
2377-3782 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2020.3014943, IEEE
Transactions on Sustainable Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1

A Self-adaptive Approach for Managing
Applications and Harnessing Renewable Energy

for Sustainable Cloud Computing
Minxian Xu, Adel N. Toosi, Member, IEEE, and Rajkumar Buyya, Fellow, IEEE

Abstract—Rapid adoption of Cloud computing for hosting services and its success is primarily attributed to its attractive features such
as elasticity, availability and pay-as-you-go pricing model. However, the huge amount of energy consumed by cloud data centers
makes it to be one of the fastest growing sources of carbon emissions. Approaches for improving the energy efficiency include
enhancing the resource utilization to reduce resource wastage and applying the renewable energy as the energy supply. This work
aims to reduce the carbon footprint of the data centers by reducing the usage of brown energy and maximizing the usage of renewable
energy. Taking advantage of microservices and renewable energy, we propose a self-adaptive approach for the resource management
of interactive workloads and batch workloads. To ensure the quality of service of workloads, a brownout-based algorithm for interactive
workloads and a deferring algorithm for batch workloads are proposed. We have implemented the proposed approach in a prototype
system and evaluated it with web services under real traces. The results illustrate our approach can reduce the brown energy usage by
21% and improve the renewable energy usage by 10%.

Index Terms—Cloud Data Centers, Renewable Energy Efficiency, QoS, Microservices, Brownout

F

1 INTRODUCTION

Today’s society and its organizations are becoming ever-
increasingly dependent upon information and communi-
cation technologies (ICT) with software systems, especially
web systems, largely hosted on cloud data centers. Clouds
offer an exciting benefit to enterprises by removing the need
for building own Information Technology (IT) infrastruc-
tures and shifting the focus from the IT and infrastructure
issues to core business competence. Apart from the infras-
tructure, elasticity, availability, and pay-as-you-go pricing
model are among many other reasons which led to the
rise of cloud computing [1]. This massive growth in cloud
solutions demanded the establishment of huge number of
data centers around the world owned by enterprises and
large cloud service providers such as Amazon, Microsoft,
and Google to offer their services [2].

However, data centers hosting cloud services consume
a large amount of electricity leading to high operational
costs and high carbon footprint on the environment [3].
ICT sector nowadays consumes approximately 7% of the
global electricity, and it is predicted that the share will
increase up to 13% by 2030 [4]. Among this, the operation
of data centers accounts for one of the fastest growing
sources of carbon dioxide emissions [5]. In 2013, U.S. data
centers solely consumed an estimated 91 billion kWh of
electricity (equivalent to the two-year power consumption

• M. Xu is with Shenzhen Institutes of Advanced Technology, Chinese
Academy of Sciences, China. Email: mx.xu@siat.ac.cn.

• A. N. Toosi is with Faculty of IT, Monash University, Australia. Email:
adel.n.toosi@monash.edu.

• R. Buyya is with Cloud Computing and Distributed Systems (CLOUDS)
lab, School of Computing and Information Systems, University of Mel-
bourne, Australia. Email: rbuyya@unimelb.edu.au.

Manuscript received? ; revised

of all households in New York City) and this is projected to
reach 140 billion kWh by 2020 [6].

One of the main sources of energy inefficiencies in data
centers is represented by servers, which are often utilized
between 10% to 50% of their peak load [7]. This issue is
amplified by the fact that server machines in data centers
do not exhibit complete energy proportionality, that is,
servers do not consume electricity in proportion to their
load [8]. Even though, cloud providers use techniques such
as dynamic consolidation of virtual machines (VMs) [9]
to achieve energy saving and avoid underutilized servers,
energy is still being wasted if cloud consumers hold many
idle or under-utilized virtual machines up and running.
RightScale1 states that the cloud consumers waste between
30-45% of their total cloud consumption [10]

In this regards, microservice architectures and technolo-
gies such as containers [11], that are steadily gaining adop-
tion in industrial practice, provide a leap towards more
efficient utilization of cloud resources. Containerization al-
lows for higher resource utilization and reduction of cost
by running multiple services on the same VM and pro-
viding a fine-grained control on resources. Traditional web
applications are considered to be migrated from monolithic
structure to microservices architecture [12]. In this paper, we
take advantage of container technology to reduce the energy
consumption of the system.

Brownout [13] is a self-adaptive approach to manage
resources and applications in cloud computing systems.
With brownout, the optional parts of applications can be
dynamically deactivated/activated according to the system
status. A control knob, called dimmer, is applied to repre-
sent the degree that brownout should be performed on the

1. https://www.rightscale.com/

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on August 09,2020 at 01:27:08 UTC from IEEE Xplore. Restrictions apply.

2377-3782 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2020.3014943, IEEE
Transactions on Sustainable Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

application’s optional parts. Brownout can also be utilized
for the management of microservices to improve resource
usage in data centers. However, generally, there are always
trade-offs that should be balanced, e.g. balancing energy
consumption and system performance.

Apart from self-contained microservices, renewable en-
ergy is another solution gaining momentum to address
energy consumption concerns (i.e., the carbon footprint)
of cloud computing. In response to the climate change
concerns and economic stimulus, many research initiatives
have been launched to promote renewable energy use to
power cloud data centers in recent years [14][15][16]. Many
cloud providers also work on this goal by generating their
own renewable energy or drawing power from a nearby
renewable power plant. For example, in January 2018, AWS
achieved 50% renewable energy usage by investing in clean
energy activities including a commercial-scale wind farm in
North Carolina.2

Renewable energy systems are shown to be extremely
effective in reducing dependence on finite fossil fuels and
decreasing environmental impacts. Currently, all modern
inverters have interfaces to select the source of power for
either grid or batteries. However, power generation using
photovoltaic (PV) solar energy can only be done during
the daytime and the amount of produced power depends
on the weather and geographical location of the data cen-
ter. A large solar power system with a sufficiently large
battery setup to fully support workload is not economical.
Therefore, we are looking into approaches to match energy
consumption with the availability of renewable energy. In
these approaches, cloud resource management systems need
to support methods that allocate resources and schedule
applications execution by preferring to finish them during
the time when renewable energy is available while at the
same time need to make sure that user QoS requirements
are honored.

A fundamental problem of powering data centers with
renewable energy sources is how to optimize the use of
renewable energy. Powering data centers with renewable
energy sources such as solar or wind is challenging as these
sources of energy are non-dispatchable and are not always
available due to their fluctuating nature. Thus, in this work,
we aim to address this challenge through an optimization
problem of maximizing renewable energy usage while min-
imizing the usage of brown energy.

In this work, we address the research problem as: by
predicting the amount of renewable energy, determining
when to use brownout for interactive workloads and when
to defer batch workloads, when to consolidate VMs to fewer
hosts and scale hosts to maximize the usage of renewable
energy while ensuring the QoS of workloads. Based on the
detailed survey [13], this research problem has not been
addressed by previous work.

The key contributions of the paper are:

• Provide a perspective model for multi-level adap-
tive resource scheduling to manage workloads and
renewable energy;

• Propose a self-adaptive approach for interactive
workloads and batch workloads to ensure their QoS

2. https://aws.amazon.com/about-aws/sustainability/

by considering the predicted renewable energy at
Denver city;

• Implement a prototype system derived from the
perspective model and the proposed approach on a
small-scale testbed;

• Evaluate the performance of the self-adaptive ap-
proach in the proposed prototype system for web
services.

The rest of the paper is organized as follows: Section
2 discusses the related work for managing energy in the
cloud computing environment. Section 3 depicts the system
model of our proposed approach, followed by modeling and
problem statement in Section 4. The scheduling algorithm
with renewable energy is introduced in Section 5. Section 6
provides the detailed information about the implementation
of our prototype system, and Section 7 shows the evaluation
results of our proposed approach under our prototype sys-
tem. Finally, conclusions along with the future directions are
given in Section 8.

2 RELATED WORK

In this section, we discuss related research in the con-
text of the dominant energy efficient approaches based on
resource scheduling, brownout approaches, cooling-aware
data center energy management and resource scheduling
with renewable energy.

2.1 DVFS and VM consolidation
A large body of research on the energy efficiency of data
centers has been dedicated to the optimization techniques
to reduce the energy consumption of servers within a data
center using technologies such as dynamic voltage and
frequency scaling (DVFS) and VM consolidation [17][18].
Liu et al [19] proposed a heuristic algorithm for big data
task scheduling based on thermal-aware and DVFS-enabled
techniques to minimize the total energy consumption of
data centers. Kim et al. [18] modeled real-time service as VM
requests and proposed several DVFS algorithms to reduce
energy consumption for the DVFS-enabled cluster. Cheng
et al. [27] proposed a heterogeneity-aware task assignment
approach to improve the overall energy consumption in
a heterogeneous Hadoop cluster without sacrificing job
performance. Teng et al. [20] presented a set of heuristic
algorithms by taking advantage of DVFS and VM consolida-
tion together for batch-oriented scenarios. Nguyen et al. [21]
introduced a virtual machine consolidation algorithm with
multiple usage prediction to improve the energy efficiency
of cloud data centers.

Our work differs from these efforts in several perspec-
tives: (1) none of these DVFS-based and VM consolidation
approaches can function well if the whole system is over-
loaded; (2) none of them put the efforts to schedule the
mixed type of workloads; (3) none of them applied the
renewable energy to power their systems.

2.2 Brownout
Xu et al. [13] proposed a survey and taxonomy on
brownout-based approaches, which summarized the appli-
cation of brownout in cloud computing systems for different

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on August 09,2020 at 01:27:08 UTC from IEEE Xplore. Restrictions apply.

