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Abstract—When allocating virtual machines (VMs) in data
centers, weights such as profits and other benefits are associated
with all VMs. This paper considers maximizing the total weight
in VMs allocation. As virtualization widely adopted in Cloud
computing, requests may only consume part of the total capacity
of a single hardware resource (for example a physical machine),
this requires a new model for maximizing the total weight. In
this paper, for the first time we model this problem as shared
interval scheduling for capacity proportional weight and propose
an exact efficient algorithm for it with computational complexity
O(n2) where n is the number of jobs. The proposed method has
good scalability and can be applied to maximize the total weight
or related metrics in cloud computing.

Keywords—Keywords—cloud computing; virtual machine allo-
cation; maximize the total weight; weighted interval scheduling;
weighted interval scheduling with capacity sharing

I. INTRODUCTION

Cloud computing is developing based on various recent ad-
vancements in virtualization, Grid computing, Web computing,
utility computing and related technologies. Cloud computing
provides both platforms and applications on demand through
the Internet or intranet. Cloud computing allows the sharing,
allocation and aggregation of software, computational and
storage network resources on demand. Some of the key benefits
of Cloud computing include the hiding and abstraction of com-
plexity, virtualized resources and efficient use of distributed
resources. Cloud computing is still considered in its infancy
as there are many challenging issues to be resolved. In this
paper, we focus on Infrastructure as a service (IaaS) in Cloud
data centers. With large-scale application of Cloud computing,
maximizing total weights becomes one of key factors for many
service providers to be considered. We consider maximizing
the total weights (or profits) of virtual machines allocation
in Cloud data centers. For example, Amazon [8] offers two
different types of services: on-demand and spot instances. On-
demand instances are more expensive but have a fixed price.
Spot instances are cheaper than on-demand instances. However
the provider may terminate the spot instance prematurely de-
pending on how the spot price changes. A third pricing option,
called timed instances, is proposed in [7]. Timed instances
have an a priori specified reservation time of fixed length.
The scheduling algorithm uses the reservation time to co-
locate instances with similar expiration times. We adopt timed
instances with reservation in the following discussion. As for
real-time virtual machine scheduling, Kim et al. [4] provide
a detailed discussion. Tian et al. [9] introduce dynamic load-
balance of virtual machine allocation, Fig.1 shows an example
of virtual machine (VM) requests with weights and timed

instances where ID, si, fi, ci, wi are the ID number, start-
time, end-time, capacity request, and weight of the request
respectively. Let us consider a physical machine (PM) with
2×68.4GB memory, 16 cores×3.25 units(where each CPU
unit is equal to 1Ghz 2007 Intel Pentium processor [20]),
2×1690GB storage. There are virtual machines (VMs) with
capacities 1/8, 1/4 and 1/2 of the total capacity of the given
PM. As an example, a set of 6 VM requests are considered,
they are vm1(1, 0, 6, 0.25,1), vm2(1,1, 4, 0.125,2), vm3(1,3,
6, 0.25,3), vm4(2, 3, 8, 0.5,4), vm5(2,4, 8, 0.25,5), vm6(2,5,
9, 0.25,6), where vm1(1,0, 6, 1, 0.25,1) means vm1 starts at
time 0, finishes at the end of the slot 6th, has weight 1 and
capacity requirement of 0.25 of the total capacity of the given
PM (i.e., PM�1). Other requests are in the similar fashion.
This maximizing total weights problem can be modeled by

time 
0 

vm1(1, 0�6,0.25,2)  

vm4(2,3,6,0.5,4) 

vm5(2, 4�8,0.25,5) 

  vm2(1, 1, 4,0.125,1) 

vm3 (1, 3�8�0.5,3) 
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vm6(2, 5, 9,0.25,6) 

PM#1 

PM#2 

Legend: 
Vm(ID, si, fi,ci,wi) 

