q

Check for
updates

Optimized Renewable Energy
Use in Green Cloud Data Centers

Minxian Xu'2, Adel N. Toosi*®), Behrooz Bahrani®, Reza Razzaghi®,
and Martin Singh?

! Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences,
Shenzhen 518055, China
2 Faculty of Information Technology, Monash University,
Clayton, VIC 3800, Australia
{minxian.xu,adel.n.toosi}@monash.edu
3 Department of Electrical and Computer Systems Engineering, Monash University,
Clayton, VIC 3800, Australia
{behrooz.bahrani,reza.razzaghi}@monash.edu
4 School of Earth, Atmosphere and Environment, Monash University,
Clayton, VIC 3800, Australia
martin.singh@monash.edu

Abstract. The huge energy consumption of cloud data centers not only
increases costs but also carbon emissions associated with such data cen-
ters. Powering data centers with renewable or green sources of energy can
reduce brown energy use and consequently carbon emissions. However,
powering data centers with these energy sources is challenging, as they
are variable and not available at all times. In this work, we formulate
the microservices management problem as finite Markov Decision Pro-
cesses (MDP) to optimise renewable energy use. By dynamically switch-
ing off non-mandatory microservices and scheduling battery usage, upon
the user’s preference, our proposed method makes a trade-off between
the workload execution and brown energy consumption. We evaluate
our proposed method using traces derived from two real workloads and
real-world solar data. Simulated experiments show that, compared with
baseline algorithms, our proposed approach performs up to 30% more
efficiently in balancing the brown energy usage and workload execution.

1 Introduction

The adoption of cloud computing has been rapid; it has been found that 70% of
organizations have at least one application deployed in clouds [1]. These appli-
cations are hosted in cloud data centers which allow users to access them via the
Internet. Due to the rapid growth of cloud data centers, it is anticipated that

Minxian Xu was with the Faculty of Information Technology, Monash University; he is
now with Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences,
China. A major part of this work was done while the author was at the Monash
University.

© Springer Nature Switzerland AG 2019

S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 314-330, 2019.
https://doi.org/10.1007/978-3-030-33702-5_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_24&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_24

Optimized Renewable Energy Use in Green Cloud Data Centers 315

data centers will consume significant worldwide generated electricity [1]. This
huge energy consumption has an immense impact on the environment through
greenhouse gas emissions. Thus, improving the energy efficiency of the cloud data
center has attracted significant attention from researchers and the IT industry.

To ensure the sustainability of clouds, the carbon footprint of data centers
must be reduced. Apart from reducing the total energy consumption, powering
data centers with renewable (green) energy sources like wind or solar signifi-
cantly reduces the carbon emissions associated with data centers. However, the
limitation of renewable energy is that it is not as reliable as the grid power, and
it is stochastic and intermittent in its behaviour.

Microservices are small, autonomous services that are rapidly becoming the
norm for building large-scale applications in cloud data centers. With their isola-
tion and light-weight features, microservices can be dynamically switched on/off
to improve resource usage of application. This allows service providers to execute
optional microservices (e.g., an analytics engine for E-commerce website) to bet-
ter match the workload with the energy supply. To this end, one must develop
algorithms to switch microservices on/off so that the overall executed number
of microservices is maximized while minimizing the use of non-green power. In
this work, we develop a method to manage resources at the microservice level to
match the energy demand with the renewable energy supply of a data center.

Currently, most energy efficient scheduling algorithms for cloud data centers
are heuristic-based, e.g., [2,6,7]. Heuristics are designed to provide acceptable
results in a reasonable time frame. However, the entire solution space is not
searched in heuristic approaches and their performance is not guaranteed. In
practice, both future workloads and the availability of green energy are non-
deterministic, and must be modelled probabilistically. Therefore, we consider
using Markov Decision Processes (MDP) to model the stochastic nature of work-
loads and green energy availability in green cloud data centers. In this work, we
assume that the data center is powered by an on-site renewable energy system
(e.g., a photovoltaic solar power system) and the residual green energy can be
stored in batteries for near future use. When battery storage is used, a chal-
lenging question to address is “when and in what capacity should batteries be
discharged to maximize the overall executed number of microservices?”

We aim to find the optimised policy that maximizes the number of executed
microservices while minimizing brown energy (energy produced from polluting
sources) use. The policy contains actions that select how many microservices
are to be switched off and whether and in what capacity the battery power
is consumed in each time slot in accordance with the system administrator’s
preference for environmental friendliness. The key contributions are as follows:

— We model the green-aware microservices management problem as a finite
horizon Markov Decision Process problem with the objective to minimize
the usage of brown energy while maximizing the number of microservices
deployed. In our model, we consider renewable energy (green), grid electricity
(brown) and battery to power the system.

316 M. Xu et al.

— We propose an algorithm based on MDP to dynamically switch off microser-
vices and schedule battery usage to achieve the optimised results.

— We propose a tuning parameter which allows the system administrator to
make a trade-off between the workload execution and brown energy use.

— We conduct simulation-based experiments using real data derived from work-
load traces and renewable energy availability. The results show that our
proposed approach significantly reduces brown energy usage while deploy-
ing more microservices compared with baselines.