2377-3782 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2020.3014943, IEEE
Transactions on Sustainable Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

TABLE 1: Comparison for related work

Approach Technique Energy Model Workloads Type Resource Scheduling Layer
DVFS VM Consolidation Host Scaling Brownout Brown Energy Renewable Enegy Cooling Energy Single Mixed Single Layer Multiple Layer

Beloglazov et al. [17]
√ √ √ √ √

Kim et al. [18]
√ √ √ √

Liu et al. [19]
√ √ √ √ √

Teng et al. [20]
√ √ √ √ √ √

Nguyen et al. [21]
√ √ √ √ √

Xu et al. [22]
√ √ √ √ √ √

Hasan et al. [23]
√ √ √ √ √ √

Li et al. [24]
√ √ √ √ √

Beloglazov et al. [9]
√ √ √ √ √

Goiri et al. [16]
√ √ √ √ √ √

Liu et al. [25]
√ √ √ √ √ √

Xu et al. [26]
√ √ √ √ √

Our Approach
√ √ √ √ √ √ √ √

optimization objectives. Tomas et al. [28] applied brownout
to address the load balancing issues in clouds. Shahrad et
al. [29] introduced a practical pricing model for brownout
system and aimed to increase the utilization of the cloud
infrastructure by incentivizing users to dampen their usage
fluctuations. Trade-offs exist when it comes to applying
brownout and deactivating microservices. For example, the
trade-off between energy and revenue is investigated in
[30]. In contrast, our optimization objective is managing the
energy usage in cloud data centers.

Xu et al. [22][31] presented brownout-based approaches
to manage microservices and resources from the energy per-
spective. Hasan et al. [23] investigated the green energy and
user experience trade-off in interactive cloud applications
and proposed a controller to provide guarantees of keeping
response time within the Service Level Agreement (SLA)
range in the presence of green energy based on a brownout-
enabled architecture. In contrast, this work advances the
previous ones by: (1) managing the energy in a holistic way
by considering multiple layers resource management, cool-
ing power and mixed type of workloads; (2) incorporating
renewable energy usage to reduce brown energy usage.

2.3 Holistic Management with Cooling
Due to the complexity of thermal modeling of data cen-
ter operation, traditional approaches ignored the impacts
of resource management techniques on the cooling power
system of data centers. Recently, the holistic management
of resources in which both computing and cooling energy
are considered in the minimization of the overall consump-
tion of energy has gained considerable attention from the
community. Li et al [24], for example, provided models
capturing thermal features of computer room air condi-
tioning (CRAC) unit of the data center and accordingly
propose a VM scheduling algorithm to reduce data center
energy consumption while it maintains the SLA violation
in an acceptable range. In their work, resource scheduling
happens on VM level and the workload type is batch. Al-
Qawasmeh et al. [32] presented power and thermal-aware
workload allocation in the heterogeneous cloud. They de-
veloped optimization techniques to assign the performance
states of CPU cores (P-states) at the data center level to
optimize the power consumption while ensuring perfor-
mance constraints. Tang et al. [33] investigated the thermal-
aware task scheduling for homogeneous HPC data center,
which aims to minimize peak inlet temperature through task
assignment, thus reducing the cooling power.

Unlike these efforts, our work considers the manage-
ment of virtualized resources to optimize the resource us-

age. In addition, we consider the multiple layers resource
scheduling and mixed types of workloads.

2.4 Renewable Energy

Studies have been investigated in the literature that focused
on the optimization of on-site renewable energy use in data
centers. Goiri et al [16] presented a prototype of a green
data center powered with solar panels, a battery bank, and
a grid-tie which they have built as a research platform.
They also describe their method, called GreenSwitch, for
dynamically scheduling the interactive and batch workload
and selecting the source of energy to use. GreenSwitch aims
to minimize the overall cost of electricity while respecting
the characteristics of the workload and battery lifetime
constraints. In contrast, while their work focused on the
resource scheduling at the application level, our work is
a multiple layers scheduling approach that considers the
application, VMs, and hosts. We also model the applications
to be fitted into the brownout feature. In addition, our
renewable energy prediction model based on support vector
machine differs significantly from their model in which solar
energy was predicted based on the last epoch.

Liu et al. [25] also focused on shifting workloads and
matching renewable energy supply and demand in the
data center. They schedule non-critical IT workload and
allocates IT resources within a data center according to the
availability of renewable power supply and the efficiency
of the cooling system. They formulated the problem as
a constrained convex optimization and aim to minimize
the overall cost within the data center. Different from the
optimization of the overall costs, we aim to optimize the
energy perspective. Another difference is that we can opti-
mize the power consumption by scheduling both interactive
workloads and batch workloads, while [25] only optimizes
the scheduling of batch workloads without optimizing in-
teractive workloads.

To optimize onsite renewable energy use, in our previous
work [26], we focused on microservices management prob-
lem as finite Markov Decision Processes (MDP). Similar to
this work, the proposed method dynamically switches off
non-mandatory microservices of the application to strike
a balance between the workload execution and brown en-
ergy consumption. Following a greenness property value,
it also suggests in what capacity the battery power should
be consumed in each time slot. Different from that work,
we consider joint management of both interactive work-
loads and batch workloads. We also cover the entire stack
of resource scheduling including microservices, VMs and

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on August 09,2020 at 01:27:08 UTC from IEEE Xplore. Restrictions apply.

2377-3782 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2020.3014943, IEEE
Transactions on Sustainable Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

physical hosts. In addition, we test our system in a real
testbed, while [26] only conducts simulation.

The current paper contributes to the growing body of
work in the related area. Table 1 summarizes the comparison
among the related work based on the key techniques, energy
model, workload types and resource scheduling layers.
Given the contributions of existing work, it is important
to highlight the key difference between our proposed work
and prior work. To be best of our knowledge, our work is
the first to jointly manage interactive workloads based on
brownout and batch workloads based on deferral approach.
Prior work have only included one of these features. We
also consider multiple layers resource scheduling based on
microservices management, VM scheduling and host scaling
with real testbed, which enables to form a truly integrated
resource management.

3 SYSTEM MODEL

Cloud Infrastructure

Users

 Virtualized Platform Management

Resource Allocation Resource Provisioning

 Application Hosting Engine (Docker)

Interactive Application Batch Application #n

optional
mandatory mandatory

Resource SchedulingResource Virtualization

Services
QoS Constraints

 Controller

Sensors

Objectives:
e.g. SLA, energy

Actuators

Green Energy Brown Energy

Monitor
(power, utilization)

Analyze
(workloads, energy)

Plan
(scheduling policy)

Execute
(scheduling policy

Knowledge
(models)

ePDU

mandatory

Cooling

mandatory
mandatory

Fig. 1: Perspective Model

In this section, we propose a system model for adaptive
resource scheduling as shown in Figure 1. We consider both
interactive workloads and batch workloads in the applica-
tion layer and consider green and brown energy together in
the energy supply layer.

In the users layers, users submit their service requests
to the system. The users can define QoS constraints for
the submitted requests, such as budget and deadline. The
submitted requests are forwarded to the application layer.
From the service providers’ viewpoint, these workloads
generated by users are processed by the applications hosted
in the cloud infrastructure.

We consider two types of applications: the interactive
application (such as web application), and batch application.
The interactive application should be executed as soon as
possible to ensure the QoS. We consider the interactive
application to support brownout, thus the microservices of
the interactive applications can be identified as optional
or mandatory. The optional ones can be deactivated to
save resource usage, if deemed necessary. For the batch
application, the workloads can be deferred for execution if
their deadline is ensured.

Applications provided by service providers to offer ser-
vices for users are managed by the application hosting

engines, such as Docker [34] or Apache Tomcat. Applica-
tions can be deployed on either virtualized platform (virtual
resources) or cloud infrastructure (physical resources). The
host application engine can be container-based management
platforms, e.g. Docker Swarm [35], Kubernetes [36] or Mesos
[37], which provide management of container-based appli-
cations. The application containing multiple microservices
can be deployed on multiple VMs. The virtualized platform
manages the virtualized resources, for example, the Virtual
Machines managed by VMware [38]. As for the resource
allocation and provisioning in cloud infrastructure, they can
be managed by infrastructure management platform, e.g.
OpenStack [39]. Multiple VMs can be deployed on multiple
hosts.

The bottom layer is the energy supply layer, which pro-
vides the mixed of energy sources for powering the system.
The brown energy comes from a coal-based thermal power
plant, which has high carbon footprint. The green energy
comes from the renewable energy, such as solar power.

To support the resource provision, monitor and allo-
cation in the system, a controller is required based on
MAPE-K (Monitor, Analyze, Plan, Execute and Knowledge)
architecture model and fits into the feedback loop of the
MAPE-K process, which has modules including Monitor,
Analyze, Plan and Execute to achieve the adaptation process
in cloud computing system [40][41]. Sensors and Actuators
are used to establish interactions with the system. Sensors
gather the information from different levels in the system,
including application hosting engine, virtualized platform,
cloud infrastructure, and energy usage. The sensors can be
the devices attached to hardware, e.g. power meter. The
collected information is provided to the Monitor module.

The Analyze module analyzes the received information
from the Monitor module, and the Plan module makes
decisions for applying scheduling policies, in which the
scheduling policies are implemented. According to the deci-
sions, the Execute module schedules resources via actuators
on the application hosting engine and the virtualized plat-
form to enable/disable optional microservices in interactive
applications or defer the workloads of batch applications
to be supplied by renewable energy. These operations can
be fulfilled via the Application Programming Interfaces
(APIs) provided by the application hosting engine or the
virtualized platform.