Fig. 1. An Example of VM requests

our proposed new model, weighted interval scheduling with ca-
pacity sharing (WISWCS). Interval scheduling problem (ISP)
has been studied extensively for a long time, see reference
[1] and references therein. It is a tradition to state in terms
of machines and jobs for scheduling problems. The machines
represent resources and the jobs (requests) represent tasks
that need to be carried out using resources. The interval
scheduling with fixed processing time is that each request
has a fixed start and end time [2]. Similar to the paper [1],
basic interval scheduling problem can be stated as follows.
Given n intervals of the form [sj , fj] with start-time sj < fj
(finish-time), for j=1, . . . , n. These intervals are the jobs
that require uninterrupted processing during that interval. The
objective of basic interval scheduling problem is to process all
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jobs using a minimum number of machines. In other words,
finding an assignment of jobs to machines such that no two
jobs assigned to the same machine overlap while using a
minimum number of machines. Weighted interval scheduling
problem (WISP) is that each request is associated with a
weight, with the goal to find a subset of mutually compatible
intervals with maximal total weight. In this paper, we consider
scheduling algorithm for weighted interval scheduling with
capacity sharing (WISWCS). The difference from WISP is
that all intervals may require part of the total capacity of a
single resource so that they can share the capacity if their
total required capacity at any time does not surpass the total
capacity a machine can provides. To the best of our knowledge,
this problem is not studied in the open literature. The major
contributions of this paper are:

• formulating a model for the weighted interval schedul-
ing with capacity sharing for the first time.

• providing an exact scheduling algorithm and its com-
plexity analysis for WISWCS problem.

II. PROBLEM FORMULATION: WEIGHTED INTERVAL

SCHEDULING WITH CAPACITY SHARING

A. Traditional Weighted Interval Scheduling Problem

A set of requests 1, 2, . . . , n where the i − th request
corresponds to an interval of time starting at si and finishing
at fi, each request is associated with a weight wi. The goal
is to find a subset of mutually compatible intervals, as to
maximize the sum of the values of the selected intervals. There
are following assumptions:

1) all data are deterministic and unless otherwise specified,

Fig. 2. Time in slotted windows

the time is formatted in slotted windows as shown in Fig.2,
we partition total time period [0, T ] into slots with equal
length (s0), the total slots is k=T/s0, all are integer numbers.
The starting time si and finishing time fi are integer. Then
the interval of a request can be represented in slot format
with (start-time, finish-time). For example if s0=5 minutes,
an interval [3, 10] means that it has start-time and finish-time
respectively at the 3rd-slot and 10th-slot, the actual duration
of this request is (10-3)×5=35 minutes.

2) there are no precedence constraints other than those
implied by the start and finishing time.

3) the required capacity of each request is a positive real
number between (0,1]. Notice that the capacity of a single
machine is normalized to be 1.

4) assuming that, when processed, each job is assigned
to a single machine, thus, interrupting a job and resuming it
on another machine is not allowed, unless explicitly stated
otherwise.

5) the weight of a job (denoted as wi) is proportional
to its required capacity (ci) and its duration (fi-si), i.e.,
wi=αci(fi − si).

Definition II.1. compatible intervals for WIS: a subset of
intervals is compatible if no two of them overlap in time,
that is, either request i is for an earlier time interval than
request j(fi < sj), or request i is for a later time than request
j(fj < si). More generally, a subset A of requested intervals
is compatible if all pairs of requests (i, j in A, i �= j) are
compatible.

Definition II.2. Weighted Interval Scheduling(WIS): In the
weighted interval scheduling problem, we want to find the
maximum-weight subset of non-overlapping jobs, given a set J
of jobs that have weights associated with them. Job i in J has
a start time si, a finish time fi, and a weight wi. Suppose we
have a set of weighted intervals J={I1, I2, I3, . . . , In} and
wj is the weight of interval Ij . We seek to find an optimal
schedule–a subset O of non-overlapping jobs in J with the
maximum possible sum of weights. In other words, the goal
is to choose intervals from J that don’t overlap in time that
gives the highest possible total weight.