2 Related Work

Green cloud data centers powered by renewable energy is becoming an important
topic in operating cloud data centers. To the best of our knowledge, our work is
the first one to apply MDP to optimise the renewable energy use in cloud data
centers. We now discuss the related work. Table 1 also shows the comparison of
the related work based on key approaches, energy sources and objectives.

Markov Decision Process in Cloud Computing Environment. To model
the probabilistic features of cloud computing environments and make resource
management decisions, MDP has been applied in some research. Xu et al. [13]
applied approximate MDP to schedule application components in cloud data
centers to improve the trade-offs between the energy consumption and discount
offered to users. Terefe et al. [11] adopted an MDP-based multi-site offloading
algorithm for mobile cloud computing, which aims to achieve the energy-efficient
objective of mobile devices. Han et al. [5] proposed a VM migration approach
based on MDP to reduce data center energy consumption and resource shortage.
Shen et al. [10] proposed an MDP-based approach to balance the VM loads
on physical machines, which can achieve lower SLA violations and better load
balancing effects than baselines.

Our work differs significantly from these MDP-based efforts in several per-
spectives: (1) none of them applied MDP to model the probabilistic feature of
workloads and renewable energy together; (2) none of them put the efforts on
optimising the use of renewable energy; and (3) none of them considered the
actions on microservices and battery.

Renewable Energy Use in Data Centers. Renewable energy has been used
to power data centers to reduce their carbon footprint. Zhang et al. [15] proposed
a middleware system to dynamically dispatch requests to maximize the percent-
age of renewable energy used to power a network of distributed data centers
while satisfying the desired cost/budget of the service provider. They applied a
requests dispatching algorithm based on linear-fractional programming. In con-
trast, our approach is based MDP and considers the actions for battery to further
maximize the renewable energy use.

Giori et al. [4] proposed a prototype green data center called Parasol, which is
powered by solar panels, battery and grid power. They used linear programming
to manage workloads and select sources of energy. In contrast, our approach does

Optimized Renewable Energy Use in Green Cloud Data Centers 317

Table 1. Comparison of related work

Approach Approach Energy sources Objective
Linear Prediction | MDP | Brown | Green | Battery | Energy- | Green- | QoS-
programming aware |aware |aware
Xu et al. [13] ' ' '
Terefe et al. [11] v v
Han et al. [5] v v v
Shen et al. [10] '

NIENENENENENENEN

Zhang e al. [15] |V v ' v
Giori et al. [4] v v ' ' ' '
Liu et al. [8] v v v '
Our approach v v v v v

not need a prediction model to predict future renewable energy availability and
workloads as Parasol does. We model workloads and renewable energy based on
probabilistic model and introduce a tuning parameter (dimmer) to balance the
trade-offs between the workload execution and brown energy use.

Liu et al. [8] used a holistic approach by considering renewable energy supply,
electricity pricing and cooling costs to improve the sustainability of data centers.
Our work differs from this one as our objective is maximising the use of renew-
able energy. Toosi et al. [12] proposed an approach to redirect virtual machine
requests to other data centers with available renewable energy. They introduced
two online deterministic algorithms for maximizing renewable energy usage. In
contrast, we apply the MDP approach for a single data center and manage the
actions for microservices and battery rather than virtual machines.

3 System Modeling and Problem Statement

Figure 1 shows the schematic view of the proposed system. We consider a data
center that consists of multiple physical machines (servers). To power the data
center, several energy sources are considered, including brown energy generated
by coal-based facilities, green energy generated by solar panels and batteries that
can store the surplus green energy. Applications constructed via self-contained
microservices deployed on physical machines to provide services for the end users.
Many applications including web applications often have microservices that fit

(VY\

. . ! ‘
Users —_ Mlcroservlc s

Brown Energy Green Energy
Coal-based Grid Solar

Action:
Switch off microservices
Controller

x@d

eo°°
Batte ry

Fig. 1. Schematic view of the system.

318 M. Xu et al.

into the brownout [14] feature, which can be regarded as non-mandatory com-
ponents that can be dynamically activated/deactivated as need arises. For exam-
ple, microservices handling the recommendation engines for a shopping website,
or microservices running ad selection algorithms and optimization. Our approach
only targets microservices having brownout feature and all other microservices
remain untouched in the system.

3.1 States

We consider the discrete time finite-state MDP, and we aim to find an optimal
policy (state to action mapping) to achieve best results for a single day. We
discretize the time horizon into identically sized slots, i.e., each day is divided
into 24 h time slots. A finer grain time slot can be used in our model. However,
since weather data is often available in hourly basis' and service are billed per
hour in well-known cloud providers such as AWS?, here, we focus on hourly time
slots throughout the day (solar cycle).

The system state S(t) at time-slot ¢ includes the status of (1) demanded
microservices, (2) available renewable energy, and (3) level of battery state
of charge (SoC). The state space of active microservices at time ¢ is given as
W(t) < W € Z%, where Z* is the set of non-negative integers and W is the
maximum number of microservices the system can accommodate. The num-
ber of active microservices represents the intensity of workloads, that is, more
active microservices are required when workload is high. Availability of renew-
able energy at time t is represented by a discrete random value G(t) < G € Z*.
G(t) represents the level of electricity generated by the renewable power system
and G is the maximum level of renewable power can be generated in the sys-
tem. Similarly, B(t) < B € Z* is a discrete value denoting the battery level
SoC, where B is the maximum charge level that battery can hold. Therefore,
the state of the system at time ¢, S(¢), is denoted by:

[W(#),G(1), B(t)] €5, (1)

where S stands for all possible states.