The Knowledge pool in MAPE-K model is applied to
store the predefined objectives (energy efficiency or SLA
constraints) and trade-offs (e.g. trade-offs between energy
and SLA). The rules in Knowledge pool, such as SLA
rules, can be updated according to resource scheduling
algorithms. The Knowledge pool also contains models like
predicting the supplied amount of renewable energy, which
can be used by scheduling algorithms. .

In the following sections, we will introduce our pro-
posed approach and the prototype system that is derived
from this perspective model.

4 PROBLEM MODELING

In this section, we will discuss our modeling and optimiza-
tion problem, including the power consumption model,
workloads model, and optimization objectives.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on August 09,2020 at 01:27:08 UTC from IEEE Xplore. Restrictions apply.

2377-3782 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2020.3014943, IEEE
Transactions on Sustainable Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

4.1 Power Consumption

4.1.1 Server Power Consumption
The server power model is derived from [42], which is
based on the average CPU utilization3. As we consider
multiple layers scheduling, the utilization of hosts, VM and
microservices are modeled:

P si =

{
P idlei + θt

∑wi

j=1 U
vm
i,j × P

dynamic
i , wi > 0

0 , wi = 0
(1)

where P si is the power consumption of the host i in the
data center, which is composed of two parts: the idle power
P idlei and dynamic power P dynamici . The dynamic power
part is related to the VM utilization on the host. If there
is no VM running on the host, it means the host can be
switched into the low power mode (S-State) and consume
low energy. The wi represents the number of VMs deployed
on host i. Uvmi,j represents the utilization of jth VM on host
i. The θt is the dimmer value of brownout at time interval
t, which represents the percentage of resource utilization
provisioned to the active microservices. For instance, if θt =
0.8, it means 20% utilization will be reduced by deactivating
microservices. The dimmer value is calculated based on the
number of overloaded hosts and more details will be given
in Section 5.2.

The utilization of VM is the sum of microservices utiliza-
tion running on the VM, which is modeled as:

Uvmi,j =

Aj∑
k=1

Umsj,k (2)

where the ms is the id of microservice and Aj is the number
of microservices. Since CPU computation is main power
consumption component of servers, in our server model,
we mainly focus on the power draw by the CPU utilization.

4.1.2 Cooling Power Consumption
We consider the data center thermal control is managed
by Computer Room Air Condition (CRAC) system. The
system contains multiple CRAC units, which transfer cold
air to the hosts to reduce hotspots. Based on server power
consumption and cooling efficiency, we can calculate the
power consumed P ci by cooling equipment for host i as:

P ci =
P si

CoP (Tsup)
(3)

There are some complex cooling models [43], while they are
beyond the scope of this paper. We use the model from HP
lab data center [44] as follows:

CoP (Tsup) = 0.0068T 2
sup + 0.0008Tsup + 0.458 (4)

The CoP is a function to estimate the cooling efficiency
of cold air supply temperature Tsup provided by cooling
equipment, which is related to the target temperature that
room is aimed to be maintained. The total power draw by
the server part and the cooling part can be represented as:

Pi = P si + P ci (5)

3. In this work, we consider the CPU utilization as the main source
of resource consumption.

The total power of data center with k servers:

Pt =
k∑
i=1

Pi (6)

4.2 Workloads Model

In this work, we consider two types of workloads: (1) inter-
active workloads and (2) batch workloads. The interactive
workloads are response time sensitive, thus these workloads
should be executed immediately with the response time
specified in the SLA, while the batch workloads can be
deferred for execution as long as the deadline is satisfied.

Based on the different characteristics of these workloads,
we assume that there are M interactive workloads, and
the amount of interactive workload m at time t is denoted
as am(t), and consumes resource um. This is a general
model and the amount of workloads can be derived from
analytical models (e.g. M/M/k) or realistic traces. Thus, the
demanded resources of interactive workload m at time t are
am(t) × um. Based on M/GI/1/PS model, the demanded
resources can have a relationship with the target response
time rtm as 1

µm−λm(t)/(am(t)×um) ≤ rtm, where λm(t) is
the arrival rate and µm is the mean service rate. Thus, the
minimum resources for interactive workloads to satisfy rtm
is: am(t)× um = λm(t)

µm−1/rtm
.

We also assume that there are N types of batch work-
loads, type n batch workloads have total demand Bn. Let
bn(t) denote the amount of type n batch workloads at
time interval t, with start time Sn, execution time En, and
deadline Dn, consuming resource amount un. We use bn(t)

′

to denote the original amount of batch workloads, the actual
amount of workloads should add the workloads deferred
from the previous time slot and minus the workloads that
will be deferred to the next time slot. We use γt−1

n andγtn
to present the percentage of deferred workloads at time
interval t and t − 1 for type n batch workloads. Then we
have bn(t) = γt−1

n × bn(t− 1) + bn(t)
′ − γtn × bn(t)

′
.

Therefore, the total CPU resource demands at t are:

d(t) =
∑
m

am(t)× um +
∑
n

bn(t)× un (7)

The value of d(t) should be 0 ≤ d(t) ≤ D, in which D
is the maximum CPU resource capability of the system.
To be noted, rather than constant, d(t) is varied based on
our proposed scheduling policy, for instance, CPU resource
provisioned to interactive workloads can be adjusted by
brownout mechanism (Equation (1)) and the batch work-
loads can be deferred based on system status (Equation (7)).

4.3 Optimization Objectives

We assume the scheduling period as T , and the time interval
at which we schedule resources is denoted as t. We assume
the available renewable energy at time t is Rt, which can
be predicted by prediction approaches, e.g. machine algo-
rithms. As the server power and cooling power is related
to workloads, we use d(t)

′
to denote the power consump-

tion resulted from the workload execution on servers, and
c(d(t)

′
) represents the cooling power resulted from the

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on August 09,2020 at 01:27:08 UTC from IEEE Xplore. Restrictions apply.

2377-3782 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2020.3014943, IEEE
Transactions on Sustainable Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

Algorithm 1: Green-aware scheduling algorithm
Input : host utilization Uti , utilization thresholds

TUup, TUlow
Output: brown energy usage

∑
t(max(Pt −Rt, 0))

1 nto =
∑
k(U

t
i > TUup)

2 for t← 0 to T do
3 if nto > 0 then

// take actions to minimize∑
t(max(Pt −Rt, 0))

4 Si ← brownout algorithm for interactive workloads
5 TDj ← deferring algorithm for batch workloads
6 else if Utavg < TUlow then

// take actions to minimize na
7 run VM consolidation algorithm
8 run host scaling algorithm
9 else

10 process iteractive workloads in normal mode
11 porcess batch workloads in normal mode
12 end
13 end

workloads, thus Pt = d(t)
′
+ c(d(t)

′
). Our optimization

objective is modeled as:

min
∑
t

(max(Pt −Rt, 0))

s.t. 0 ≤ d(t) ≤ D, ∀t
0 ≤ θt ≤ 1, ∀t

bn(t) = γt−1
n × bn(t− 1) + bn(t)

′
− γtn × bn(t)

′
, ∀t∑

t

bn(t) ≤ Bn, ∀n

(8)

where aims to minimize the usage of brown energy by
maximizing the usage of renewable energy. Our proposed
solution makes schedule decisions of each time interval slot
for interactive workloads and batch workloads based on the
availability of renewable energy. Meanwhile, the constraints
including maximum capacity D in the system, dimmer
value θt, maximum total demand of batch workloads should
be satisfied. As this optimization objective is convex in d(t),
so it can be solved efficiently.

5 SCHEDULING WITH RENEWABLE ENERGY

In this section, based on the problem modelling, we intro-
duce our proposed scheduling algorithm with renewable
energy for both interactive workloads and batch workloads.

5.1 Green-aware Scheduling Algorithm
To schedule the interactive and batch workloads in an
energy efficient manner by considering renewable energy,
we propose a Green-aware scheduling algorithm, which is
shown in Algorithm 1. During the observation period T ,
at each time interval t, the algorithm will firstly identify
the number of overloaded hosts (line 1). If the overloading
situation exists, the algorithm will manage the interactive
workloads and batch workloads with different algorithms:
brownout algorithm for interactive workloads (Algorithm 2)
and deferring algorithm for batch workloads (Algorithm 3)
to minimize brown energy usage (lines 4-5). These two algo-
rithms will do the actions including deactivating microser-
vices and deferring workloads to achieve the brown energy

Algorithm 2: Brownout Algorithm for Interactive
Workloads

Input : time interval t, the number of overloaded hosts nto,
the percentage of utilization from batch workloads ε,
and the starting time and end time of the available
renewable energy tsr , ter

Output: deactivated microservices Si
1 for host i in the host list do
2 if t < tsr || t > ter then

3 θt =

√
nt
o
n

4 Uri = θt × Uti
5 if Uti > TUup then

// take actions to minimize
|Uri − U(Si)|

6 find deactivated microservices Si on host i
7 deactivate the microservices
8 end
9 else

10 if Rt < Pt then

11 θt =
1

1−ε ×
√
Rt
Pt

12 Uri = θt × Uti
// take actions to minimize
|Uri − U(Si)|

13 find deactivated microservices Si on host i
14 deactivate the microservices
15 end
16 end
17 end

usage objective. Here we assume the interactive workloads
utilize more CPU utilization than the batch workloads, so
the interactive workloads are processed earlier to achieve
better scheduling effects. If the system is not overloaded and
the average utilization is below the underutilized threshold
(line 6), the algorithm will apply VM consolidation algo-
rithm derived from [17] (line 7) that consolidates VMs to the
hosts that produce the minimum incrementation of energy
consumption, and apply host scaling algorithm (Algorithm
4) to change the number of active hosts na. The motivation
is that the idle servers will be switched into the low power
mode to save energy (lines 7-8). If the system is running at
the normal status, then the workloads will be executed in
the normal fashion.

