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Abstract: In general, load-balance scheduling is NP-
hard problem as proved in many open literatures. We
introduce an online load balancing resource scheduling 
algorithm (OLRSA) for Cloud datacenters considering 
real-time and multi-dimensional resources. Unlike 
traditional load balance scheduling algorithms which 
often consider only one factor such as the CPU load in 
physical servers, OLRSA treats CPU, memory and 
network bandwidth integrated for both physical 
machines and virtual machines. We develop and apply
integrated measurement for each server and a Cloud 
datacenter. Simulation results show that OLRSA has 
better performance than a few related load-balancing
algorithms with regard to total imbalance level, 
makespan, as well as overall load efficiency. 
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1 Introduction
One key technology playing an important role in Cloud 
data centers is resource scheduling. There are quite many 
researches conducted in load balance scheduling 
algorithms. Most of them are for load balancing of 
traditional web servers or server farms. One of the 
challenging scheduling problems in Cloud data centers is 
to consider allocation and migration of reconfigurable 
virtual machines and integrated features of hosting 
physical machines. Unlike traditional load balance 
scheduling algorithms, which consider only physical 
servers with one factor such as CPU, OLRSA treats CPU, 
memory and network bandwidth integrated for both 
physical machines (PMs) and virtual machines (VMs). 

The major contributions of this paper are:

� Providing a modeling approach to virtual 
machine scheduling problem with capacity 
sharing by modifying traditional interval 
scheduling problem and considering lifecycles
and multi-dimensional characteristics of both
VMs and PMs. 

� Designing and implementing an online load 
balancing scheduling algorithm with 
computational complexity and approximation 
analysis. 

� Providing performance evaluation of multiple
metrics such as makespan, load efficiency and 
imbalance value by simulating different 
algorithms. 

The remaining parts of this paper are organised as 
following: Section 2 discusses the related work on load 
balance algorithm. Section 3 introduces problem of 
formulation. Section 4 presents OLRSA algorithm in 
detail. Performance evaluation of different scheduling 
algorithms is shown in Section 5. Finally in Section 6, a 
conclusion is given.

2  Related works 
Andre et al. [1] discussed the detailed design of a data 
center. Armbrust et al. [2] summarized the key issues 
and solutions in Cloud computing. Foster et al. [3]
provided detailed comparison between Cloud computing 
and Grid computing. Buyya et al. Ref. [4] introduced a 
way to model and simulate Cloud computing 
environments. Wickremasinghe et al. [5] introduced 
three general scheduling algorithms for Cloud 
computing and provided simulation results. Wood et al. 
[6] introduced techniques for virtual machine migration 
and proposed some migration algorithms. Zhang [7]
compared major load balance scheduling algorithms for 
traditional Web servers. Singh et al. [8] proposed a novel 
load balance algorithm called VectorDot to deal with 
hierarchical and multi-dimensional resources constraints 
by considering both servers and storage in a Cloud. 
Arzuaga et al. [9] proposed a quantifying measure of 
load imbalance on virtualized enterprise servers. Tian et 
al. [10] provided a comparative study of major existing 
scheduling strategies and algorithms for Cloud data 
centers. Sun et al. [11] present a novel heuristic 
algorithm to gain approximate optimal solution based on 
integrated resource scheduling. Tian et al. [12] 
introduced a dynamic load balance scheduling algorithm
considering only current allocation period and multi-
dimensional resource but without considering life-cycles 
of both VMs and PMs. Li et al. [13] proposed a cloud 
task scheduling policy based on ant colony optimization 
algorithm to balance the entire system and to minimize
the makespan of a given task set. Galloway in Ref. [14]
introduced an online greedy algorithm, in which PMs 
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can be dynamic turned on and off but the life-cycle of a
VM is not considered. Hu et al. [15] stated an algorithm 
named Genetic, which calculates the history data and 
current states to choose an allocation. Ref. [16]
introduces load-balance techniques for VMware. 

3 Problem formulation

3. 1 Problem description and formulation
In this paper we model the VM allocations as a modified 
interval-scheduling problem (MISP) with fixed 
processing time. More explanation and analysis about 
traditional interval scheduling problems with fixed 
processing time can be found in Ref. [17] and references 
there in. We present a general formulation of modified
interval-scheduling problem and evaluate its results 
compared with well-known existing algorithms.

[Definition 1. Traditional interval scheduling 
problem (ISP) with fixed processing time]: A set of 
requests {1, 2, …, n} where the i-th request corresponds 
to an interval of time starting at si and finishing at fi , 
each request needs a capacity of 1, i.e. occupying the 
whole capacity of a machine during fixed processing 
time.