Figure 2a shows an example of states in our MDP-based modeling. In this
example, we have four time intervals at different states. We assume one unit
microservice(s) consumes one unit green energy or battery. Microservices are
presumed to be grouped in a way that each group roughly consume one unit of
energy. At 70, the demanded number of microservices is 6 units, green energy
level is 3 and battery level is 2, which represents the state that green energy
and battery cannot satisfy the required energy of microservices. At T'1, the state
represents that green energy is sufficient to handle the entire workload, e.g. at
the noontime that solar power is adequate. In this state, no extra brown energy

! http://www.bom.gov.au/climate/data-services /solar-information.shtml.
2 https://aws.amazon.com/premiumsupport /knowledge-center /ec2-instance-hour-
billing,/.

http://www.bom.gov.au/climate/data-services/solar-information.shtml
https://aws.amazon.com/premiumsupport/knowledge-center/ec2-instance-hour-billing/
https://aws.amazon.com/premiumsupport/knowledge-center/ec2-instance-hour-billing/

Optimized Renewable Energy Use in Green Cloud Data Centers 319

. Microservices [l Green Energy I:l Battery P switched off Microservice [--] Reserved Battery Level
T ! n 3 A=(6,2) A=(5,2) A=(4,2) A=(4,0)
Time intervals Possible Actions at TO
(a) Possible states. (b) Possible actions.

Fig. 2. Example of states and actions in the system

is required. At T2, the state represents the situation where no green energy is
available. The number of microservices is 5, green energy level is 0 and battery
level is 2. At T3, the state represents the condition where battery is empty, so
the battery level is 0.

3.2 Actions

At the beginning of each time-slot, the system determines the control action to
switch off some microservices and to decide the allowed battery discharge. The
next state S(¢ + 1) depends on the current state S(t) and the decision maker’s
action A. Our model must decide to perform the best possible action in each
state. Actions are denoted as A = (a,b), where @ is the number of executed
microservices and b denotes the maximum battery level allowed to be consumed
to execute microservices. The actions change the states from one to another and
achieve different rewards. The goal is to calculate the optimal policy, which is a
mapping from states to actions such that the reward is maximized. The reward
function will be discussed in the next subsection.

Figure 2b demonstrates a set of sample possible actions corresponding to the
Fig. 2a state at T0. In T0, green energy and battery cannot fully satisfy the
number of microservices. One may choose to run all 6 units of microservices
using one unit of brown energy plus the entire battery charge, i.e., A = (6,2).
Note that green power is always being used to the maximum a head of other
sources, i.e. grid and battery. Another possible action executes only 5 out of 6
microservices and uses the entire battery storage levels so that no extra brown
energy is required, i.e., A = (5,2). To reserve battery level charge for the next
time slot, a possible action is to execute only 4 microservices and use one or
none of the battery levels, i.e., A = (4,1) and A = (4,0).

The demanded workload and available green energy level at S(t + 1) are
independent of the state S(t) and are determined stochastically according to the
time. However, battery level at S(t 4+ 1) depends on S(t) and action A. If there
is extra green energy in the last state, it will be used to charge battery in the
next state. For S(t) = [W(t), G(t), B(t)], the number of microservices that can
be executed is 0 < a < W (t) and the battery level that can be consumed is
0 <b < min(B(t),[a — G(t)]T), where [z]T = maz[0, z]. Thus, the battery level

320 M. Xu et al.

at t + 1 is determined according the following equation:
B(t+ 1) = min(B, B(t) — b+ [G(t) — a] "), (2)

where [G(t) — a]T represents the level of not consumed green energy at ¢ and
used to charge battery.

3.3 Reward Function

At each time slot, the process is in a state S(t), and we choose a possible action A.
The process randomly moves to the next state S(¢+1) at the next time slot, and
gives the corresponding reward R(S(t), A). Our model intends to optimise two
contradictory objectives: minimizing brown energy consumption and maximizing
the number of microservices executed. Note that we target optional microservices
with an interactive nature in our model that they cannot be delayed to be exe-
cuted in the future. For example, current end users of a shopping website do not
receive suggestions for items if the recommendation service is switched off. We
introduce A, parameter to balance the trade-off between the number of microser-
vices and brown energy usage. A, can be set by the system administrators to
satisfy their cost and QoS requirements. Thus, we define the reward function
R(.) as:

R()=-A-x[a—G({t)—b"+(1—-\) xa. (3)

The first part [a — G(t) — b]T represents the brown energy usage and the
second part, a, shows the number of executed microservices at time slot ¢. When
A = 1, the reward function only considers the brown energy usage. When A, = 0,
the reward function is R(.) = a, that is, the reward function only considers
the executed microservices. When A, is between 0 and 1, the reward function
makes a balance between the number of executed microservices and brown energy
consumption. The impact of A, will be evaluated in Sect. 5.4.