5.2 Brownout Algorithm for Interactive Workloads

The pseudocode of the brownout algorithm for interac-
tive workloads is shown in Algorithm 2. The algorithm
schedules resources differently according to whether the
renewable is available or not. The starting time and end time
of available renewable energy are denoted as tsr and ter re-
spectively. 1) During the time when renewable energy is not
available (line 2), the brownout is triggered, and the dimmer
value is generated. The dimmer value θt is computed based
on the severity of overloads in the system (line 3). With
the dimmer value, the expected utilization reduction Uri
on host i is computed (line 4). Then the algorithm selects
a set of microservices Si to deactivate, thus the utilization
is reduced. The difference between the expected utilization
reduction Uri and the sum of utilization of selected mi-
croservices U(Si) is minimized (lines 6-7). In lines 6-7, to
minimize the difference, the microservices selection process
sorts the microservices according to their utilization in a list,
and finds the sublist which has the utilization that is closest

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on August 09,2020 at 01:27:08 UTC from IEEE Xplore. Restrictions apply.

2377-3782 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2020.3014943, IEEE
Transactions on Sustainable Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

Algorithm 3: Deferring Algorithm for Batch Work-
loads

Input : batch workload bn(t) with start time Tn, execution
time En, deadline Dn, and the starting time and end
time of the available renewable energy tsr , ter

Output: deferred time T dn
1 for t = Tn in bn(t) do
2 if 0 < t < tsr then
3 if Dn < tsr then
4 execute bn(t)
5 else
6 defer T dn time for execution
7 td = t+ T dn , ∀ td ≤ Dn − En, td > tsr
8 d(td)

′
=

∑
m am(td)

′
+

∑
n bn(td)

′

9 R
′
td > P

′
td

10 T
′
n = td

11 update P
′
td

12 end
13 else if tsr ≤ t ≤ ter then
14 if Rt > Pt then
15 execute bn(t)
16 else
17 defer T dn time for execution
18 td = t+ T dn , ∀ td ≤ Dn − En
19 d(td)

′
=

∑
m am(td)

′
+

∑
n bn(td)

′

20 R
′
td > P

′
td

21 T
′
n = td

22 update P
′
td

23 end
24 else
25 execute bn(t)
26 end
27 end

to Uri . To be noted, the selection process will only search
for the optional microservices, which means if there are
not enough or no optional microservices for deactivation,
only the available or no microservices will be selected. 2)
When the renewable energy is available but less than the
total required energy, the brownout is also triggered (line
10). The dimmer value is calculated based on the renewable
energy Rt and required energy Pt as noted in line 11. Then
the remaining steps are the same as in the first part of
Algorithm 2, which finds the microservices and deactivates
them (same as in lines 6-7). 3) When sufficient renewable
energy is available, brownout will not be triggered.

5.3 Deferring Algorithm for Batch Workloads

Algorithm 3 shows pseudocode for processing the batch
workloads. The batch workloads are executed when their
start time Sj is coming (line 1). The workloads are processed
based on the time period that the workloads are in. For the
workloads which have the start time before the renewable
energy start time tsr , the objective is to defer their execution
to the time when the renewable energy is available while
ensuring their deadlines (lines 2-12). 1). If the deadline is
before tsr, it means the workload cannot be deferred to be
processed by renewable energy, so the workload can be
executed at t (lines 3-4). If the workload can be deferred,
the algorithm defers its time with T dn , then the algorithm
updates the workloads at time td, which equals to t + T dn .
The deferred time T dn should satisfy the constraint, e.g. not
failing the deadline, and the renewable energy is enough at
td. If the constraints are satisfied, the algorithm updates the

predicted power consumption at td. 2). When the start time
of the workload is during the time when renewable energy
is available and sufficient, the workload is executed; other-
wise, the workload will be deferred (lines 13-23). Similar to
the first part of Algorithm 3, the deferred time td also needs
to satisfy the constraints in Equation (8). 3) When the time
is after ter , it means the renewable energy is not available
any more, therefore, the workloads are executed as soon as
possible to comply with the deadlines (line 25).

5.4 Host Scaling

Algorithm 4: Hosts scaling algorithm
Input : number of hosts n in data center, number of requests

when host is overloaded numthr , predicted number
of requests ˆnum(t) at time t.

Output: number of active hosts na
1 na ← d ˆnum(t)÷ numthre
2 n′ ← na − n
3 if n′ > 0 then
4 Add n′ hosts
5 while Pt ≤ Rt do
6 Add another host
7 update Pt
8 end
9 else if n′ < 0 then

10 Remove |n′| hosts //|n′| is the absolute value of n′
11 else
12 no host scaling
13 end
14 return na

We use a modified host scaling algorithm from [45] by
considering renewable energy as shown in Algorithm 4.
With profiling data, we configure the threshold of requests
that leads to overloads, in which the average response time
violates the predefined constraints. The predicted number is
calculated based on the number of requests in recent time
slots derived from the prediction approach in [31]. The al-
gorithm calculates the difference n

′
between the number of

required servers and actual servers. 1). When more servers
are needed, then it adds n

′
servers into the system (lines

3-4). If the renewable energy is still enough, then it tries
to scale more servers into the system to improve the QoS
(lines 5-8). 2). If servers are already enough, then remove
|n′ | servers from system to reduce energy. 3). If n

′
is 0, then

it means no host scaling is required.

5.5 Renewable Energy Prediction

In practice, green data centers with onsite solar installations
or wind farms are powered by electricity generated from
the renewable source while they are backed up with the
Grid (they use inverters that automatically switch energy
source based on the availability). In some other potential
scenarios, they are just connected to the Grid and pay for
electricity generated from renewable energy sources. In both
scenarios, physical servers (electricity consumers) are obliv-
ious to energy sources. Therefore, in this work, we assumed
that servers use electricity generated from renewable energy
sources without compromising reality and precision. As per
our assumption, if renewable energy is insufficient or not
available, Grid (Brown) electricity will be used.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on August 09,2020 at 01:27:08 UTC from IEEE Xplore. Restrictions apply.

2377-3782 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2020.3014943, IEEE
Transactions on Sustainable Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 8

We focus on the solar energy as it is one of the most com-
mon sources of renewable energy. We use Support Vector
Machine (SVM) to predict the solar irradiation or PV power
output for the availability of renewable energy, which is a
machine learning approach that has been applied to data
analysis successfully. In the studies related to solar irradia-
tion prediction [46][47], SVM has been used to forecast and
train the solar radiance model.

Since we do not have the access to the hourly solar
irradiance at Melbourne City, in this paper, we use the
historical data from NREL Solar Radiation Research Lab-
oratory 4. The solar panels of the Laboratory are located at
Denver, Colorado, US (Latitude 39.742o North, Longitude
105.18o West), which has a similar weather to Melbourne
instead. We use the hourly-based solar irradiance data from
September 1 2018 to November 1 2018. SVM prediction
approach has two phases: the training phase and testing
phase. 80% data is used for the training phase, and 20% data
is used for the testing phase. Once the process is finished,
the test data and prediction results are compared to calculate
the error rate. We use the SVM R toolbox for our purpose.

The obtained results are shown in Figure 2. It shows
that the SVM-based approach can achieve the values close
to actual ones. In the testing phase, the coefficient of de-
termination (R2) is 0.763 and correlation coefficient (r) is
0.873. The selected parameters for SVM are regularization
parameter C = 4 and Kernel bandwidth ε = 0. In the ex-
periments section, we applied this trained model to predict
solar irradiance. The solar irradiance can be easily calculated
with the conversion efficiency of solar panels, e.g. 20%.
We assume all solar irradiance will be available as power
energy. We use this trained model to predict the available
renewable energy in advance for the observation period T ,
e.g. one day.

Fig. 2: Denver Solar Radiation

6 PROTOTYPE SYSTEM IMPLEMENTATION

To realize our system model in Section 3 and evaluate our
proposed approach, we configure our testbed to develop
a prototype system. Figure 3 shows the implemented ar-
chitecture of our prototype system. Cloud resource man-
agement platform and microservices management platform
have been developed and widely used for years, thus, in
this work, we design and implement our prototype based
on these mature platforms.

4. https://midcdmz.nrel.gov/srrl bms/

Cloud IaaS resource management platform, OpenStack,
is responsible for managing cloud resources, including CPU,
memory, and bandwidth. The monitored data of resources
is collected by status collector and can be used for resource
provisioning and optimization. The microservice manage-
ment platform, Docker Swarm, is responsible for managing
service images, monitoring service resource utilization and
managing the service life cycles. Other Docker APIs can also
be used to run operations on services. These two platforms
are mapped to the Virtualized Platform Management layer
and Application Hosting Engine layer respectively in the
system model in Figure 1.

Based on the two management platforms for cloud re-
sources and services, SA (Self-Adaptive) controller is de-
signed to manage and monitor both of them to achieve
the multiple level resource scheduling, which is mapped
to the Controller component in Figure 1. When requests
are submitted to the system, like interactive workloads or
batch workloads, the resource allocator in SA controller
manages cloud resource management platform and service
management platform simultaneously to accept and process
requests by providing the requested amount of resources.
Apart from allocating resources to requests, the resource
allocator can also optimize resource utilization. For instance,
brownout can be triggered to deactivate optional microser-
vices to reduce resource utilization. The service provider can
also configure the available resource scheduling policies for
the energy efficiency purpose.