Note that when the weights are all 1, this problem is
identical to basic interval scheduling problem (ISP), and for
that, we know that a greedy algorithm that chooses jobs in
order of earliest finish time first gives an optimal schedule [5].
For traditional WIS problem, classic dynamic programming
(DP) approach provides efficient solution to find both optimal
total weight and subset of intervals which are compatible, see
[5] for example. The basic optimization model in dynamic
programming is as the follows. After sorting all intervals in the
non-decreasing finish time, consider the optimal total weight
using following recursive formula for j − th interval:

OPT (j) = max(wj +OPT (p(j)), OPT (j − 1)) (1)

where p(j) is the largest index i < j such that intervals i and
j are disjoint for an interval j, OPT (j) is the optimal total
weight for j intervals.

B. Weighted Interval Scheduling With Capacity Sharing
(WISWCS)

Definition II.3. weighted interval scheduling with capacity
sharing (WISWCS): The only difference from traditional WIS
is that a resource (to be concrete, a machine or a processor)
can be shared by different jobs if the total capacity of all jobs
allocated on the single source at any time does not surpass
the total capacity of a resource can provides. A request can
be represented in a victor [ID, si, fi, ci, wi] where ID, si,
fi, ci, wi are the ID number, start-time, end-time, capacity
request, and weight of the request respectively. The objective
of WISWCS is to maximize total weight by accepting a subset
of requests for a given number of machines.

Definition II.4. sharing compatible intervals for WISWCS:
a subset of intervals which can maximally share the total
capacity of a machine at any time.

Definition II.5. Divisible Capacity for WISWCS: The capacity
of different requests (jobs) have follows feature:
c1 > c2 > ... > ci > ci+1 > . . .
Such that for all i ≤ 1, ci+1 exactly divides ci. There are
a list L of requests (each can have arbitrary number), the
capacity of requests in L form a divisible capacity. If L is
a list of requests and C is the total capacity of a machine
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(considering homogeneous case here), we say that the pair
(L,C) is strongly divisible if in addition the largest item
capacity c1 in L exactly divides the total capacity C.

See paper [3] for more detailed discussion about divisible
size bin-packing. We observe that popular providers, such as
Amazon and Google, have a small and finite set of instance
sizes following divisible capacity pattern.Knauth et al.[7] also
introduce the similar idea. In [7], virtual machines, as rented
out to customers, have fractional sizes of the original hardware,
e.g., 1/8, 1/4, 1/2, or 1. Individual resources of a VM, such
as CPU, RAM, and local disk, double between VM sizes. For
example, a small instance may have one CPU, 1 GB RAM,
and 100 GB local disk. The next instance size has 2 CPUs,
2 GB RAM, and 200 GB local disk, so on. These settings
are justified by real providers such as Amazon and Google.
Note that, if all requests demand one-unit capacity (unit-size)
from the total capacity of a PM, then it satisfies the divisible
capacity requirement.

Definition II.6. Capacity-duration proportional weight for
WISWCS: We assume that the weight of a request is propor-
tional to the product of its capacity and duration.

Definition II.6 is a reasonable assumption in many liter-
atures, and important assumption for our main results. For
WISWCS with divisible capacity and capacity proportional
weight, we seek to find an optimal schedule–a subset O
of sharing compatible intervals (jobs) with the maximum
possible sum of weights. Notice that WIS is the special
case of WISWCS when all weights are equal to the total
capacity of a machine. Therefore WISWCS problem is more
difficult. An example for WISWCS problem is shown in
Fig 3. Unfortunately, in this case of WISWCS, we cannot

Fig. 3. An Example of WISWCS

use dynamic programming technique any more. The reason
is that the situation of sharing compatible intervals makes
WISWCS different from WIS, we cannot use compatible
intervals defined by WIS to recursively apply memorization
technique in dynamic programming to find optimal solution.

