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Abstract

To improve the performance and reliability of resource in Cloud data centers, it is significant to apply
load balancing strategy for resource scheduling. In a dynamic changing traffic environment, workload of
a Cloud data center has real-time and fixed process time characteristic. One of the challenging scheduling
problems in Cloud datacenters is to take the real-time allocation and migration of reconfigurable virtual
machines as well as the integrated features of hosting physical machines into consideration. In general,
load-balance scheduling is NP-hard problem as proved in many open literatures. We introduce an
Online Load-balance Resource Scheduling Algorithm (OLRSA) for Cloud datacenters considering real-
time and multi-dimensional resources. Unlike traditional load balance scheduling algorithms which often
do not consider lifecycle and fixed interval constraints, OLRSA treats life cycles and fixed intervals for
both physical machines and virtual machines. We develop and apply integrated measurement for each
server and a Cloud datacenter. New metrics such as integrated imbalance level, capacity makespan,
capacity skew are defined for Cloud data centers. Simulation results show that OLRSA has better
performance than a few related load balancing algorithms with regard to total imbalance level, makespan,
overall load efficiency as well as capacity makespan.

Keywords: Cloud Computing; Load Balance; Online Resource Scheduling Algorithm; Cloud Data
Centers

1 Introduction

Cloud datacenters can be a distributed network in structure, containing many compute nodes
(such as servers), storage nodes, and network devices. Each node is formed by a series of re-
sources such as CPU, memory, network bandwidth and so on, which are called multi-dimensional
resources, each has its corresponding properties in this paper. The definition and model defined
by this paper are aimed to be general enough to be used by a variety of Cloud providers and focus
on the Infrastructure as a Service (IaaS). In a traditional data centers, applications are tied to
specific physical servers that are often over-provisioned to deal with upper-bound workload. Such
configuration makes data centers expensive to maintain with wasted energy and floor space, low
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resource utilization and significant management overhead. With virtualization technology, to-
day’s Cloud data centers become more flexible, secure and provide better support for on-demand
allocating. Under virtualization situation, Cloud data centers should have ability to migrate an
application from one set of resources to another in a non-disruptive manner. Such ability is
essential in modern cloud computing infrastructure that aims to efficiently share and manage ex-
tremely large data centers. One key technology playing an important role in Cloud data centers is
resource scheduling. There are quite many load balance scheduling algorithms. Most of them are
for load balancing of traditional web servers or server farms. One of the challenging scheduling
problems in Cloud data centers is to consider allocation and migration of reconfigurable virtual
machines and integrated features of hosting physical machines. Unlike traditional load balance
scheduling algorithms which consider only physical servers with one factor such as CPU, OLRSA
treats CPU, memory and network bandwidth integrated for both physical machines (PMs) and
virtual machines (VMs). The major contributions of this paper are:

• Providing a modeling approach to virtual machine scheduling problem with capacity sharing
by modifying traditional interval scheduling problem and considering life cycles and multi-
dimensional characteristics of both VMs and PMs.

• Designing and implementing an online load balancing scheduling algorithm with computa-
tional complexity and competitive analysis.

• Providing performance evaluation of multiple metrics such as makespan, load efficiency,
imbalance value, capacity makespan, capacity-skew by simulating different algorithms.

The remaining parts of this paper are organized as follows. Section 2 discusses the related
work on load balance algorithms. Section 3 introduces problem formulation. Section 4 presents
OLRSA algorithm in details. Performance evaluation of different scheduling algorithms is shown
in Section 5. Finally in Section 6, a conclusion is given.