To provision and optimize the resources by means of
resource allocator, the resource monitor needs to collect the
resource usage at different levels, including services utiliza-
tion, VMs utilization, and hosts utilization. To minimize
the overheads of frequently monitored data collection, the
collection time intervals should be well configured by the
service provider. For instance, the brownout mechanism can
be checked every five minutes as the brownout costs are not
high, while the VM migration and host scaling operations
can be executed with longer time intervals, e.g. one hour.

In the following subsections, we introduce the imple-
mentation of our prototype system in details.

6.1 Implementation

To implement our prototype system, we take advantage of
the OpenStack cloud resource management platform and
Docker Swarm service management platform. The system
is implemented with Java, OpenStack, Docker Swarm, An-
sible, Eaton Power Distribution Units (ePDU) API. Our
prototype system uses these open source tools to provide a
self-adaptive approach to optimize, manage and provision
resources for different types of workloads.

OpenStack platform is used to manage hosts and VMs.
The hosts in OpenStack are called compute nodes and are
running with Nova Compute Node component to connect
the hypervisor and OpenStack controller. VMs are managed
by Nova API to create, migrate and remove VM instances.
The Neutron OVS Agent and OpenVSwitch are providing
services related to the network.

Docker Swarm Platform manages the service provided
by service providers. The images of services are stored in the
service repository component, which can fetch the images

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on August 09,2020 at 01:27:08 UTC from IEEE Xplore. Restrictions apply.

2377-3782 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2020.3014943, IEEE
Transactions on Sustainable Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

Fig. 3: System architecture and underlying software compo-
nents of prototype system

from remote to local. The services are managed by the
service manager via Docker APIs, including creation and
deletion. The status of services are monitored by a service
which monitors service utilization and liveness.

Our prototype system is based on these services to
manage the resources and services to handle the requests.
Below, we introduce the details of the components in our
prototype.

Resource Allocator: It interacts with OpenStack con-
troller via OpenStack APIs and Docker Swarm Controller
via Docker APIs. It manages the physical resources on
compute nodes, and these physical resources can be used
for creating and deploying VMs on the nodes. Resource
Manager knows the amount of resource that is used or
remaining on each compute node, like the number of cores,
memory, and storage. When creating a VM instance, it can
also specify the instance capacity (CPU, memory, operation
system and etc.) as well as other information related to
VMs, such as location, images of VMs and IP address. The
virtual network in a compute node is also managed by
Resource Manager that uses the Neutron component, which
is deployed on each compute node.

Resource Monitor: It is used to monitor the running
status of the whole system from different levels, including
hosts, VMs and services. We use OpenStack Ceilometer
and Gnocchi components to measure the data at the host
and VM level. Ceilometer is responsible for monitoring the
utilization of resources of VMs and then sends the collected
data to Gnocchi to aggregate the data for all the hosts. We
use Docker APIs to collect the resource utilization of services
deployed on VMs. Apart from monitoring the resource
utilization, we also use ePDU APIs to monitor the power

consumption of hosts. With these monitored data, other
components, like Power Estimator and Policy Manager can
use these data to make decisions, which will be introduced
later.

Application Scheduler: We design our main controls
in the Application Scheduler component. When requests
are submitted by users, the Application Scheduler decides
which requests in the batch workloads should be deferred,
which microservice should be temporarily deactivated by
brownout mechanism, which VM should be migrated to
another host and which host should be switched to the low
power mode. With the retrieved data from the Resource
Monitor component, these decisions are made with the
policies in the Policy Manager. After the decisions are made,
Resource Provisioner exploits Resource Manager to allocate
the resources to VMs, services, and requests.

Power Consumption Estimator: To achieve our objective
of managing energy and support our scheduling policies,
we have a power consumption estimator to predict the
power consumption at a specific time period. For example,
for the batch workloads, we proposed a deferring algorithm,
thus we need to estimate the power consumption at the
deferred time period to calibrate our algorithm. We use
the workloads model shown in Equation (7) to estimate the
workloads and then convert it to the total energy consump-
tion based on the model in [25].

Policy Manager: It contains the implemented scheduling
policies in our prototype, e.g. Algorithms 1 to 4. The Policy
Manager component uses the retrieved data from Resource
Monitor, and makes decisions based on system status. For
example, a VM is migrated from an underutilized host to
other hosts, thus the idle host can be switched to the low
power mode to save power consumption; when the renew-
able energy is not sufficient and the system is overloaded,
to ensure the QoS of service, brownout can be triggered to
relieve the overloaded situation. The customized workloads
processing policy, VM migration policy and host scaling
policy can also be implemented for the policy manager.

ePDU API: Eaton Power Distribution Units (ePDU) 5 is
an effective power management and monitoring device. It
has outlets that allow electric devices to be connected to it.
It also provides the features to read the power consumption
of hosts as well as turn on/off the outlets remotely. We
implemented Python scripts based on ePDU APIs to read
the power data at per second rate to support part of the
functions in Resource Monitor. Our scripts can also operate
the hosts remotely by turning on/off the power supply
to hosts to support the decision in Policy Manager. For
example, a host needs to be scaled out if the whole system is
underutilized; or hosts should be scaled in to support more
requests.

Renewable Energy Predictor: For supporting our re-
newable energy experiments, we implement a renewable en-
ergy predictor that predicts the renewable energy at Denver
city based on the historical data. As introduced in Section
5.5, our prediction models show that it can achieve a high
accuracy. The data based on this component can also be
incorporated into the scheduling policy.

5. https://powerquality.eaton.com/ePDUG3/

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on August 09,2020 at 01:27:08 UTC from IEEE Xplore. Restrictions apply.

2377-3782 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2020.3014943, IEEE
Transactions on Sustainable Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

TABLE 2: Machines Specification

Machine CPU Cores Memory Storage Idle Power Full Power
3 × IBM X3500 M4 2 GHz 12 64 GB 2.9 TB 153 Watts 230 Watts
4 × IBM X3200 M3 2.8 GHz 4 16 GB 199 GB 60 Watts 150 Watts

2 × Dell OptiPlex 990 3.4 GHz 4 8 GB 399 GB 26 Watts 106 Watts

7 PERFORMANCE EVALUATION

To evaluate the performance of our proposed approach, we
conduct experiments in our implemented prototype system.
We first present the environment settings in Section 7.1,
and then introduce the workload and application settings
in Section 7.2 and 7.3. The results are demonstrated and
discussed in Section 7.4.

7.1 Environmental Settings
In our experiments, the upper utilization threshold TUup
and lower utilization threshold TUlow are configured as
80% and 20% respectively, as these values have been eval-
uated in our previous work [31][17] that they can achieve
good trade-offs between energy consumption and QoS than
other values. For example, configuring the upper utilization
threshold to be lower than 80% can trigger brownout too
frequently, while the upper utilization threshold with 90%
or higher can hardly trigger brownout. We also configure
the scheduling time interval as 5 minutes and the whole
scheduling period as one day.

Hardware: We utilize a micro data center of Melbourne
CLOUDS lab as testbed. Our data center consists of 9 het-
erogeneous servers. Table 2 shows the capacity specification
of the servers and their energy consumption information. To
monitor the power consumption of individual machines, we
use two ePDUs and all the servers are connected to them.
Apart from the power monitor, the ePDUs also enable us
to switch on/off power outlets connected with individual
server remotely through the network. The total maximum
power of the IT equipment in our system is 1.27 kWh for
8 hosts (one IBM X3500 M4 machine is regarded as the
OpenStack control node and is not considered).

We assume our system is equipped with 1.63 kW PV
panel6, which has 30% more power than the maximum
power of hosts, as the cooling part normally consumes about
20% to 30% of server energy if the target temperature is 25
degree [14]. This cooling power consumption percentage is
validated in the prototype system in [16]. We consider to
control the data center temperature as 25 degree, according
to Equation (4), Tsup = 25, then we get CoP (Tsup) = 4.728.
In the following experiments, we use this value to compute
the power from the cooling equipment, e.g. if the hosts
consume 10 kWh, then the cooling part is 2.11 kWh.

Software: The operating systems of the servers are Cen-
tOS Linux Distribution. We use OpenStack [39] to support
our cloud platform and manage the VMs. One of our most
powerful machines is selected as our controller node, and
other nodes are acting in the same role. In VM instances,
we deploy Docker [48] containers to provide services in the
form of microservices and use Docker Swarm to manage the
containers cluster. Some other required software, like Java,
Ansible are also installed in the VMs.

6. The total power of PV panels can be increased by adding more
panels.

7.2 Workloads

To make the experiments as realistic as possible, we use
real traces from Wikipedia and Facebook. For the interactive
workloads, we use the real trace from Wikipedia requests on
2007 October 17 to replay the workload of Wikipedia users.
The trace includes data on requests time stamp and their
accessed pages. We filter the requests based on per second
rate and generate the requests rate. The original request rate
is around 1,500- 3,000 per second. We use 10% of the original
requests and these requests can consume up to 43% cluster
utilization.

For the batch workloads, we use the traces collected in
October 2009 by Facebook for applications that are executed
under Hadoop environment7. Referring to [16], we config-
ure the map phase of each job takes 25-13000 seconds, and
the reduce phase takes 15-2600 seconds. The deadline for
processing jobs is generated based on uniform distribution
with µ = 6 hours and σ = 1 hour in N(µ, σ2). We also
assume the workloads consume the maximum of cluster
utilization as 27% as same as in [16].

Figure 4 shows the one-day normalized resource utiliza-
tion trace of the aforementioned workloads. We can clearly
see the variance of utilization demand of both interactive
and batch workloads, thus the workloads can be managed
to fit into the availability of green energy. For instance, at
hour 7, if the green energy is not sufficient to supply the all
the workloads, then some batch workloads can be deferred
to a later time when more green energy is available.