There are following assumptions:

1) All data are deterministic and unless otherwise 
specified, the time is formatted in slotted windows. As 
shown in Figure 2, we partition the total time period [0,T] 
into slots with equal length (s0), the total number of slots 
is k=T/s0. The start time si and finish time fi are integer 
numbers of one slot. Then the interval of a request can be 
represented in slot format with (start-time, finish-time). 

Figure 2 Time in slotted format

2) All tasks are independent. There are no precedence 
constraints other than those implied by the start and finish 
time. 

3) The required capacity of each request is a positive real 
number between (0,1]. Notice that the capacity of a single 
physical machine is normalized to be 1.

4) Assuming that, when processed, each VM request is 
assigned to a single physical machine. Thus interrupting a 
request and resuming it on another machine is not 
allowed, unless explicitly stated otherwise.

5) Each physical machine is always available, i.e., each 
�������	�
	�������
��	���������	��	���	�].

[Definition 2. Interval scheduling with capacity 
sharing (ISWCS)]: The only difference from traditional 
interval scheduling is that a resource (to be concrete, a 
physical machine) can be shared by different requests if 
the total capacity of all requests allocated on the single 
resource at any time does not surpass the total capacity
that the resource can provide.

[Definition 3. Sharing compatible intervals for 
ISWCS]: A subset of intervals with total required 

capacity does not surpass the total capacity of a physical 
machine at any time; therefore they can share the 
capacity of a PM.

The formulation of ISWCS can be described as follows. 
Given a set of m identical machines (PMs) PM1, PM2, ..., 
PMm and a set of n requests (VMs), each request has a 
processing time (consider only CPU processing for 
example), the objective of load balance is to assign each 
request to one of PMs so that the loads placed on all 
machines are balanced. 

[Theorem 1 The offline scheduling problem of 
finding an allocation of minimizing makespan in 
general case is NP-complete.

Remark: notice that Theorem 1 is considering offline 
load-balancing scheduling for single resource CPU on 
identical machines. When there are multiple resources to 
be considered and in heterogeneous case (like in this 
paper), the problem is more difficult and can be proved 
that it is NP-complete too (a detailed proof is provided in 
[17-18] by transforming the problem to 3-Dimensional 
matching problem or a multi-dimensional vector bin 
packing problem).

In this paper, each request needs only part of the whole 
capacity of a machine. So we redefine the makespan as 
capacity-makespan.

[Definition 4 Capacity-makespan] In any allocation of 
VM requests to PMs, we can let A(i) denote the set of 
VM requests allocated to machine PMi; under this 
allocation; machine PMi will have total load

Li = max j in A(i)  cj tj           (1)

where cj is the CPU requests of VMj and tj is the span of 
request j (i.e., the length of processing time of request j). 
The goal of load balancing is to minimize the maximum 
load (makespan) on any PM, L = maxi Li. Some other 
related metrics such as imbalance value and load 
efficiency are also considered and will be explained in 
the following section.

3.2 Metrics for load balancing scheduling 
algorithms
In this section, a few existing metrics and new metrics 
for load balancing scheduling will be presented.

Zheng et al. in Ref. [19] introduced an integrated load 
balance index and load balance algorithm: 

     (2)

where i is the index of PM and m is the ID of referred
PM, N1 is the capability of CPU, N2 is the parameter of 
memory, N3 refers to the parameter of bandwidth, C and 
M are the utilization of CPU and memory, D is the 
transferring rate of hard disk, Net is the network 
throughput, and a, b, c, d are the compared weighted 
value of CPU, memory, hard disk and network 
respectively and initialized as 1. The optimization goal is 
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finding the PM with the smallest B value to allocate 
requests.

For OLRSA algorithm, we take the following parameters 
into consideration:

1) PM resource: , is 
the index number of PM, are 
the CPU, memory, storage capacity of that a PM provides.

2)VM resource: 
, is 

the VM type ID, are the 

CPU, memory, storage requirements of VMj, 
are the start time and end time, which are used to 
represent the life cycle of a VM.

3) Time slot: we consider a time span from 0 to T be 
divided into parts with same length . Then parts
can be defined as , each 
time slot means the time span .

4) Average CPU utilization of PMi during some time 
period:

                         (3)

And memory ( ) and storage ( ) utilization of 
both PMs and VMs can be computed in the same way.
Similarly average CPU utilization of a VM can be 
computed.