2 Related Work

A great mount of work has been devoted to the schedule algorithms and can be mainly divided
into two types: online load balance algorithms and offline ones. The major difference lies in that
online schedulers only know current request and status of all PMs but offline schedulers know all
the requests and status of all PMs. Andre et al. [1] discussed the detailed design of a data center.
Armbrust et al. [2] summarized the key issues and solutions in Cloud computing. Foster et al. [6]
provided detailed comparison between Cloud computing and Grid computing. Buyya et al. [4]
introduced a way to model and simulated Cloud computing environments. Wickremasinghe et al.
[17] introduced three general scheduling algorithms for Cloud computing and provided simula-
tion results. Wood et al. [18] introduced techniques for virtual machine migration and proposed
some migration algorithms. Zhang [19] compared major load balance scheduling algorithms for
traditional Web servers. Singh et al. [13] proposed a novel load balance algorithm called Vec-
torDot which deals with hierarchical and multi-dimensional resources constraints by considering
both servers and storage in a Cloud. Arzuaga et al. [3] proposed a quantifying measure of load
imbalance on virtualized enterprise servers. Tian et al. [15] provided a comparative study of
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major existing scheduling strategies and algorithms for Cloud data centers. Sun et al. [14] pre-
sented a novel heuristic algorithm to improve integrated utilization considering multi-dimensional
resource. Tian et al. [16] introduced a dynamic load balance scheduling algorithm considering
only current allocation period and multi-dimensional resource but without considering life-cycles
of both VMs and PMs. Li et al. [12] proposed a cloud task scheduling policy based on ant colony
optimization algorithm to balance the entire system and minimize the makespan of a given task
set. Galloway in [7] introduced an online greedy algorithm, in which PMs can be dynamic turned
on and off but the life -cycle of a VM is not considered. Hu et al. [10] stated a algorithm named
Genetic, which calculates the history data and current states to choose an allocation. Most of
existing research does not consider real-time and fixed interval constraints of virtual machine
allocation. We will address this issue in this paper.

2.1 Problem Description and Formulation

In this paper we model the VM allocations as a Modified Interval Scheduling Problem (MISP)
with fixed processing time. More explanation and analysis about traditional interval scheduling
problems with fixed processing time can be found in [11] and references there in. We present a
general formulation of modified interval-scheduling problem and evaluate its results compared to
well-known existing algorithms. A set of requests 1, 2, . . . , n where the i− th request corresponds
to an interval of time starting at si and finishing at fi associated with a capacity requirement ci.
There are several following assumptions:

1) All data are deterministic and unless otherwise specified, the time is formatted in slotted
windows. As shown in Fig. 1, we partition the total time period [0, T] into slots with equal
length (s0), the total number of slots is k = T/s0. The start time si and finish time fi are
integer numbers of one slot. Then the interval of a request can be represented in slot format with
(start-time, finish-time). For example, if s0 = 5 minutes, an interval (3, 10) means that it has
start time and finish time at the 3rd-slot and 10th-slot respectively. The actual duration of this
request is (10− 3)× 5 = 35 minutes.

0 1 2 3 4 5 6 7 8 9 10 k−2 k−1 k

Fig. 1: Slots format

2) All tasks are independent. There are no precedence constraints other than those implied by
the start and finish time.

3) The required capacity of each request is a positive real number between (0, 1]. Notice that
the capacity of a single physical machine is normalized to be 1.

4) Assuming that, when processed, each VM request is assigned to a single physical machine,
thus interrupting a request and resuming it on another machine is not allowed, unless explicitly
stated otherwise.

5) Each physical machine is always available, i.e., each machine is continuously available in
[0,∞).

Traditional interval scheduling problem (ISP) with fixed processing time: A set of
requests 1, 2, . . . , n where the i− th request corresponds to an interval of time starting at si and
finishing at fi, each request needs a capacity of 1, i.e. occupying the whole capacity of a machine
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during fixed processing time.

Interval scheduling with capacity sharing (ISWCS): The only difference from traditional
interval scheduling is that a resource (to be concrete, a physical machine) can be shared by
different requests if the total capacity of all requests allocated on the single resource at any time
does not surpass the total capacity that the resource can provide.

Sharing compatible intervals for ISWCS: A subset of intervals with total required capacity
not surpass the total capacity of a physical machine at any time, therefore they can share the
capacity of a PM.

The formulation of ISWCS can be described as follows. Given a set of m identical machines
(PMs) PM1, PM2, . . . , PMm and a set of n requests (VMs), each request has a processing time
(consider only CPU processing for example), the objective of load balance is to assign each request
to one of PMs so that the loads placed on all machines are balanced. The on-line scheduler knows
only current request and status of all PMs. In the literature, the makespan is used to measure
the load balance, which is simply the maximum total load (processing time) on any machine.
Traditionally, the makespan is the total length of the schedule (that is, when all the jobs have
finished processing where each job occupies the whole capacity of a machine during processing).

Theorem 1 The offline scheduling problem of finding an allocation of minimizing makespan
in general case is NP-complete

Proof: We sketch a brief proof as follows, and the detailed proof is referred to [11]. We show
that this scheduling problem (called Load-balance Scheduling Problem, LSP) is polynomial time
reducible to a well-know NP complete problem, Subset Sum Problem (SSP). Thus consider an
instance of Subset Sum with numbers w1, w2, . . . , wn, which corresponding to the CPU load of n
VM requests and have total CPU load W. To be load-balance, in an ideal case, it is to let all m
machines have same share of total CPU load, i.e., W/m. This needs all allocations on all PMs
to be satisfied. Suppose there are j VMs on PMi, this requires that Li = W/m. It is reduced to
Subset Sum Problem. This completes the proof.

