

3

Socket Communication

4

Introduction

 We cover high-level programming models for distributed

systems. Two widely used models are:

 Remote Procedure Call (RPC) - an extension of the conventional

procedure call model

 Remote Method Invocation (RMI) - an extension of the object-oriented

programming model.

Applications

Middleware
layersUnderlying interprocess communication primitives:

Sockets, message passing, multicast support, overlay networks

TCP and UDP

Remote invocation, indirect communication

5

Request-Reply Protocol

 Exchange protocol for the implementation of remote invocation

in a distributed system.

 We discuss the protocol based on three abstract operations:

doOperation, getRequest and sendReply

Request

ServerClient

doOperation

(wait)

(continuation)

Reply

message

getRequest

execute

method

message

select object

sendReply

6

Request-Reply Operations

 public byte[] doOperation (RemoteRef s, int operationId, byte[]

arguments)

 Sends a request message to the remote server and returns the reply

 The arguments specify the remote server, the operation to be invoked

and the arguments of that operation

 public byte[] getRequest ()

 Acquires a client request via the server port

 public void sendReply (byte[] reply, InetAddress clientHost, int

clientPort)

 Sends the reply message reply to the client at its Internet address and

port

7

Remote Invocation Issues

 Local invocations

 Executed exactly once

 Remote invocations

 via Request-Reply

 may suffer from communication failures

 retransmission of request/reply

 message duplication, duplication filtering

 no unique semantics..

8

Invocation Semantics

9

Invocation Semantics

 Middleware that implements remote invocation generally provides a certain

level of semantics:

 Maybe: The remote procedure call may be executed once or not at all. Unless the

caller receives a result, it is unknown as to whether the remote procedure was

called.

 At-least-once: Either the remote procedure was executed at least once, and the

caller received a response, or the caller received an exception to indicate the

remote procedure was not executed at all.

 At-most-once: The remote procedure call was either executed exactly once, in

which case the caller received a response, or it was not executed at all and the

caller receives an exception.

 Java RMI (Remote Method Invocation) supports at-most-once invocation.
 It is supported in various editions including J2EE.

 Sun RPC (Remote Procedure Call) supports at-least-once semantics.
 Popularly used in Unix/C programming environments

10

Objects

 Object = data + methods

 – logical and physical encapsulation

 – accessed by means of references

 – first class citizens, can be passed as arguments

 Interaction via interfaces

 – define types of arguments and exceptions of

methods

11

The Object Model

 Programs are (logically and physically) partitioned

into objects

 distributing objects natural and easy

 Interfaces

 the only means to access data

 make them remote

 Actions – via method invocation

 interaction, chains of invocations

 may lead to exceptions -> part of interface

 Garbage collection

 reduces programming effort, error-free (Java, not C++)

12

Distributed Objects

 A programming model based on Object-Oriented principles for
distributed programming.

 Enables reuse of well-known programming abstractions
(Objects, Interfaces, methods…), familiar languages (Java,
C++, C#...), and design principles and tools (design patterns,
UML…)

 Each process contains a collection of objects, some of which
can receive both remote and local invocations:
 Method invocations between objects in different processes are known as

remote method invocation, regardless the processes run in the same
or different machines.

 Distributed objects may adopt a client-server architecture, but
other architectural models can be applied as well.

13

 Introduction to Distributed Objects

 Remote Method Invocation (RMI) Architecture

 RMI Programming and a Sample Example:
 Server-Side RMI programming

 Client-Side RMI programming

 Advanced RMI Concepts
 Security Policies

 Exceptions

 Dynamic Loading

 A more advanced RMI application
 Math Server

 RPC and Summary

Outline

14

Java RMI

 Java Remote Method Invocation (Java RMI) is an
extension of the Java object model to support distributed
objects
 methods of remote Java objects can be invoked from other Java

virtual machines, possibly on different hosts

 Single-language system with a proprietary transport
protocol (JRMP, java remote method protocol)
 Also supports IIOP (Internet Inter-Orb Protocol) from CORBA

 RMI uses object serialization to marshal and unmarshal
 Any serializable object can be used as parameter or method

return

 Releases of Java RMI
 Java RMI is available for Java Standard Edition (JSE), Java

Micro Edition (JME), and Java Enterprise Edition (Java EE)