Fig. 4: Workloads distribution

7.3 Application

We use the Weave Shop8 web application that is imple-
mented with containers as the application to process the
interactive workloads derived from Wikipedia traces. The
Weave Shop is a web-based shopping system for selling
socks online and has multiple microservices, including user
microservice to handle user login, user database microser-
vice for user information storage, payment microservice to
process transactions, front-end microservice to show the
user interface, catalog microservice for managing item for

7. https://github.com/SWIMProjectUCB/SWIM/wiki/Workloads-
repository

8. See https://github.com/microservices-demo/microservices-demo
for more details.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on August 09,2020 at 01:27:08 UTC from IEEE Xplore. Restrictions apply.

2377-3782 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2020.3014943, IEEE
Transactions on Sustainable Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 11

sale etc. As these microservices are implemented inde-
pendently, they can be deployed and controlled without
impacting other microservices. The application is deployed
by a configuration file, and 30% of the microservices are
configured to be optional, e.g. the recommendation engine.
The generated workload is communicated to the mandatory
microservices (e.g. the font-end microservices) to measure
the response time. The microservices are deployed on the
cluster with multiple VMs. The head node of the cluster
is deployed with a gateway microservice in Weave Shop
that is responsible for distributing the interactive workloads
to different microservices deployed on multiple VMs. The
application and VMs are deployed on the hosts with dy-
namically adjusted.

7.4 Results
To evaluate the benefits of our proposed approach for re-
newable energy usage, we perform the comparison of our
proposed Green-aware and Self-adaptive approach (GSA)
and a state-of-the-art baseline algorithm (HS), which applies
VM consolidation based on Modified Best Fit Decreasing al-
gorithm [17] that consolidates VMs to the hosts that produce
the minimum energy incrementation, and host scaling [45]
that dynamically adds/removes hosts in system based on
profiling and workloads prediction.

Figure 5a shows the baseline energy consumption of
interactive workloads, batch workloads and cooling during
the observed time period (one day). The blue line shows the
actual renewable power production. We consider the day in
autumn time for Denver city. In this season, the day-length
is about 12 hours, which is shorter than the summer time
but longer than the winter time. In the investigated day, the
system is consuming brown energy at night time from hour
0:00 to hour 5:00 and hour 18:00 to hour 24:00. The solar
energy is available at daytime during hours 6:00 to 17:00.
Even with taking advantage of VM consolidation and host
scaling, the solar energy consumption of the system is not
fully utilized. For example, at hour 11:00, the total energy
consumption of the system is about 1400 Wh, while the
available solar energy is more than 1500 Wh.

Figure 5b demonstrates the energy consumption of GSA
approach by using Algorithms 1 to 4. The blue line still
shows the actual renewable power production, but the
decision making is happening based on our SVM predic-
tion model. We can observe that the power consumption
of the batch workloads during 0:00 to 8:00 has been re-
duced, which results from the deferring operations: batch
workloads are deferred to the time when solar energy is
available, e.g. hour 6:00. Some batch workloads are still
executed during hours from 0:00 to 8:00 due to the deadline
constraints, which cannot be deferred to the time when
renewable energy is available. Thus, we can find that the
brown energy usage during 0:00 to 8:00 has been reduced
compared in Figure 5a. For example, at hour 1:00, the total
power is reduced from 1221 to 815 Watts.

During the time when solar energy is available, GSA
approach has improved the usage of renewable energy,
in which the energy consumption follows the line the of
predicted renewable energy. For instance, at hour 11:00, the
usage of solar energy is increased from 1387 Wh to 1544 Wh
compared with Figure 5a.

We also note that the power consumption during the
time when brown energy is the only source of power supply,
the energy is also reduced, which exploits the brownout
mechanism to reduce the energy consumption. For instance,
the power at hour 18:00 is decreased from 1391 Watts to 1195
Watts.

Combining the results in Figure 5a and 5b, we conclude
that the GSA approach can improve the usage of renewable
energy and reduce the usage of brown energy. To be noted,
we choose the time in autumn for our experiments, as the
renewable energy production in autumn is close to the time
in spring, and these two seasons can represent renewable
energy production about half a year. As for summer time,
the day-length is extended, e.g. from hour 5:00 to hour 20:00,
which means the workloads can have more possibilities to
be deferred rather than being executed as soon as possible,
and thus the utilization of renewable energy can be further
improved. However, in the winter time, the day-length is
reduced, e.g. only from hour 7:00 to 16:00. In this season,
the utilization of renewable energy is not as good as in the
autumn and summer seasons.

The average response time and cumulative distribution
function (CDF) of response time for interactive workloads in
our proposed approach and baseline are illustrated in Figure
6. The average response time of GSA is 403.4 ms, which is
less than 80% of the HS (513.1 ms). In GSA approach, the
results also show that 95% requests are responded in 900
ms, and 99% requests are responded within 1000 ms second.
While in the HS approach, only 91% requests are responded
within 1000 ms. It shows that GSA approach reduces brown
energy usage while ensuring the QoS. The reason is that
the brownout approach can relieve the overloaded situation,
thus ensuring the response time.

To illustrate the reason for power reduction by GSA
approach, Figure 7 compares the active hosts during the
observed time period between the HS and GSA approaches,
as switching the idle hosts into the low power mode is the
most effective way to save power. The results demonstrate
that GSA approach uses fewer hosts during the time period
when renewable energy is not sufficient, e.g. hours from
0:00 to 8:00 and 18:00 to 24:00, while when the renewable
energy is available, more hosts are scaled in to utilize more
renewable energy, such as the time from 10:00 to 15:00. In
this way, the power of all the active hosts is reduced and
the usage of renewable energy is improved. Figure 7 also
shows the type of active hosts in HS and GSA approaches.
Based on the results, we can notice that the deactivation and
activation are mainly operated on machines type of IBM
X3200 M3 and Dell OptiPLex 990, which have less capacity
than IBM X3500 M4 as shown in Table 2. The main reason is
that these two types of hosts can host fewer VMs than IBM
X3500 M4, and the VMs can be more easily consolidated to
other machines. Therefore, after consolidation, the idle hosts
can be switched to the low power mode.

Figure 8a demonstrates the comparison of brown and
renewable energy usage. During the night time (0:00 to 5:00
and 18:00 to 24:00), both approaches only use brown energy.
Benefiting from proposed algorithms, our approach reduces
the brown energy usage by 28% from 13.9 kWh to 10.8
kWh. During the daytime (6:00 to 17:00), both renewable
energy and brown energy are used in two approaches. GSA

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on August 09,2020 at 01:27:08 UTC from IEEE Xplore. Restrictions apply.

2377-3782 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2020.3014943, IEEE
Transactions on Sustainable Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 12

(a) (b)

Fig. 5: Results of (a) baseline HS (b) proposed approach GSA

Fig. 6: Comparison of response time for interactive work-
loads

Fig. 7: Comparison of number of active hosts

approach consumes 5% more total energy in the daytime,
while it uses 10% more renewable energy than the baseline
from 9.9 KWh to 10.9 KWh. In total power usage com-
parison, the brown energy usage is reduced 21%, and the
renewable energy usage is improved 10%.

To further investigate the impacts on different configu-
rations, we conduct another two experiments by changing
the deadline of batch workloads and the availability of
renewable energy. Due to the page limitation, we only
demonstrate the results of different types of power usage
like in Figure 8a.

Longer deadlines of batch workloads: we generate the dead-
line for processing jobs as uniform distribution with µ = 7
hours and σ = 2 hours in N(µ, σ2), which has a longer
deadline than the previous configurations. The other config-
urations are the same as the previous experiments. In Figure
8b, compared with HS, we can notice that the brown energy
usage in the night time is reduced from about 13.9 kWh to

10.7 kWh by GSA, renewable energy usage is increased from
9.9 kWh to 10.9 kWh, and total energy usage is reduced
about 8% by GSA. Compared with the results in Figure
8a where the batch workloads have shorter deadlines, the
brown energy consumption has been reduced, e.g. from
10.8 kWh to 10.7 kWh in the night time, which shows that
longer deadline is helpful to reduce brown energy usage.
The reason is that more batch workloads are deferred to the
daytime when the renewable energy is available. Therefore,
the brown energy usage in the night time is reduced. How-
ever, the brown energy usage in the daytime is increased a
bit while the total brown energy usage is reduced.

Longer daytime in summer with more varied solar power:
since the solar power dataset of Denver city has sufficient
data, thus we still use the dataset, but we change the
season from autumn to summer, which has longer daytime
that starts from hour 5:00 and ends at hour 19:00 and can
represent solar power with variability. The other settings
are configured the same as settings in Figure 8a. Figure 8c
shows the power usage comparison with longer daytime.
It can be observed that GSA can reduce the total brown
energy usage from 12.2 kWh to 8.8 kWh and renewable
energy usage can be improved from 16.0 kWh to 17.2
kWh. Compared with the results in Figure 8a and 8b, the
renewable energy percentage of total energy usage has been
significantly increased, as the daytime is extended and the
amount renewable energy is more sufficient in the summer
time compared with the autumn time.

To evaluate the brownout impacts on microservices,
we use the average deactivation percentage (the average
number of deactivated microservices divided by the total
number of microservices during the observation time). The
higher the average deactivation percentage, the more mi-
croservices are deactivated, and vice verse. The average
deactivation percentage for cases in Figure 8a and Figure
8b are 11.2% and 10.8%, respectively, and in the case of
Figure 8c, the value is 10.1%. Based on the results, we can
observe that the longer deadline of batch workloads and
the longer daytime result in a lower number of deactivated
microservices. The reason is that a higher renewable energy
availability can support more active microservices.