3.4 Transition Probabilities

The probability that the MDP moves into S(¢ + 1) is influenced by the chosen
action A. We assume that the decision maker has access to a long-time history
of workloads demand and renewable power generation to compute probabili-
ties. Thus, for each time slot, the probability of receiving the specific level of
workload (the number of demanded microservices), W (t), is known in advance
and is denoted by P(W (¢)). In Sect. 5.1, we explain how these probabilities are
computed. The probability that the specific level of green power is generated at
time slot ¢ is denoted by P(G(t)). These values are also known to the decision
maker in advance and are computed according to the history of renewable power
generation. By knowing W (t) and G(¢) and action A = (a,b), we can compute
the battery level SoC at t + 1. Therefore, the transition probability from S(t) to
S(t+ 1) with a given action A is computed as:

Pa(S(t),S(t+1))=P(W(t+1)) x P(G(t+1)). (4)

Optimized Renewable Energy Use in Green Cloud Data Centers 321

3.5 Optimal Policy

The optimal policy n* describes the best action for each state in MDP which
maximizes the expected reward in observation period, e.g. 24h. The equation
for the optimal policy is shown as follows:

VT(S(t) = max{R(S +) Pa(S(),S(t+ 1)) x VT(S(t + 1))}, (5)
5(t+1)
where V(S(t)) is the expected reward obtained in the observation period, i.e.,
from the current time to the last time slot. In Eq. (5), the maximum reward that
can be obtained at state S(t) is computed by optimally choosing action A that
maximizes the reward over all possible, next states S(t + 1). The above analysis
converts our model to a dynamic programming problem.

4 MDP-Based Green-Aware Algorithm

Algorithm 1 shows the pseudocodes of our MDP-based green-aware algorithm.

Initializing System Information: At the beginning time interval, the algo-
rithm uses the information to initialize system, including, the observation period,
e.g. 24 h, the maximum number of levels for workloads, green energy and battery
capacity (line 1).

Finding Reachable States and Possible Actions: Based on the probabil-
ities of all states, only states with probability larger than 0 are considered as
reachable. Meanwhile, based on the predefined maximum levels of workloads and
green energy, possible actions can be found (lines 2-16).

Algorithm 1. MDP-based Green-aware algorithm

Input: System state, transition probabilities, observation time periods.
Output Control actions
: Initializing observation period T, the maximum levels of workloads W and green energy G,
battery capacity B
2: for t from 0 to T do
3 for W(t) from 0 to W do
4 for G(t) from 0 to G do
5: P(S(t) = P(W (1) x P(G(¢))
6: for B(t) from 0 to B do
7
8

if Pr[S(t)] > 0 then
: Adding S(t) into reachable states S
9: end if

10: end for
11: end for
12: end for

13: end for

14: for all reachable states in S do

15: Adding action A(a,b) into possible actions A(S(t)) for S(t), V0 < a < W(t), VO <b <
min(B(t), [a — G]T)

16: end for

17: Updating transition probabilities Pa (S(t), S(t + 1)) from S(t) to S(t + 1)

18: Updating the reward function R(.) from S(t) to S(t + 1)

19: Calculating the optimal expected reward by algorithm 2 to find the V™*(S(t))

20: Deciding the control actions based on V™*(S(t)).

21: return best actions for states

322 M. Xu et al.

Updating Transition Probabilities of States: Fetching the probabilities of
different levels of workloads and availability of green energy (line 17).

Updating the Reward of States: Based on the different levels of workloads,
green energy and consumed battery, the reward of each state is updated accord-
ing to Eq. (3) (line 18).

Calculating the Utility Function: Using Algorithm 2, Algorithm 1 calculates
the optimal expected reward value of reachable states (line 19).

Deciding the Actions: According to the optimised expected reward value that
can be achieved, algorithm selects the action which maximizes the objective
function for each state according to Eq. (5).

Algorithm 2 shows how to calculate the optimal expected reward by iterating
over actions. The algorithm is based on value iteration to maximize the reward
value, which represents the best control policy. With the inputs of reachable
states and corresponding possible actions, the algorithm iterates over time peri-
ods 0 to T. The expected reward of a state is calculated in line 6. Then the
algorithm iteratively updates the best reward value by going through all the
reachable states and possible actions. In each iteration, the optimal expected
reward value V7™*(S(t)) with optimal policy 7 is updated based on the expected
reward in the previous state. After obtaining the optimal reward value, we can
find the optimal control action.

Complexity Analysis: In our algorithm, for each state at a specific time inter-
val, only the best action to reach the state is kept, which means the other actions
are eliminated. Thus, the solutions space is @ (A x I" x A) which is in polynomial
complexity, where A, I', and A are the maximum level for the number of active
microservices, green energy and battery, respectively.

Algorithm 2. The optimal expected reward value for all the states

Input: reachable states S(t) € S, possible actions A(S(¢)) and estimated transition probabilities at
time interval t as P4 (S(t), S(t + 1))

Output: The optimal expected reward value

1: t =0, V(S(0)) = 0,VS(0) € S(0)

2: for t from 0 to T — 1 do

3 t=t+1

4: VT*(S(t)) = -o00

5: for S(t) € S(t) do

6: V(S(t)) = maxa{R(S(t), A) + X511y Pa(S(t), S(t +1)) x V(S(t + 1))}
7 if V(S(t)) > V™*(S(t)) then

8: VTE(S(t) = VI(S()

9: end if

10: end for

11: end for

12: return V™*(S(t)) as optimal expect reward value

Optimized Renewable Energy Use in Green Cloud Data Centers 323

5 Performance Evaluations

In the following, we evaluate the performance of our proposed MDP-based app-
roach. We use two workloads derived from realistic traces along with the histor-
ical solar data from the Australian Government Bureau of Meteorology>.