Remarks: Notice that Theorem 2.1 is considering offline load-balancing scheduling for single
resource CPU on identical machines. When there are multiple resources to be considered and in
heterogeneous case (like in this paper), the problem is more difficult and can be proved in the
similar way that it is NP-complete too (a detailed proof is provided in [5] by transforming the
problem to 3-Dimensional matching problem or a multi-dimensional vector bin packing problem).
The load balance of ISWCS is different from load balance of traditional mutli-processor scheduling:
firstly each request may have different capapcity demand in ISWCS while each job occupies
the whole capacity of one machine in traditional mutli-processor scheduling; secondly, ISWCS
has fixed process interval while the job can be delayed in traditional mutli-processor scheduling
without considering start-time or end-time. Traditional metric such as makespan may not reflect
the real load for ISWCS problem. For example, consider there are n=7 jobs, m=3 machines and
each machine has capacity C=3, the first six jobs all have start-time at zero and end-time at 1,
with capacity 1; the last job has start-time zero and end-time 3 with capacity 1. Traditional List
Scheduling algorithm [8] allocates two jobs of first six jobs to each machine and the last job to the
first machine, and has makespan 3; the optimal solution is to allocate three jobs of the first six
jobs to the first two machines and the last job to the third machine, this will also have makespan
equal to 3. However, this does not reflect the real load of each machine, actually List Scheduling
will have the maximum load 5 in all machines while max load is 3 for all machines in optimal
solution. The reason is that both capacity sharing and fixed processing interval constraint should
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be considered for ISWCS problem.

In view this issue, we redefine the makespan as capacity makespan.

Capacity makespan: In any allocation of VM requests to PMs, we can let A(i) denote the
set of VM requests allocated to machine PMi, under this allocation, machine PMi will have total
loads,

Li =
∑

j∈A(i)

cjtj (1)

where cj is the capacity (for example CPU) requests of VMj and tj is the span of request j
(i.e., the length of processing time of request j). The goal of load balancing is to minimize the
maximum load (capacity makespan) on any PM. Some other related metrics such as imbalance
value and load efficiency are also considered and will be explained in the following section.

2.1.1 Metrics for Real-time Load Balancing Scheduling Algorithms

In this section, a few existing metrics and new metrics for load balancing scheduling will be
presented. Zheng et al. in [20] introduced an integrated load balancing index and load balancing
algorithm:

B = a× N1i × Ci

N1m × Cm

+ b× N2i ×Mi

N2m ×Mm

+ c× N3i ×Di

N3m ×Dm

+ d× Neti
Netm

(2)

where i is the index of PM and m is the ID of referred PM, N1 is the capability of CPU, N2 is
the parameter of memory, N3 refers to the parameter of bandwidth, C and M are the utilization
of CPU and memory, D is the transferring rate of hard disk, Net is the network throughput,
a, b, c, d are the compared weighted value of CPU, memory, hard disk and network respectively
and initialized as 1. The optimization goal is finding the PM with the smallest B value to allocate
requests. For OLRSA algorithm, we take the following parameters into consideration:

1) PM resource: PMi(i, PCPUi, PMemi, PStoragei), i is the index number of PM, PCPUi,
PMemi, PStoragei are the CPU, memory, storage capacity of that a PM can provide.

2) VM resource: VMj(j, V CPUj, V Memj, V Storagej, T
start
j , T end

j ), j is the VM type ID,
V CPUj, VMemj, V Storagej are the CPU, memory, storage requirements of VMj, T

start
j , T end

j

are the start time and end time, which are used to represent the life cycle of a VM.

3) Time slot: we consider a time span from 0 to T be divided into parts with same length.
Then n parts can be defined as [(t1 − t0), (t2 − t1), . . . , (tn − tn−1)], each time slot Tk means the
time span (tk − tk−1).

4) Average CPU utilization of PMi during slot 0 and Tn:

PCPUU
i =

∑n
k=0(PCPUTk

i × Tk)∑n
k=0 Tk

(3)

And memory PMemU
i and storage PStorageUi utilization of both PMs and VMs can be computed

in the same way. Similarly, average CPU utilization of a VM can be computed.