15

RMI Architecture and Components

object A object Bskeleton
Requestproxy for B

Reply

CommunicationRemote Remote referenceCommunication

modulemodulereference module
module

for B’s class

& dispatcher

remote
client server

servant

 Remote reference module (at client & server) is responsible for providing

addressing to the proxy (stub) object

 Proxy is used to implement a stub and provide transparency to the client. It

is invoked directly by the client (as if the proxy itself was the remote object),

and then marshal the invocation into a request

 Communication module is responsible for networking

 Dispatcher selects the proper skeleton and forward message to it

 Skeleton un-marshals the request and calls the remote object

16

Invocation Lifecycle

Client

Client Code

Stub

Network

Server

RMI Object

Skeleton

1 8 54

2 37 6

Invoke

method via

stub

Serializes

arguments,

transmit

Calls actual

method

with args

Receives,

deserialises

arguments

Returns

response /

exception

Serialises

response,

transmit

Returns

response

Receives,

deserialises

response

17

Outline

 Introduction to Distributed Objects

 Remote Method Invocation (RMI) Architecture

 RMI Programming and a Sample Example:
 Server-Side RMI programming

 Client-Side RMI programming

 Advanced RMI Concepts
 Security Policies

 Exceptions

 Dynamic Loading

 A more advanced RMI application
 Math Server

 RPC and Summary

18

Case Study with RMI: iBrownout

19

• The prototype system can be installed on existing Docker Swarm cluster

without modifying the configurations.

• System achieves transparency via the interactions with the public APIs of

Docker Swarm.

• System components are deployed on both swarm master and worker

nodes.

M. Xu and et al., iBrownout: An Integrated Approach for Managing Energy and Brownout in Container-based

Clouds”, IEEE Transactions on Sustainable Computing, 2019

Steps for implementing an RMI application

 Design and implement the components of your
distributed application
 Remote interface

 Servant program

 Server program

 Client program

 Compile source code and generate stubs
 Client proxy stub

 Server dispatcher and skeleton

 Make classes network accessible
 Distribute the application on server side

 Start the application

20

RMI Programming and Examples

 Application Design

 Remote Interface
 Exposes the set of methods and properties available

 Defines the contract between the client and the server

 Constitutes the root for both stub and skeleton

 Servant component
 Represents the remote object (skeleton)

 Implements the remote interface

 Server component
 Main driver that makes available the servant

 It usually registers with the naming service

 Client component

21

Java RMI

Client

RemotObj

proxy
<implements

RemoteInterface>

Client

RMI Registry

Server

RemoteObj
<implements

RemoteInterface>

Server

RemoteObj

Dispatcher/

Skeleton

<“myRO”, Remote Ref. to RemoteObj>

1. new RemoteObj()

2. bind(“myRO”, RemoteObj)

3. lookup(“myRO”)

4. Return RemoteObj proxy

5. method1()

6. method1()

<Request over the network> 7. method1()

8. return value

9. Return value

<Reply over the network>

10. Return

value

22

Example application – Hello World

 Server side

 Create a HelloWorld interface

 Implement HelloWorld interface with methods

 Create a main method to register the HelloWorld
service in the RMI Name Registry

 Generate Stubs and Start RMI registry

 Start Server

 Client side

 Write a simple Client with main to lookup
HelloWorld Service and invoke the methods

23

1. Define Interface of remote method

//file: HelloWorld.java

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface HelloWorld extends Remote {

public String sayHello(String who) throws RemoteException;

}

24

2. Define RMI Server Program

// file: HelloWorldServer.java

import java.rmi.Naming;

import java.rmi.Remote;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

public class HelloWorldServer extends UnicastRemoteObject implements HelloWorld {

public HelloWorldServer() throws RemoteException {

super();

}

public String sayHello(String who) throws RemoteException {

return "Hello "+who+" from your friend RMI 433-652 :-)";

}

public static void main(String[] args) {

String hostName = "localhost";

String serviceName = "HelloWorldService";

if(args.length == 2){

hostName = args[0];

serviceName = args[1];

}

try{

HelloWorld hello = new HelloWorldServer();

Naming.rebind("rmi://"+hostName+"/"+serviceName, hello);

System.out.println("HelloWorld RMI Server is running...");

}catch(Exception e){

e.printStackTrace();

}

}

} 25

3. Define Client Program

// file: RMIClient.java

import java.rmi.Naming;

public class RMIClient {

public static void main(String[] args) {

String hostName = "localhost";

String serviceName = "HelloWorldService";

String who = “minxian";

if(args.length == 3){

hostName = args[0];

serviceName = args[1];

who = args[2];

}

else if(args.length == 1){

who = args[0];

}

try{

HelloWorld hello = (HelloWorld)Naming.lookup("rmi://"+hostName+"/"+serviceName);

System.out.println(hello.sayHello(who));

}catch(Exception e){

e.printStackTrace();

}

}

}

26

Define Access Policy

 Example: File HelloPolicy to contain

grant { permission java.security.AllPermission "", ""; };