5.1 Workload Traces

We use two realistic workload traces derived from Wikipedia* and Nectar® in
our experiments. To convert workloads to fit into the states, we divide workloads
into a set of levels with a specific range.

We use one-month Wikipedia data traces that contain 10% of all user requests
issued to the Wikipedia website during this period. The total number of requests
per hour ranges from 4 to 14 millions as shown in Fig.3(a). The figure shows
that the Wikipedia trace follows a typical pattern with the top and bottom
number of requests during the day and night time, respectively. We divide the
number of requests per hour into 10 levels, each representing a workload level in
MDP. Each level is associated with a request rate range, of which the midpoint
is used as the representative value for the corresponding level. For instance, the
representative value for level 0 is 670 thousand and covers the range of 0 to 1340
thousand requests per hour. Figure 3(b) depicts the workload level conversion for
the Wikipedia traces. It can be observed that the data still follows the pattern
in Fig.3(a), while the total workload levels are reduced to 10. Note that, in
our experiment, we shifted Wikipedia data traces timing in a way that its user
base would be in Australia at the same place as we consider the renewable
power generation. Therefore, the peaks of workload coincides with the peaks of
renewable power generation for the Wikipedia workload.

The Nectar Cloud platform provides the scalable computing infrastructure to
Australian researchers and contains the traces of requests submitted for instan-
tiating VM instances. Different from the Wikipedia trace, Nectar does not have
a clear diurnal pattern and requests have start time, end time and five different
VM types with the different number of vCPUs (virtual CPUs), e.g. small type
has 1 vCPU and medium type has 2 vCPUs. We calculate the cumulative vCPU
demand from users during 30 days as shown in Fig. 3(c), in which the demanded
resource ranges from 500 to 2600 vCPUs. In Nectar traces, we cannot see an
apparent pattern like that of Wikipedia. Similar to Wikipedia traces, we convert
the vCPU resource consumption into 10 levels (Fig.3(d)). For instance, level 0
represents values from 0 to 286 vCPUs.

5.2 Workload Level Probabilities

The probability P(W (t)) shows the likelihood that workload demand falls into
a certain level in time slot ¢. In order to compute P(W(t)), we use existing

3 http://www.bom.gov.au/climate/data-services/solar-information.shtml.
* http://www.wikibench.eu/wiki/2007-10/.
5 https:/ /nectar.org.au/research-cloud/.

http://www.bom.gov.au/climate/data-services/solar-information.shtml
http://www.wikibench.eu/wiki/2007-10/
https://nectar.org.au/research-cloud/

324 M. Xu et al.

0 200 400 600 800 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Hour Hour Hour

(b) (c) (d)

Workload levels
0 2 4 & 8 10

0 2 4 6 8 10
P
E===
g=co=n
BEES=S
===l

4 ;%f
';ii"ﬁlg—:*g'
(===
[==—=1

Number of vCPUs (1000)

00 05 10 15 20 25

I
2
E
]
4

Fig. 3. (a) Original Wikipedia workloads. (b) Converted workload levels. (c¢) Original
Nectar workloads. (d) Converted workload levels.

historical data based on a weekly cycle. Therefore, we keep different values of
P(W(t)) for different hours and different days of a week. In order to compute
P(W(t)) for a given time slot of a weekday (e.g., Monday, 8:00 to 9:00 am),
we count the number of times that the historical workload hits a certain level
(e.g., level 5) in the existing traces. Then the number is divided by the total
number in all levels in time slot ¢ to obtain the probability. This way, we create
seven probability matrices (each for one day of a week) that contains 10 rows
and 24 columns. Each cell shows the probability of receiving a certain level of
workload at the specific time slot. The history data we used for the probability
computation for Wikipedia is from September 19 to October 19, 2007 and for
the Nectar is from December 1 to December 30, 2013.

5.3 Solar Power Levels

In order to make the solar data incorporated into our model, we use the hourly
satellite data for the solar irradiation falling on a horizontal surface collected
by the Australian Bureau of Meteorology. The trace has more than 30 years
of hourly global horizontal solar irradiance (GHI) across Australia. We assume
that the solar system fully converts hourly GHI value to power. Figure4 shows
the historical (original) and converted one-month solar irradiance data in Jan
2017 for the gridded data that covers Clayton campus at Monash University. In
the historical data, the maximum value of GHI is 1108 W/m” and the minimum
value is zero. We also map GHI data into 10 levels of power, where the minimum
solar level is 0 and the maximum solar level is 9.

=)
8 8
38 8

Solar Irradiance (walls[mQ)
N & O ®
s 8
8 8

5]
8
Solar power level

Fig. 4. Historical and converted solar irradiance.

Optimized Renewable Energy Use in Green Cloud Data Centers 325

To compute the likelihood of green power generation at a specific level
P(G(t)), we use historical data at the same hour from the previous years. For
example, if we want to calculate the probability of renewable power generation
at level 2 at hour 11:00 am on the 1st of January, 2018, we look at the historical
data at 11:00 am on the 1st of January from 1990 to 2017. Then, the probability
that green power generation reaching level 2 is calculated based on the sample
data.