5) Integrated load imbalance value ILBi of PMi. The variance is widely used as a measure of
how far a set of values are spread out from each other in statistics. Using variance, an integrated
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load imbalancing value ILBi of server i is defined

ILBi =
(Avgi − CPUA

u )
2

3
+

(Avgi −MemA
u )

2

3
+

(Avgi − StorageAu )
2

3
(4)

where

Avgi =
PCPUU

i + PMemU
i + PStoargeUi

3
(5)

and CPUA
u ,MemA

u , Storage
A
u are respectively the average utilization of CPU, memory and storage

in a Cloud data center. ILBi is applied to indicate load imbalance level comparing utilization
of CPU, memory and network bandwidth of a single server itself. This metric is very similar to
VMware DRS load balance metric, standard deviation, as presented in [9].

6) Makespan is the same as traditional definition, and therefore the capacity makespan of all
PMs can be formulated as below:

capacity makespan = max
i

(Li) (6)

7) Load efficiency (skew of makespan) is defined as the minimal average load divided by the
maximal average load on all machines:

skew(makespan) =
mini(Li)

maxi(Li)
(7)

where Li is the load of PM i. Skew shows the load balance efficiency to some degree.

8) Imbalance Level (IBL) of CPU is defined as:

IBLcpu =

∑n
i=0(PCPUU

i − PCPUavg)
2

n
(8)

where PCPUavg is the average utilization of all CPUs in a data center. The imbalance level of
memory IBLmem and imbalance level of storage IBLstorage can be obtained in the same way.
Then total imbalance level of a data center is:

IBLtotal = IBLcpu + IBLmem + IBLstorage (9)

Based on the above definitions and equations, we have developed another metric, capacity skew
on load balancing algorithm for the new situation as follow:

9) Skew of capacity makespan is defined as the minimal capacity makespan over maximal
capacity makespan on all machines (referring to Eq. (1)):

skew(capacity makespan) =
min

∑
j∈A(i) cjtj

max
∑

j∈A(i) cjtj
(10)

The higher value shows a better load balance to some degree.

From these equations, we notice that life cycle and capacity sharing are two major differences
from traditional metrics such as makespan and skew. Traditionally List Scheduling [8] is widely
used for load balance of online multi-processor scheduling. By considering both fixed process
intervals and capacity sharing properties in Cloud data center, we propose a new online algorithm
as follows.
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3 OLRSA Algorithm

Fig. 2 shows the core process of OLRSA algorithm. For each request it firstly find the PM with
lowest average capacity makespan, and a PM with next lowest average capacity makespan would
be turn-on only if there is no enough resource left on the first PM, so that all requests are allocated
without rejection.

Input: VM requests (each indicated by their 
required VM type ID, start time, finish time, and 
requested capacity), the interval of start time and 
finish time of request i is denoted as Ii 
Output: Assign a PM ID to each request and 
allocate an interval for each request. 

 
1. d=0; 
2. for j = from 1 to n do 
3.       for all PMs, finding a PM with lowest average 

capacity_makespan, noted as PM_lowest (as in 
equation  (6)) 

4.       if  the request j still can share capacity of   
PM_lowest do  

5.          allocate Ij to the PM  
6.       else  
7.          finding a PM with next lowest average 

capacity_makespan;  
8.         d=d+1;  
9.         allocate Ij to PM d 
10.       endif  
11. endfor  

Fig. 2: Pseudo code of OLRSA algorithm

Theorem 2: The computational complexity of OLRSA algorithm is O(nlogm) using priority
queue data structure where n is the number of VM requests and m is total number of PMs used.

Proof: The priority queue is designed such that each element (PM) has a priority value (average
capacity makespan), and each time the algorithm needs to select an element from it, the algorithm
takes the one with highest priority (the smaller average capacity makespan value is, the higher
priority it is). Sorting a set of n number in a priority queue takes O(n) time and a priority
queue performs insertion and the extraction of minima in O(logn) steps (detailed proof of the
priority queue is shown in [11]). Therefore, by using priority queue or related data structure, the
algorithm can find a PM with lowest average capacity makespan in O(logm) time. Altogether,
for n requests, OLRSA algorithm has time complexity O(nlogm).

Theorem 3: The competitive ratio of OLRSA algorithm is (2 − 1/m) where m is the total
number of machines.