27

Java RMI Example

 Running the Server and Client

 Compile Client and Server classes

 Develop a security policy file (e.g., HelloPolicy)

 grant { permission java.security.AllPermission "", ""; };

 Start RMI registry

 rmiregistry &

 Start server

 java -Djava.security.policy=HelloPolicy HelloWorldServer

 Run a client program

 java -Djava.security.policy=HelloPolicy RMIClient

 java -Djava.security.policy=HelloPolicy RMIClient Pascal

28

Outline

 Introduction to Distributed Objects

 Remote Method Invocation (RMI) Architecture

 RMI Programming and a Sample Example:
 Server-Side RMI programming

 Client-Side RMI programming

 Advanced RMI Concepts
 Security Policies

 Exceptions

 Dynamic Loading

 A more advanced RMI application
 Math Server

 RPC and Summary

29

Security Manager

 Java’s security framework

 java.security.-

 Permissions, Principle, Domain etc.

 Security manager, for access control (file, socket, class load,

remote code etc)

 $JAVA_HOME/jre/lib/security/java.policy

 Use security manager in RMI

 RMI recommends to install a security manager, or RMI may not

work properly while encountering security constraints.

 A security manager ensures that the operations performed by

downloaded code go through a set of security checks.

 Eg. Connect and accept ports for RMI socket and allowing code

downloading

30

Security Manager (cont.)

 Two ways to declare security manager

 Use System property java.security.manager
java –Djava.security.manager HelloWorldImpl

 Explicit declare in the source code
public static void main(String[]args){

//check current security manager

if(System.getSecurityManager()==null){

System.setSecurityManager(new SecurityManager ());

}

…

//lookup remote object and invoke methods.

}

 Use customized policy file instead of java.policy

 Usage
java -Djava.security.manager -Djava.security.policy=local.policy HelloWorldImpl

31

/C//Documents and Settings/java/eclipse/workspaces/RMITutorial/local.policy

File: “local.policy” contents

Specific permissions:

grant {

permission java.net.SocketPermission "*:1024-65535","connect,accept";

permission java.io.FilePermission "/home/globus/RMITutorial/-", "read";

};

Grant all permissions:

grant {

permission java.security.AllPermission;

};

32

Exceptions

 The only exception that could be thrown out is
RemoteException

 All RMI remote methods have to throw this exception

 The embedded exceptions could be:
 java.net.UnknownHostException or

java.net.ConnectException: if the client can’t connect to the
server using the given hostname. Server may not be
running at the moment

 java.rmi.UnmarshalException: if some classes not found.
This may because the codebase has not been properly set

 Java.security.AccessControlException: if the security policy
file java.policy has not been properly configured

33

Passing objects

 Restrictions on exchanging objects
 Implementing java.io.serializable

 All the fields in a serializable object must be also
serializable

 Primitives are serializable

 System related features (e.g. Thread, File) are non-
serializable

 How about the socket programming issues?
 Where are sockets and corresponding input, output

streams?

 How to handle object passing?

 Who does all the magic?

34

Differences between RMI and Socket

RMI Socket

Remote Method Invocation is basically an API which allows an

object to invoke a method on an object running in a different

machine’s JVM.

Sockets are nothing but two-sided communication

links between two programs (client and server) in a

network.

RMI is remote method invocation which means methods are

invoked remotely or accessing remote sites in client-server

communication.

Sockets are like gateways which provide access

points for programs through some specific port

numbers.

RMI is built on top of sockets. without sockets, RMI wouldn’t

exist.

In this, we have to manage which sockets and

protocols the application will use. Even though we

can format messages travelling between client and

server-side.

RMI is object-oriented Whereas it is not.

RMI handles the formatting of messages between client and

server.

Here we specify TCP or UDP type, we have to

handle all the formatting of messages travelling

between client and server.

RMI is a Java-specific technology.
Socket-based Communication is independent of

programming languages.

RMI is for high-level java to java distributed computing. Sockets are for low-level network communication.