Table 2. Impact of A\, on the number of microservices and brown energy usage.

Ar 0 0.25/0.5 |0.75]1
Average number of microservices | 4.26 | 4.26 | 2.47 | 2.47 | 0

Average brown energy usage 3.26 2.4 |0.60 0.60 |0

5.4 Evaluations with Different A\, Values

To evaluate the impact of different A, values on the number of executed microser-
vices and average energy consumption, we vary A, from 0 to 1 in the reward func-
tion as noted in Eq. (3) for the Wikipedia workload. The results are shown in
Table 2. As we expect, the larger A, value, the fewer average number of microser-
vices are executed and less brown energy is consumed. When A, = 0, the app-
roach runs the maximum average number of 4.2 microservices and consume 3.3
units of brown energy. When A, = 0.5, the average number of microservices is
reduced to 2.5 and the brown energy usage is decreased to 0.6. When A\, = 1, no
microservice is executed and no brown energy is consumed. We choose A\, = 0.5
to balance the trade-off in the rest of experiments. In practice, the service admin-
istrators can set A, to fit into their preferences.

5.5 Baseline Algorithms

We use the following state-of-the-art heuristic algorithms as baselines:

DMWB (Demanded Microservices Without Battery): The algorithm
executes the demanded number of microservices as it is received by the system,
but does not use the battery.

SLW (Sliding Window): This sliding window algorithm [9] uses the recent
historical actions to make an action. We set the sliding window size as 3 and the
current action is the average number of microservices in the last 3 time intervals.
SLW uses the maximum available battery capacity to power system whenever
green energy is not sufficient.

BF (Best Fit): This algorithm is a representative energy management algo-
rithm derived from [3]. It chooses the action that executes the maximum number
of microservices with the least brown energy usage. The full battery capacity is
consumed whenever green energy is insufficient.

326 M. Xu et al.

IS
o
o

-
w
o
o
@
=
©

1)
>
S
>

)
<
=)
=

[y
Brown eneryg use
- N
[}
Algorithm efficiency

o
o
o
N

= =

o - N o &
L

Number of microserivices
Percentage of green energy

o
o
s

o

°

DMWB SLW BF GMDP DMWwB SLW BF GMDP DMWB SLW BF GMDP DMWB SLW BF GMDP

(a) (b) (c) (d)

Fig. 5. Performance comparison of algorithms using Wikipedia workload.

We investigate the following metrics to evaluate system performance:

Number of Microservices: As one of the main objectives is to maximize the
number of executed microservices, this metric measures the number of microser-
vices on average over all hours.

Brown Energy Usage: Another main objective is to reduce brown energy
consumption. This metric represents the average amount of brown energy usage
over all hours. This metric can be read as the carbon footprint as well.

Algorithm Efficiency: The algorithm efficiency is represented as the optimiza-
tion objective that considers both the brown energy usage and the number of
active microservices simultaneously. The combined two objectives are derived
from Eq.(3) as: & x {A x Si=f[a(t) — G(t) — b®)]T + (1 — \) x Y4z a(t)},
where a(t) is the number of active microservices, b(t) is the battery discharge at
time interval ¢, and T is the 72-h observation period.

Percentage of Green Energy Usage: We also evaluate the percentage of
green energy consumed out of the total energy usage on average over all hours.

5.6 Experimental Results

Figure 5 shows the performance comparison under the Wikipedia workload for
three baseline algorithms and our proposed Green-Aware MDP-based algorithm
(GMDP) over 3 days. The evaluated Wikipedia workloads start from October 20
to 22, 2007 and the evaluated Nectar workloads are from January 1 to 3, 2014.
To avoid the seasonal variance of solar irradiance, we repeat our experiments
with the solar data in the first three days in January, April, July and October
2017 respectively under the same Wikipedia workloads. From Fig. 5(a) and (b),
DMWRB represents the baseline that executes the demanded number of microser-
vices as received, which executes 4.234 with 95% Confidence Interval (CI) (3.882,
4.586) microservices and 2.88 with 95% CI: (2.609, 3.153) brown energy usage.
The SLW algorithm lowers the number of microservices and brown energy usage
to 3.115 with 95% CI: (2.846, 3.384) and 1.781 with 95% CI: (1.649, 1.912)
respectively. The BF algorithm supports the minimum number of microservices
as 1.922 with 95% CI: (1.645, 2.199) and consumes the minimum brown energy as
0.544 with 95% CI: (0.432, 0655). Our proposed GMDP runs 27% more microser-
vices than BF as 2.436 with 95% CI: (2.137, 2.736) and its brown energy usage is

Optimized Renewable Energy Use in Green Cloud Data Centers 327

0.60 with 95% CIL: (0.449, 0.756), which is only 0.6 more than BF. Figure 5(c) and
(d) depict the comparison of efficiency and percentage of green energy usage for
algorithms. While GMDP reduces the number of microservices, it achieves the
highest efficiency and percentage of green energy usage, which means GMDP can
run the maximum number of microservices with the least brown energy usage.