Proof: Considering m machines and n requests:

n > m,m > 2 (11)

CMi is the capacity makespan of VM i, ci is the resource capacity VM i needed, which could be
CPU, memory, storage or integrated resource:

CMi = ci ∗ (T end
i − T start

i ) (12)



996 M. Xu et al. / Journal of Information & Computational Science 11:3 (2014) 989–1001

Let OPT and OLRSA represent the scheduling results of optimal solution and OLRSA solution
respectively. Let Li denote the load of machineMi and letM∗ be the most heavily loaded machine
in the schedule by OLRSA. Let jk be the last job assigned to M∗. We can easily deduce the
following two equations:

OPT ≥ 1

m

n∑
i=1

CMi (13)

OPT ≥ max
i

CMi (14)

All PMs must be loaded at least (OLRSA-CMk) at the time of allocating CMk because OLRSA
alreays allocates a VM to a PM with the lowest capacity makespan. Since OLRSA − CMk

represents the PM with the lowest capacity makespan, Then we have:

i=n∑
i=1

CMi − CMk ≥ m(OLRSA− CMk) (15)

The above equations can be transformed as:

OLRSA ≤
∑i=n

i=1 CMi − CMk

m
+ CMk

=

∑i=n
i=1 CMi

m
+
(
1− 1

m

)
CMk

≤ OPT +
(
1− 1

m

)
OPT

= (2− 1

m
)OPT (16)

Observation 1: The upper bound for OLRSA algorithm is tight.

Remarks: We have exemplified a general case to show that the upper bound holds. Considering
m machine are providing resources and each machine can be allocated VMs with total capacity
g (total capacity of a machine is g). Suppose there are (m− 1)× g+1 requests in total, the first
(m− 1)× g requests all start at time slot 0 and finish at time slot 1, while the last request starts
at 0 and ends at g. In this case, for OPT algorithm, the capacity makespan is:

OPT =
(m− 1)g + g

m
= g

As for OLRSA, the first (m − 1)g would be allocated to m machines evenly by the allocation
rule (let (m − 1)g divide m), and the last one would also be allocated to a PM with lowest
capacity makespan value (in this case any PM will be fine). So

OLRSA =
(m− 1)g

m
+ g = g

(
1− 1

m

)
+ g

Then, the competitive ratio of OLRSA over OPT is:

OLRSA

OPT
= 1− 1

m
+ 1 = 2− 1

m
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4 Performance Evaluation

In this section, we compare simulation results of different scheduling algorithms regarding load-
balance.

4.1 Mythology and Simulation Setting

In this part, we will show the simulation results between the OLRSA algorithm and other ex-
isting algorithms. A Java discrete simulator is developed for this purpose. All simulations are
conducted on a Pentium dual-core computer with 3.2GHz CPU and 2GB memory. We compare
the simulation results of our proposed algorithm with four existing algorithms:

1) Random Algorithm (Random): a general scheduling algorithm by randomly allocating the
VM requests to the PM that can provide resource required.

2) Round-Robin (Round): a traditional load balancing scheduling algorithm by allocating the
VM request one by one to each PM in turn that can provide resource required.

3) ZHJZ algorithm: as defined in [20], it selects a reference physical machine, and calculates
the value and chooses the physical machines with the lowest B value (as defined in Eq. (2)) and
available resource to allocate virtual machines.

4) List Scheduling (LS) algorithm [11]: One of the best-known online traditional load-balancing
algorithm, it selects the available PM with the lowest current load to allocate virtual machine.

For simulation, to be realistic, we adopt the log data at Lawrence Livermore National Lab
(LLNL) [21]. That log contains months of records collected by a large Linux cluster. Each line
of data in that log file includes 18 elements, while in our simulation, we only need the requestID,
start time, duration, needed processor. To enable those data be fit with our simulation, some
conversions are needed, like we convert the units from seconds in LLNL log file into minutes,
because we set a minute as a time slot length mentioned in previous section. Another conversion
is that processor number needed in LLNL log file has been changed into 8 types of VM requests. To
simplify the simulation, three types of heterogeneous PMs and eight types of VMs are considered
(can be dynamic configured and extended). We do the simulation with enough PM that would
satisfy all the VM requests (for example, in the situation with VMs 200 and duration larger than
30, the number of PMs is 18 type-1, 20 type-2, 12 type-3 respectively) and VM numbers vary from
200 to 800 (each type approximately 1/8). The simulations for different algorithms are based on
the same environment with same VM requests. The only difference lies in the scheduling process
of each algorithm, including that all PMs are turned on at the beginning in other algorithms
while in OLRSA PMs are turned on one by one according to the VM requests. To be fair, if the
actual total number of turn-on PMs are not the same for different algorithms, all metrics such as
capacity makespan, skew and imbalance value are adjusted by timing a co-efficiency (the actual
total number of turn-on PMs divides the max number of PMs used by all algorithms).