In summary, experiments show that GSA approach can
improve the renewable energy usage for both interactive
and batch workloads by applying brownout mechanism and
deferring the execution of batch workloads. Our proposed
approach can switch more machines into low power mode

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on August 09,2020 at 01:27:08 UTC from IEEE Xplore. Restrictions apply.

2377-3782 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2020.3014943, IEEE
Transactions on Sustainable Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 13

(a) Autumn time in Denver city (b) Longer deadline of batch workloads (c) Longer daytime in summer
Fig. 8: Power usage comparison of different types of energy sources

when renewable energy is not sufficient while the QoS of
workloads is also ensured.

8 CONCLUSIONS AND FUTURE WORK

Our self-adaptive approach for managing applications and
harnessing renewable energy brings up many opportunities
to optimize the energy efficiency problem in cloud com-
puting environment. In this paper, we proposed a multiple
layers perspective model for interactive and batch work-
loads by considering renewable energy. We also introduced
a self-adaptive and renewable energy-aware approach de-
riving from the perspective model. The proposed approach
improves the usage of renewable energy and reduces the
usage of brown energy while ensuring the QoS requirement
of workloads. We apply a solar radiation prediction method
to predict solar power at Denver City and integrate it into
our proposed approach. We utilize brownout mechanism
to dynamically deactivate/activate optional components in
the system for interactive workloads and use a deferring
algorithm to defer the execution of batch workloads to the
time when renewable energy is available. VM consolidation
and host scaling are also applied to reduce the number of
active hosts.

We developed a prototype system to evaluate the perfor-
mance of our proposed approach. In the prototype system,
the physical resources are managed by OpenStack and the
services are managed by Docker Swarm. We take advantage
of the APIs from these platforms to monitor, manage, and
provision the resources to services. The effectiveness of our
proposed approach is showed through the experimental
evaluations with a microservices-based web system and the
workloads from real traces. The results show that our pro-
posed approach is able to improve the usage of renewable
energy while satisfying the constraints of workloads.

As future work, we would like to include the battery
model in [16], which can store renewable energy and im-
prove energy usage. We also plan to extend our prototype
system for multiple clouds in the different time zones to
support workload shifts in data centers and minimize the
carbon footprint in a global view.

Fog and Edge computing extend the cloud services to the
edge of the network, which can improve the user experience
and system performance by reducing latency. However, the
IoT and edge devices have power constraints, for example,
they are powered by battery or they need to harness re-
newable energy. Therefore, the energy should be used in
an efficient manner. The brownout approach can support to
optimize the energy usage for these devices by temporar-
ily deactivating some optional application components. As
another future work, we would like to apply the brownout

approach to mobile edge computing for managing the en-
ergy usage of IoT or edge devices.

ACKNOWLEDGMENTS

This work is supported by Key-Area Research and
Development Program of Guangdong Province (NO.
2020B010164003), Science and Technology Development
Fund of Macao S.A.R (FDCT) under number
0015/2019/AKP, Shenzhen Discipline Construction
Project for Urban Computing and Data Intelligence,
SIAT Innovation Program for Excellent Young Researchers
and ARC Discovery Project.

REFERENCES

[1] C. Kilcioglu, J. M. Rao, A. Kannan, and R. P. McAfee, “Usage
patterns and the economics of the public cloud,” in Proceedings of
the 26th International Conference on World Wide Web, ser. WWW ’17.
Republic and Canton of Geneva, Switzerland: International World
Wide Web Conferences Steering Committee, 2017, pp. 83–91.
[Online]. Available: https://doi.org/10.1145/3038912.3052707

[2] Y. Chen, X. Yang, Q. Lin, H. Zhang, F. Gao, Z. Xu, Y. Dang,
D. Zhang, H. Dong, Y. Xu, H. Li, and Y. Kang, “Outage
prediction and diagnosis for cloud service systems,” in The
World Wide Web Conference, ser. WWW ’19. New York,
NY, USA: ACM, 2019, pp. 2659–2665. [Online]. Available:
http://doi.acm.org/10.1145/3308558.3313501

[3] W. Jiang, Z. Jia, S. Feng, F. Liu, and H. Jin, “Fine-grained warm
water cooling for improving datacenter economy,” in Proceedings
of the 46th International Symposium on Computer Architecture, ser.
ISCA ’19. New York, NY, USA: ACM, 2019, pp. 474–486.
[Online]. Available: http://doi.acm.org/10.1145/3307650.3322236

[4] M. Avgerinou, P. Bertoldi, and L. Castellazzi, “Trends in data
centre energy consumption under the european code of conduct
for data centre energy efficiency,” Energies, vol. 10, no. 10, p. 1470,
2017.

[5] B. Whitehead, D. Andrews, A. Shah, and G. Maidment, “Assessing
the environmental impact of data centres part 1: Background,
energy use and metrics,” Building and Environment, vol. 82, pp.
151 – 159, 2014.

[6] P. Delforge. (2014) Data center efficiency assessment
- scaling up energy efficiency across the data
center industry: Evaluating key drivers and barri-
ers. [Online]. Available: https://www.infrastructureusa.org/
scaling-up-energy-efficiency-across-the-data-center-industry/

[7] M. Pedram, “Energy-efficient datacenters,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 31,
no. 10, pp. 1465–1484, 2012.

[8] A. Beloglazov and R. Buyya, “Openstack neat: a framework for
dynamic and energy-efficient consolidation of virtual machines
in openstack clouds,” Concurrency and Computation: Practice and
Experience, vol. 27, no. 5, pp. 1310–1333, 2015.

[9] A. Belog1azov and R. Buyya, “Managing overloaded hosts for
dynamic consolidation of virtual machines in cloud data centers
under quality of service constraints,” IEEE Transactions on Parallel
and Distributed Systems, vol. 24, no. 7, pp. 1366–1379, 2013.

[10] B. Clement. (2017) Rightscale 2017 state of the cloud
report uncovers cloud adoption trends. [Online]. Available:
https://www.rightscale.com/press-releases/

[11] S. Newman, Building Microservices. ” O’Reilly Media, Inc.”, 2015.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on August 09,2020 at 01:27:08 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1145/3038912.3052707
http://doi.acm.org/10.1145/3308558.3313501
http://doi.acm.org/10.1145/3307650.3322236
https://www.infrastructureusa.org/scaling-up-energy-efficiency-across-the-data-center-industry/
https://www.infrastructureusa.org/scaling-up-energy-efficiency-across-the-data-center-industry/
https://www.rightscale.com/press-releases/

2377-3782 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2020.3014943, IEEE
Transactions on Sustainable Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 14

[12] Z. Ren, W. Wang, G. Wu, C. Gao, W. Chen, J. Wei, and
T. Huang, “Migrating web applications from monolithic structure
to microservices architecture,” in Proceedings of the Tenth Asia-
Pacific Symposium on Internetware, ser. Internetware ’18. New
York, NY, USA: ACM, 2018, pp. 7:1–7:10. [Online]. Available:
http://doi.acm.org/10.1145/3275219.3275230

[13] M. Xu and R. Buyya, “Brownout approach for adaptive manage-
ment of resources and applications in cloud computing systems: A
taxonomy and future directions,” ACM Computing Surveys, vol. 52,
no. 1, pp. 8:1–8:27, 2019.

[14] Z. Liu, Y. Chen, C. Bash, A. Wierman, D. Gmach, Z. Wang, M. Mar-
wah, and C. Hyser, “Renewable and cooling aware workload
management for sustainable data centers,” in ACM SIGMETRICS
Performance Evaluation Review, vol. 40, no. 1. ACM, 2012, pp. 175–
186.

[15] Z. Han, H. Tan, G. Chen, R. Wang, Y. Chen, and F. C. M. Lau,
“Dynamic virtual machine management via approximate markov
decision process,” in Proceedings of the 35th Annual IEEE Interna-
tional Conference on Computer Communications (INFOCOM), April
2016, pp. 1–9.

[16] Í. Goiri, W. Katsak, K. Le, T. D. Nguyen, and R. Bianchini, “Parasol
and greenswitch: Managing datacenters powered by renewable
energy,” in ACM SIGARCH Computer Architecture News, vol. 41,
no. 1. ACM, 2013, pp. 51–64.

[17] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for
cloud computing,” Future Generation Computer Systems, vol. 28,
no. 5, pp. 755–768, 2012.

[18] K. H. Kim, A. Beloglazov, and R. Buyya, “Power-aware provision-
ing of virtual machines for real-time cloud services,” Concurrency
and Computation: Practice and Experience, vol. 23, no. 13, pp. 1491–
1505, 2011.

[19] H. Liu, B. Liu, L. T. Yang, M. Lin, Y. Deng, K. Bilal, and S. U.
Khan, “Thermal-aware and dvfs-enabled big data task scheduling
for data centers,” IEEE Transactions on Big Data, vol. 4, no. 2, pp.
177–190, 2018.

[20] F. Teng, L. Yu, T. Li, D. Deng, and F. Magoulès, “Energy efficiency
of vm consolidation in iaas clouds,” The Journal of Supercomputing,
pp. 1–28, 2016.

[21] T. H. Nguyen, M. D. Francesco, and A. Yla-Jaaski, “Virtual ma-
chine consolidation with multiple usage prediction for energy-
efficient cloud data centers,” IEEE Transactions on Services Com-
puting, pp. 1–14, 2018.

[22] M. Xu, A. V. Dastjerdi, and R. Buyya, “Energy efficient scheduling
of cloud application components with brownout,” IEEE Transac-
tions on Sustainable Computing, vol. 1, no. 2, pp. 40–53, 2016.