» 81 6 10 310
] N]
2. = g% & Sos - = 508 B
] > 4+ 2 = g 1 =] =
g 2 2o - o6
L) o o
E 4 = 5 ° £ 5 ‘
5 €,/ =] £04 204 =)
5. - | : £, .
£ = [202 502
£ = = g ‘
5

Z o4 0 00 do0

DMWB SLW BF GMDP DMWB SLW BF GMDP DMWB SLW BF GMDP DMWB SLW BF GMDP

(a) (b) (c) (d)

Fig. 6. Performance comparison of algorithms using Nectar workload.

™ Demanded
O Executed

W Demanded
T Executed

W Demanded
B Executed

0 2 4 6 8 10
Battery Level

0 2 4 6 8 1012
Battery Level

0 2 4 6 8 10

Number of microservices
0 2 4 6 8 10

Number of microservices

02 W e 1 0246 81 13 16 19 22 0246 810 13 16 19 22 0246 81 13 16 19 22
Hour Hour Hour Hour

(a) (b) () (d)

Fig. 7. Actions corresponding to demanded workloads for (a) Wikipedia and (b) Nec-
tar. Battery actions corresponding to available battery (c¢) Wikipedia and (d) Nectar.

Figure 6 depicts the comparison based on the Nectar workload. In Fig. 6(a)
and (b), we can observe that the DMWB executes the maximum number of
microservices as 6.253 with 95% CI: (5.833, 6.673) and the corresponding brown
energy is 4.836 with 95% CI: (4.344, 5.329). SLW reduces the number of microser-
vices to 3.919 with 95% CI: (3.585, 4.254) and brown energy usage to 2.425 with
95% CI: (2.064, 2.787). BF achieves the least number of 1.773 with 95% CI:
(1.589, 1.958) microservices and minimum brown energy usage of 0.583 with
95% CI: (0.386, 0.782). GMDP increases microservices and brown energy usage
to 2.34 with 95% CI: (2.083, 2.598) and 0.658 with 95% CT: (0.475, 0.841), respec-
tively. Compared with BF, GMDP executes 31% more microservices with only
12% more brown energy use. GMDP has the highest efficiency and the largest
percentage of green energy usage as shown in Fig. 6(c) and (d).

As a conclusion, we can say that GMDP achieves the best trade-off between
the number of executed microservices and brown energy use, highest efficiency
and the maximum percentage of green energy use. The DMWB algorithm exe-
cutes the demanded number of microservices as received, however, its actions are

328 M. Xu et al.

not optimised according to the availability of green energy and battery status of
charge. The SLW algorithm takes the advantage of the recent actions. However,
the percentage of green energy usage is not maximized. BF finds the best action
at the current time period, however, the average value in the long term is not
optimal. The GMDP algorithm avoids the limitations of baseline algorithms by
reacting to the number of demanded microservices and searching a larger solu-
tion space. The GMDP algorithm reduces the brown energy usage to the level
requested by the system administrator through lowering the number of executed
microservices, and improves efficiency and percentage of green energy usage.

To demonstrate the behaviour of GMDP and the nature of selected actions,
Fig.7(a) and (b) show the executed number of microservices by GMDP versus
the demanded number of microservices for the two workloads in the first day of
the three-day observation period with solar irradiance in January. From Fig. 7(a),
we notice that in some time periods, e.g. during time periods 0-1 and 9-17, the
number of demanded microservices is the same as the executed microservices for
the Wikipedia workload. This happens when the energy drawn from green sources
and battery are sufficient to handle the entire workload. However, when the green
energy and battery charge are not sufficient, e.g. during time periods 2-8, the exe-
cuted microservices controlled by actions and are less than the demanded ones.
Figure 7(b) shows similar behaviors for the Nectar workload. GMDP executes more
microservices during the time period that green energy or battery charge are suffi-
cient and efficiently reduces the executed microservices with the limitation in green
energy according to the administrator preference (\,.).

Figure 7(c) and (d) shows the sample battery status of charge and corre-
sponding actions in the first day of our three-day observation period with solar
irradiance in January for Wikipedia and Nectar workloads respectively. For the
Wikipedia workload, we can notice that the initial battery is consumed in time
periods 0 and 1., e.g. battery is discharged for 5 and 4 units respectively. The
battery is not recharged until the time period 12, when the green energy is
enough and can be charged into battery. Then the battery level is decreased to
0 during time periods 16 to 19, and there is no action for the battery in the
time periods 20-23. The battery actions for Nectar workloads are much simpler
compared with Wikipedia workloads. The battery is consumed in time period 0
and 1, and only recharged 1 unit at time period 14. This is because the Nectar
workloads during time periods 0 to 13 are higher than Wikipedia workloads.
Thus the green energy is consumed completely, and the battery has no chance
to get recharged.

6 Conclusions and Future Work

We modeled the green-aware microservices management problem as a finite
Markov Decision Process to reduce brown energy usage while provisioning
resources for microservices. In our model, we consider brown energy, green energy
(solar power) and a chargeable battery as the energy sources to power the data
centers. To optimise system performance, our proposed MDP-based approach

Optimized Renewable Energy Use in Green Cloud Data Centers 329

called GMDP controls system actions and decides the number of microservices
that must be executed out of the incoming workload and how much battery must
be consumed in each time slot. We used real traces derived from Wikipedia and
Nectar and Solar irradiance data from the Australian government Bureau of
Meteorology to evaluate our system performance. Experimental results show
that the proposed approach can efficiently balance the trade-off between the
number of microservices and brown energy usage. In future, we plan to design
and develop a prototype system incorporating the proposed algorithm. We will
extend our model to consider more complex scenarios including battery self-
discharge, variable grid electricity prices, and net metering. We will use a rein-
forcement learning approach to solve Markov decision processes.