C. Problem Formation of Maximizing Profits for WISWCS

For each VM request, a weight (profit) is associated with
it. For example it can be expressed as follows:

wi = price(i)− cost(i) = αci(fi − si), (2)

which can be further simplified as a value proportional to
the product of its capacity and duration, also called capacity-
duration. Then the maximizing weight problem (MWP) can
be formulated as follows:

Maximize
∑

wi (3)

subject to 1). ∀ slot j,
∑

VMj∈PMi

dj ≤ gi (4)

2). ∀VMj , sj and fj is given by reservation. (5)

where gi is the total capacity of PM i; Eqn (4) states the
capacity constraint and (5) is for fixed interval constraint of
each request.

D. An Exact Scheduling Algorithm for Weighted Interval
Scheduling With Capacity Sharing

In the following, we introduce an exact scheduling algo-
rithm for WISWCS. The algorithm is shown in Fig.4.

SAWIS() �
Input: requests indicated by their (start times, finish-times, requested capacity, weight), the 
request i is denoted as Ii .  
Output: finding sets of sharing compatible  intervals which have maximum total weights 
for each of the given number of machines. �
1:Sort all requests in non-increasing order of their weights, if two requests have same 
weights, the one with shorter duration is considered first, otherwise breaking ties arbitrarily; 
wi denotes as the weight of interval Ii �
2:d=1;�
3:for j = from 1 to n do �
4:   if  Ij can share capacity of k-th machine (start     from lowest index machine to d-th 
machine)  �
5:Assign Ij to machine k; W[k]=W[k]+w(Ij);     S(k)=S(k)U Ij�
6:     else  �
7:        allocate a new machine d+1 �
8:       assign   Ij to d+1;d=d+1�
9:        W[d]=W[d]+w(Ij); S(d)=S(d)U Ij�
10: endif�
11:endfor   �
12: sort W by non-increasing order of their values and record corresponding subsets S.  The  
largest value of W (W[1]) and corresponding subsets S (S(1)) are optimal solutions for the 
first machine, the second largest value of W (W[2] and corresponding subsets S (S(2)) are 
optimal solutions for the second machine, so on until the last one for the d-th machine.�

Fig. 4. Our proposed scheduling algorithm SAWIS

Theorem II.7. Algorithm SAWIS correctly finds the optimal
solution for a subset of sharing compatible intervals (jobs)
with the maximum possible sum of weights.

Proof: The algorithm SAWIS as shown in Fig.4 firstly
sorts all requests in non-increasing order of their weights,
this guarantees that requests with larger weights are consid-
ered first; then the algorithm applies sharing compatible rule
(Definition II.3) for all requests as shown in line 1 of Fig.4,
this makes assure that all possible requests are included in
the optimal solution if they are sharing compatible as shown
in line 2-11; finally, the algorithm finds optimal results by
comparing total weights of each machine as shown in line 12.
By the definition of the objective of WISWCS, the algorithm
finds the optimal solution for a subset of sharing compatible
intervals (jobs) with the maximum possible sum of weights.

For better understanding, let us take the example shown
in Fig.3 to see how algorithm SAWIS works for WISWCS:

1). Sort all requests in non-increasing order of their
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weights, we have I4(w4=7), I3(w3=4), I2(w2=4), I1(w1=2),
I5(w5=2), I6(w6=1);

2). for j=1, I4 with weight w4=7 and capacity
c4=0.125 is considered, it is allocated to the first (d=1)
machine;W [1]=w4=7, S(1)={I4};

3). for j=2, I3 with w3=4 (shorter duration than I2) and
capacity c3=0.25 is selected, it is allocated to the first machine
since it is sharable compatible with I4, W [1]=w4+w3=I1,
S(1)={I4, I3};