[23] M. S. Hasan, F. Alvares, T. Ledoux, and J.-L. Pazat, “Investigating
energy consumption and performance trade-off for interactive
cloud application,” IEEE Transactions on Sustainable Computing,
vol. 2, no. 2, pp. 113–126, 2017.

[24] X. Li, X. Jiang, P. Garraghan, and Z. Wu, “Holistic energy and
failure aware workload scheduling in cloud datacenters,” Future
Generation Computer Systems, vol. 78, pp. 887–900, 2018.

[25] Z. Liu, Y. Chen, C. Bash, A. Wierman, D. Gmach, Z. Wang, M. Mar-
wah, and C. Hyser, “Renewable and cooling aware workload
management for sustainable data centers,” in ACM SIGMETRICS
Performance Evaluation Review, vol. 40, no. 1. ACM, 2012, pp. 175–
186.

[26] M. Xu, A. N. Toosi, B. Bahrani, R. Razzaghi, and M. Singh,
“Optimized renewable energy use in green cloud data centers,”
in Service-Oriented Computing, S. Yangui, I. Bouassida Rodriguez,
K. Drira, and Z. Tari, Eds. Cham: Springer International Publish-
ing, 2019, pp. 314–330.

[27] D. Cheng, X. Zhou, P. Lama, M. Ji, and C. Jiang, “Energy efficiency
aware task assignment with dvfs in heterogeneous hadoop clus-
ters,” IEEE Transactions on Parallel and Distributed Systems, vol. 29,
no. 1, pp. 70–82, 2017.

[28] L. Tomás, C. Klein, J. Tordsson, and F. Hernández-Rodrı́guez, “The
straw that broke the camel’s back: safe cloud overbooking with
application brownout,” in Proceedings of the 2014 IEEE International
Conference on Cloud and Autonomic Computing, 2014, pp. 151–160.

[29] M. Shahrad, C. Klein, L. Zheng, M. Chiang, E. Elmroth, and
D. Wentzlaff, “Incentivizing self-capping to increase cloud utiliza-
tion,” in Proceedings of the 2017 Symposium on Cloud Computing.
ACM, 2017, pp. 52–65.

[30] M. Xu and R. Buyya, “Energy efficient scheduling of application
components via brownout and approximate markov decision pro-

cess,” in Proceedings of the 15th International Conference on Service-
Oriented Computing (ICSOC), 2017, pp. 206–220.

[31] M. Xu, A. N. Toosi, and R. Buyya, “ibrownout: An integrated
approach for managing energy and brownout in container-based
clouds,” IEEE Transactions on Sustainable Computing, vol. 4, no. 1,
pp. 53–66, 2019.

[32] A. M. Al-Qawasmeh, S. Pasricha, A. A. Maciejewski, and H. J.
Siegel, “Power and thermal-aware workload allocation in hetero-
geneous data centers,” IEEE Transactions on Computers, vol. 64,
no. 2, pp. 477–491, 2015.

[33] Q. Tang, S. K. S. Gupta, and G. Varsamopoulos, “Energy-
efficient thermal-aware task scheduling for homogeneous high-
performance computing data centers: A cyber-physical approach,”
IEEE Transactions on Parallel and Distributed Systems, vol. 19, no. 11,
pp. 1458–1472, 2008.

[34] (2017) Docker documentation — docker documentation. [Online].
Available: https://docs.docker.com/

[35] (2018) Swarm mode overview — docker documentation. [Online].
Available: https://docs.docker.com/engine/swarm/

[36] (2018) Production-grade container orchestration - kubernetes.
[Online]. Available: https://kubernetes.io/

[37] (2018) Apache mesos. [Online]. Available: http://mesos.apache.
org/

[38] (2018) Vmware - official site. [Online]. Available: https:
//www.vmware.com/

[39] (2018) Open source software for creating private and public
clouds. [Online]. Available: https://www.openstack.org/

[40] V. Nallur and R. Bahsoon, “A decentralized self-adaptation mech-
anism for service-based applications in the cloud,” IEEE Transac-
tions on Software Engineering, vol. 39, no. 5, pp. 591–612, May 2013.

[41] T. Chen and R. Bahsoon, “Self-adaptive and online qos modeling
for cloud-based software services,” IEEE Transactions on Software
Engineering, vol. 43, no. 5, pp. 453–475, 2017.

[42] K. Zheng, X. Wang, L. Li, and X. Wang, “Joint power optimization
of data center network and servers with correlation analysis,” in
Proceedings of the 2014 IEEE Conference on Computer Communications
(INFOCOM), 2014, pp. 2598–2606.

[43] T. Kaur and I. Chana, “Energy efficiency techniques in cloud
computing: A survey and taxonomy,” ACM Computing Surveys
(CSUR), vol. 48, no. 2, pp. 1–46, 2015.

[44] J. D. Moore, J. S. Chase, P. Ranganathan, and R. K. Sharma, “Mak-
ing scheduling” cool”: Temperature-aware workload placement
in data centers.” in Proceedings of the USENIX annual technical
conference, General Track, 2005, pp. 61–75.

[45] A. N. Toosi, C. Qu, M. D. de Assunção, and R. Buyya, “Renewable-
aware geographical load balancing of web applications for sus-
tainable data centers,” Journal of Network and Computer Applications,
vol. 83, pp. 155–168, 2017.

[46] K. Y. Bae, H. S. Jang, and D. K. Sung, “Hourly solar irradiance
prediction based on support vector machine and its error analy-
sis,” IEEE Transactions on Power Systems, vol. 32, no. 2, pp. 935–945,
2017.

[47] S. Belaid and A. Mellit, “Prediction of daily and mean monthly
global solar radiation using support vector machine in an arid
climate,” Energy Conversion and Management, vol. 118, pp. 105–118,
2016.

[48] Docker. (2017) Docker documentation — docker documentation.
[Online]. Available: https://docs.docker.com/

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on August 09,2020 at 01:27:08 UTC from IEEE Xplore. Restrictions apply.

http://doi.acm.org/10.1145/3275219.3275230
https://docs.docker.com/
https://docs.docker.com/engine/swarm/
https://kubernetes.io/
http://mesos.apache.org/
http://mesos.apache.org/
https://www.vmware.com/
https://www.vmware.com/
https://www.openstack.org/
https://docs.docker.com/

2377-3782 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2020.3014943, IEEE
Transactions on Sustainable Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 15

Minxian Xu is currently an assistant profes-
sor at Shenzhen Institutes of Advanced Tech-
nology, Chinese Academy of Sciences. He re-
ceived the BSc degree in 2012 and the MSc
degree in 2015, both in software engineering
from University of Electronic Science and Tech-
nology of China. He obtained his PhD degree
from the University of Melbourne in 2019. His
research interests include resource scheduling
and optimization in cloud computing. He has co-
authored 20+ peer-reviewed papers published

in prominent international journals and conferences, such as ACM
Computing Surveys, IEEE Transactions on Sustainable Computing,
IEEE Transactions on Automation Science and Engineering, Journal
of Parallel and Distributed Computing, Concurrency and Computation:
Practice and Experience, International Conference on Service-Oriented
Computing. His Ph.D. Thesis was awarded the 2019 IEEE TCSC Out-
standing Ph.D. Dissertation Award. More information can be found at:
minxianxu.info.

Adel Nadjaran Toosi has joined Faculty of In-
formation Technology at Monash University as a
lecturer in May 2018. Before he joined Monash
University, he worked as a Research Fellow in
the Cloud Computing and Distributed Systems
(CLOUDS) Laboratory in the School of Comput-
ing and Information Systems (CIS) at the Univer-
sity of Melbourne for more than three years. He
received his Ph.D. degree in Computer Science
and Software Engineering from the University of
Melbourne in 2015. His thesis was one of the two

theses nominated for the Chancellor’s Prize for Excellence in the Ph.D.
Thesis and John Melvin Memorial Scholarship for the Best Ph.D. Thesis
in Engineering. Adel has made significant contributions to the areas
of resource management and software systems for cloud computing.
His research interests include Distributed Systems, Cloud Computing,
Software-Defined Networking (SDN), Green Computing, and Soft Com-
puting. He is currently working on resource management for Software-
Defined Networking (SDN)-enabled cloud computing environments. For
more details, please visit his homepage: http://adelnadjarantoosi.info.

Rajkumar Buyya is a Redmond Barry Distin-
guished Professor and Director of the Cloud
Computing and Distributed Systems (CLOUDS)
Laboratory at the University of Melbourne, Aus-
tralia. He is also serving as the founding CEO of
Manjrasoft, a spin-off company of the University,
commercializing its innovations in Cloud Com-
puting. He served as a Future Fellow of the Aus-
tralian Research Council during 2012-2016. He
has authored over 625 publications and seven
text books including ”Mastering Cloud Comput-

ing” published by McGraw Hill, China Machine Press, and Morgan
Kaufmann for Indian, Chinese and international markets respectively.
He is one of the highly cited authors in computer science and software
engineering worldwide (h-index=136, g-index=300, 98,800+ citations).
Dr. Buyya is recognized as a ”Web of Science Highly Cited Researcher”
for four consecutive years since 2016, a Fellow of IEEE, and Scopus
Researcher of the Year 2017 with Excellence in Innovative Research
Award by Elsevier for his outstanding contributions to Cloud computing.
He served as the founding Editor-in-Chief of the IEEE Transactions
on Cloud Computing. He is currently serving as Co-Editor-in-Chief of
Journal of Software: Practice and Experience, which was established
50 years ago. For further information on Dr. Buyya, please visit his
cyberhome: www.buyya.com

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on August 09,2020 at 01:27:08 UTC from IEEE Xplore. Restrictions apply.