Acknowledgments. This work is partially supported by Monash Infrastructure
Research Seed Fund Grant and FIT Early Career Researcher Seed Grant.

References

1. Buyya, R., Srirama, S.N., et al.: A manifesto for future generation cloud computing:
research directions for the next decade. ACM Comput. Surv. 51(5), 105:1-105:38
(2018)

2. Cianfrani, A., Eramo, V., Listanti, M., Polverini, M., Vasilakos, A.V.: An OSPF-
integrated routing strategy for QoS-aware energy saving in IP backbone networks.
IEEE Trans. Netw. Service Manag. 9(3), 254-267 (2012)

3. Farahnakian, F., Pahikkala, T., Liljeberg, P., Plosila, J., Hieu, N.T., Tenhunen,
H.: Energy-aware VM consolidation in cloud data centers using utilization predic-
tion model. IEEE Trans. Cloud Comput. 7(2), 524-536 (2019). https://doi.org/
10.1109/TCC.2016.2617374

4. Goiri, I,A7 Katsak, W., Le, K., Nguyen, T.D., Bianchini, R.: Parasol and
GreenSwitch: managing datacenters powered by renewable energy. In: ACM
SIGARCH Computer Architecture News, vol. 41, pp. 51-64. ACM (2013)

5. Han, Z., Tan, H., Chen, G., Wang, R., Chen, Y., Lau, F.C.M.: Dynamic virtual
machine management via approximate Markov decision process. In: Proceedings
of the 35th Annual IEEE International Conference on Computer Communications
(INFOCOM), pp. 1-9 (2016)

6. Jiang, D., Xu, Z., Liu, J., Zhao, W.: An optimization-based robust routing algo-
rithm to energy-efficient networks for cloud computing. Telecommun. Syst. 63(1),
89-98 (2016)

7. Liu, H., et al.: Thermal-aware and DVFS-enabled big data task scheduling for data
centers. IEEE Trans. Big Data 4(2), 177-190 (2018)

8. Liu, Z., et al.: Renewable and cooling aware workload management for sustainable
data centers. In: ACM SIGMETRICS Performance Evaluation Review, vol. 40, pp.
175-186. ACM (2012)

9. Shaw, R., Howley, E., Barrett, E.: A predictive anti-correlated virtual machine
placement algorithm for green cloud computing. In: 2018 IEEE/ACM 11th Inter-
national Conference on Utility and Cloud Computing, pp. 267-276. IEEE (2018)

10. Shen, H., Chen, L.: Distributed autonomous virtual resource management in dat-
acenters using finite-Markov decision process. IEEE/ACM Trans. Netw. 25(6),
3836-3849 (2017)

https://doi.org/10.1109/TCC.2016.2617374
https://doi.org/10.1109/TCC.2016.2617374

330

11.

12.

13.

14.

15.

M. Xu et al.

Terefe, M.B., Lee, H., Heo, N., Fox, G.C., Oh, S.: Energy-efficient multisite offload-
ing policy using Markov decision process for mobile cloud computing. Pervasive
Mob. Comput. 27, 75-89 (2016)

Toosi, A.N., Qu, C., de Assungao, M.D., Buyya, R.: Renewable-aware geographical
load balancing of web applications for sustainable data centers. J. Netw. Comput.
Appl. 83, 155-168 (2017)

Xu, M., Buyya, R.: Energy efficient scheduling of application components via
brownout and approximate Markov decision process. In: Maximilien, M., Valle-
cillo, A., Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 206—220.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69035-3_14

Xu, M., Buyya, R.: Brownout approach for adaptive management of resources and
applications in cloud computing systems: a taxonomy and future directions. ACM
Comput. Surv. 52(1), 8:1-82:7 (2019)

Zhang, Y., Wang, Y., Wang, X.: GreenWare: greening cloud-scale data centers to
maximize the use of renewable energy. In: Kon, F., Kermarrec, A.-M. (eds.) Mid-
dleware 2011. LNCS, vol. 7049, pp. 143-164. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-25821-3_8

https://doi.org/10.1007/978-3-319-69035-3_14
https://doi.org/10.1007/978-3-642-25821-3_8
https://doi.org/10.1007/978-3-642-25821-3_8

	Optimized Renewable Energy Use in Green Cloud Data Centers
	1 Introduction
	2 Related Work
	3 System Modeling and Problem Statement
	3.1 States
	3.2 Actions
	3.3 Reward Function
	3.4 Transition Probabilities
	3.5 Optimal Policy

	4 MDP-Based Green-Aware Algorithm
	5 Performance Evaluations
	5.1 Workload Traces
	5.2 Workload Level Probabilities
	5.3 Solar Power Levels
	5.4 Evaluations with Different r Values
	5.5 Baseline Algorithms
	5.6 Experimental Results

	6 Conclusions and Future Work
	References