4). for j=3, I2 with w2=4 and capacity c2=0.5 is selected,
it is allocated to the first machine since it can share the
capacity, so W [1]=w3+w4+w2=i5, S(1)={I3, I4, I2};

5). for j=4, I5 with w5=2 (shorter duration than I1)
and capacity c5=0.5 is selected, it can share the capacity of
machine 1 with existing intervals, so it is allocated to machine
1, W [1]=w3+w4+w2+w5=17, S(1)={I3, I4, I2, I5};

6). for j=5, I1 with w1=2 and capacity c1=0.5 is selected,
it cannot share the capacity of machine 1 with other existing
intervals, so d=1+1=2 is allocated for it, W [2]=w1=2,
S(2)={I1};

7). for j=6, I6 with w1=1 and capacity c6=0.5 is selected,
it cannot share capacity with machine 1 but can share capacity
of machine 2, so it is allocated to machine 2, W [2]=w1+w6=3,
S(2)={I1, I6}. From above steps, it is shown that the optimal
subset is {I3, I4, I2, I5}, with total weight 17.

Theorem II.8. the time complexity of SAWIS algorithm as
shown in Fig.4 is O(nd) where n is the number of requests
(jobs) and d is the number of machines.

Proof: As shown in Fig.4, the algorithm firstly sorts
all intervals in non-increasing order of their weights (if two
requests have same weights, the one with shorter duration is
considered first, otherwise breaking ties arbitrarily), this takes
O(nlogn) time where n is the number of intervals (requests).
Then the algorithm finds sharing compatible intervals for all
intervals as shown in line 6 to line 12, this takes O(nd)
steps in worst case. The worst case is that all intervals have
largest required capacity, same start-time and finish-time. Then
all intervals are not sharing compatible, therefore finding a
machine for a job to allocate needs O(d) steps, n intervals
need O(nd) steps. Finally the algorithm find optimal solution
using a simple comparison with costs O(dlogd) time. So all
together the algorithm for WISWCS takes O(nd) time where
normally n > d.

For implementation of SAWIS, interval tree data structure
can be used. An interval tree is an ordered tree data structure
to hold intervals. It allows one to efficiently find all intervals
that overlap with any given interval or point. The trivial or
traditional solution (for example using arrays) is to visit each
interval and test whether it intersects the given point or interval,
which requires O(n2) time or higher, where n is the number of
intervals in the collection. Interval trees are dynamic, i.e., they
allow insertion and deletion of intervals. They obtain a query
time of O(logn) while the preprocessing time to construct
the data structure has tight bound O(nlogn), see for example
Cormen et al. [6].

Remarks: from algorithm SAWIS, Theorem II.7 and Theorem
II.8 we knows that:

• 1) if the total number of machines needed is d
and d=m (m is the total available resources), then
algorithm SAWIS can find optimal solutions for all
requests by using d resources;

• 2) if there are m < d available resources, algorithm
SAWIS also can find optimal solutions for all requests,
it sorts W by non-increasing order of their values and
records corresponding subsets S. The largest value of
W and corresponding subsets are the optimal solutions
for the first machine, the second largest value of W
and corresponding subsets are the optimal solutions
for the second machine, so on until the last one for
the d-th machine.

• 3) if there is only single resource, SAWIS in the
line 12 of Fig.4 uses a simple comparison to find
the largest value of W and corresponding subsets S,
which are optimal solutions for the single resource
(machine).

III. CONCLUSION AND FUTURE WORK

In this paper a new algorithm for weighted interval schedul-
ing with capacity sharing (WISWCS) is proposed for the
first time by considering divisible capacity and Capacity-
duration proportional weight. It is interesting to notice that
the proposed algorithm works for both single machine and
multiple machines cases. Our future work will investigate
scheduling problem where certain time of delay is allowed for
a number of requests, also other cases than divisible capacity,
Capacity-duration proportional weight, will be extended.
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