4.2 Simulation Results and Analysis

4.2.1 Divisible Capacity Configuration of VMs and PMs

Strongly divisible capacity of jobs and machines: the capacity of all jobs form a divisible
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sequence, i.e., the sequence of distinct capacities c1 ≥ c2 ≥ ... ≥ ci ≥ ci+1 ≥ ... taken on by jobs
(the number of jobs of each capacity is arbitrary) is such that for all i > 1, ci+1 exactly divides
ci, the largest item capacity c1 in L exactly divides the capacity C. See paper [5] for detailed
discussion.

Table 1: Eight types of VMs in Amazon EC2

CPU Units MEM Storage VM Type

1 units 1.7GB 160GB 1-1(1)

4 units 7.5GB 850GB 1-2(2)

8 units 15GB 1690GB 1-3(3)

6.5 units 17.1GB 420GB 2-1(4)

13 units 34.2GB 850GB 2-2(5)

26 units 68.4GB 1690GB 2-3(6)

5 units 1.7GB 350GB 3-1(7)

20 units 7GB 1690GB 3-2(8)

Table 2: Three types of PMs suggested

PM Pool Type CPU Units MEM Storage

Type 1 16 units 30GB 3380 GB

Type 2 52 units 136GB 3380 GB

Type 3 40 units 14GB 3380 GB

In this paper, we also adopt the following divisible capacity configuration of VMs and PMs as
shown in Table 1 and 2. Note that one Compute Unit (CU) has equivalent CPU capacity of a
1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor [22].

To simplify the corresponding relationship mentioned in Section 3, we use VM type1, 2, 3 for
PM Type1, Vm type 4, 5, 6 for PM Type2 and VM 7, 8 for PM Type 3.

Table 3: Eight types of Virtual Machines
(VMs) in Amazon EC2

Compute Units Memory Storage VM Type

1 units 1.7GB 160GB 1-1(1)

4 units 7.5GB 850GB 1-2(2)

8 units 15GB 1690GB 1-3(3)

6.5 units 17.1GB 420GB 2-1(4)

13 units 34.2GB 850GB 2-2(5)

26 units 68.4GB 1690GB 2-3(6)

5 units 1.7GB 350GB 3-1(7)

20 units 7GB 1690GB 3-2(8)

Table 4: Three types of Physical Machines (PMs)
suggested

PM Pool Type Compute Units Memory Storage

Type 1 16 units 30GB 3380 GB

Type 2 52 units 136GB 3380 GB

Type 3 40 units 14GB 3380 GB

Fig. 3 to 7 show the imbalance level, makespan and skew of makespan, capacity makespan
and skew of capacity makespan results respectively when fixing total number of VM requests
as 200 but varying the max duration of VMs. The results are the average value of five times
simulation of the same inputs (data is from LLNL log file). From these figures, we can notice
that OLRSA algorithm shows the best performance in IBL, makespan, capacity makespan, skew
of capacity makespan except for skew of makespan compared with other four algorithms. Notice
that the skew of makespan is a traditional index to measure the load balance scheduling without
considering capacity sharing and fixed interval constraints.
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Fig. 3: Imbalance level comparison when varying duration of VMs
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Fig. 4: Makespan comparison when varying duration of VMs
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Fig. 5: Skew of makespan comparison when varying duration of VMs
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Fig. 6: Capacity makespan comparison when varying duration of VMs
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Fig. 7: Skew of capacity makespan comparison when varying duration of VMs
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5 Discussion and Conclusions

In this paper, to reflect capacity sharing property and fixed interval constraint in Cloud data
centers, we propose an Online Load balancing Resource Scheduling Algorithm (OLRSA) with
new metrics such as capacity makespan and skew of capacity makespan. Simulations have shown
that OLRSA has better performance than a few existing algorithms at imbalance level, capacity
makespan as well as skew of capacity makespan. A theoretical competitive ratio upper bound
(2- 1

m
) is provided and the proof is also given where m is the number of physical machines. There

are still a few research issues can be considered: heterogeneous configuration of physical machines,
Offline load balancing scheduling for ISWCS problem and Combining with energy-efficient and
other scheduling algorithms.
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