35

RMI Dynamic Class Loading

 Ability to download bytecode (classes) from
Remote JVM

 New types can be introduced into a remote
virtual machine without informing the client

 Extend the behavior of an application dynamically

 Removes the need to deploy stubs manually

 Explicit set property to support dynamic class
load

 Specify system property java.rmi.server.codebase
to tell the program where to download classes

36

Outline

 Introduction to Distributed Objects

 Remote Method Invocation (RMI) Architecture

 RMI Programming and a Sample Example:
 Server-Side RMI programming

 Client-Side RMI programming

 Advanced RMI Concepts
 Security Policies

 Exceptions

 Dynamic Loading

 A more advanced RMI application
 Math Server

 RPC and Summary

37

A Simple Math Server in RMI

MathServer

(multiple operations)

User
Math Service

38

Java RMI Example

 Specify the Remote Interface

public interface IRemoteMath extends Remote {

double add(double i, double j) throws RemoteException;

double subtract(double i, double j) throws RemoteException;

}

39

Java RMI Example

 Implement the Servant Class

public class RemoteMathServant extends UnicastRemoteObject implements IRemoteMath {

public double add (double i, double j) throws RemoteException {

return (i+j);

}

public double subtract (double i, double j) throws RemoteException {

return (i-j);

}

}

40

Java RMI Example

 Implement the server

public class MathServer {

public static void main(String args[]){

System.setSecurityManager(new RMISecurityManager());

try{

IRemoteMath remoteMath = new RemoteMathServant();

Registry registry = LocateRegistry.getRegistry();

registry.bind("Compute", remoteMath);

System.out.println("Math server ready");

}catch(Exception e) {

e.printStackTrace();

}

}

}

41

Java RMI Example

 Implement the client program

public class MathClient {

public static void main(String[] args) {

try {

if(System.getSecurityManager() == null)

System.setSecurityManager(new RMISecurityManager());

LocateRegistry.getRegistry("localhost");

IRemoteMath remoteMath = (IRemoteMath) registry.lookup("Compute");

System.out.println("1.7 + 2.8 = ” + math.add(1.7, 2.8));

System.out.println("6.7 - 2.3 = ” + math.subtract(6.7, 2.3));

}

catch(Exception e) {

System.out.println(e);

}

}

}

42

Java RMI Example

 Running the Server and Client

 Compile Client and Server classes

 Develop a security policy file

 grant { permission java.security.AllPermission "", ""; };

 Start RMI registry

 rmiregistry &

 Start server

 java -Djava.security.policy=policyfile MathServer

 Start client

 java -Djava.security.policy=policyfile MathClient

43

Outline

 Introduction to Distributed Objects

 Remote Method Invocation (RMI) Architecture

 RMI Programming and a Sample Example:
 Server-Side RMI programming

 Client-Side RMI programming

 Advanced RMI Concepts
 Security Policies

 Exceptions

 Dynamic Loading

 A more advanced RMI application
 Math Server

 RPC and Summary

44

Remote Procedure Call (RPC) – used

in C

 RPCs enable clients to execute procedures in

server processes based on a defined service

interface.

client

Request

Reply

CommunicationCommunication

modulemodule dispatcher

service

client stub server stub
procedure procedure

client process server process

procedureprogram

45

Remote Procedure Call (RPC)

 Communication Module

 Implements the desired design choices in terms of retransmission of requests,

dealing with duplicates and retransmission of results

 Client Stub Procedure

 Behaves like a local procedure to the client. Marshals the procedure identifiers

and arguments which is handed to the communication module

 Unmarshalls the results in the reply

 Dispatcher

 Selects the server stub based on the procedure identifier and forwards the

request to the server stub

 Server stub procedure

 Unmarshalls the arguments in the request message and forwards it to the service

procedure

 Marshalls the arguments in the result message and returns it to the client

46

Summary: RMI Programming

 RMI greatly simplifies creation of distributed
applications (e.g., compare RMI code with socket-
based apps)

 Server Side
 Define interface that extend java.rmi.Remote

 Servant class both implements the interface and extends
java.rmi.server.UnicastRemoteObject

 Register the remote object into RMI registry

 Ensure both rmiregistry and the server is running

 Client Side
 No restriction on client implementation, both thin and rich

client can be used. (Console, Swing, or Web client such as
servlet and JSP)

47

Binding and Activation

 Binder

 mapping from textual names to remote references

 used by clients as a look-up service (cf Java RMIregistry)

 Activation
 objects active (available for running) and passive

(= implementation of methods + marshalled state

 activation = create new instance of class + initialise from stored state

 Activator

 records location of passive objects

 starts server processes and activates objects within them

48

Classes Supporting Java RMI

49

The Methods of the Naming Class

 void rebind (String name, Remote obj)
 This method is used by a server to register the identifier of a remote object

by name

 void bind (String name, Remote obj)
 This method can alternatively be used by a server to register a remote

object by name, but if the name is already bound to a remote object

reference an exception is thrown.

 void unbind (String name, Remote obj)
 This method removes a binding.

 Remote lookup (String name)
 This method is used by clients to look up a remote object by name. A

remote object reference is returned.

 String [] list()
 This method returns an array of Strings containing the names bound in the

registry.

50