5) Integrated load imbalance value ( ) of PMi. The 
variance is widely used as a measure of how far a set of 
values are spread out from each other in statistics. Using 
variance, an integrated load imbalance value ( ) of 
server is defined as:

      (4)

where 

                 (5)

and , , are respectively the 
average utilization of CPU, memory and storage in a 
Cloud data center. is applied to indicate load 
imbalance level comparing utilization of CPU, memory 
and network bandwidth of a single server itself. This 
metric is very similar to VMware DRS load balance
metric—standard deviation as presented in Ref. [6].

6) Makespan and capacity-makespan:

In this paper, we define the makespan as capacity-
makespan as given in Definition 4. Therefore the 

capacity-makespan of all PMs can be formulated as:

(6)

8) Load-efficiency (skew)

Load efficiency (skew) is defined as the (minimal 
average load /maximal average load) on all machines:

        (7)

Skew shows the load balancing efficiency to some degree.

9) Imbalance level (IBL)

Imbalance level of CPU is defined as: 

                    (8)

where is the average utilization of all CPUs in a 

data center. The imbalance level of memory 
and imbalance level of storage can be 
obtained in the same way. Then total imbalance level
of a data center is: 

        (9)

4 OLRSA algorithm
Figure 3 shows that the core process of OLRSA 
algorithm. For each request it firstly finds the PM with 
lowest average capacity-makespan, and a PM with next 
lowest average capacity-makespan would be turn-on
only if there is no enough resource left on the first PM,
so on so that all requests are allocated without rejection.

Figure 3 Pseudo code of OLRSA algorithm

Lemma 1. The computational complexity of OLRSA 
algorithm is O(nlogm) using priority queue data 
structure where n is the number of VM requests and m is 
the number of needed PMs.

Lemma 2. The approximation ratio (comparing to 
optimal solution) of OLRSA algorithm is (2-1/m) where 
m is the total number of machines [20].
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5  Performance evaluation
In this section, we compare simulation results of different 
scheduling algorithms regarding total energy 
consumption. 

5.1 Mythology and simulation setting
In this part, we will show the simulation results between 
the OLRSA algorithm and other existing algorithms. A 
Java discrete simulator is developed for this purpose. All 
simulations are conducted on a Pentium dual-core 
computer with 3.2GHz CPU and 2GB memory. 

We compare the simulation results of our proposed 
algorithm with three existing algorithms:

1) Random Algorithm (Random): a general scheduling 
algorithm by randomly allocating the VM requests to the 
PM that can provide resource required. 

2) Round-Robin (Round): a traditional load balancing 
scheduling algorithm by allocating the VM request one
by one to each PM in turn that can provide resource 
required.

3) ZHJZ algorithm: as defined in Ref. [19], it selects a
reference physical machine, and calculates the value 
and chooses the physical machines with the lowest 
value (as defined in Eq. (2)) and available resource to 
allocate virtual machines. 

We do the simulation with enough PM that would satisfy 
all the VM requests (in the situation with VMs 500 and 
max duration 800, the PM number is type-1 92, type-2
93, type-3 63) and VM numbers vary from 100 to 750
(each type approximately 1/8). And we do the simulation 
with request duration time from 100 to 800 time slots
(each slot is 5 seconds). The simulations for different 
algorithms are based on the same environment with 
same VM requests.

5.2  Simulation results and analysis

5.2.1 Random configuration of VMs and PMs

In this paper, we also adopt the following random
configuration of VMs and PMs as shown in Tables I and 
II. Note that one compute unit (CU) has equivalent CPU 
capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon 
processor [21].

Table I 8 types of virtual machine (VM) in Amazon EC2

Memory Compute Units Storage VM Type

1.0GB 2units 2GB 1-1 (1)

4GB 10 units 8GB 1-2 (2)

12.0GB 16 units 15GB 1-3 (3)

91GB 3 units 5GB 2-1 (4)

20.0GB 6 units 15GB 2-2 (5)

36GB 13 units 25GB 2-3 (6)

1GB 1 units 25GB 3-1 (7)

4.0GB 2 units 50GB 3.1 (8)

Table II 3 types of physical machine (PM)

PM Pool
Type

CPU
(Compute Units) Memory Storage

Type1 64units 120GB 200GB
Type2 96units 180GB 300GB
Type3 128units 240GB 400GB

To simplify the corresponding relationship mentioned in 
section 3, we use VM type1, 2, 3 corresponds PM type1, 
type 4, 5, 6 corresponds PM type2 and VM 7, 8 
corresponds VM type 4. 

1) Fixing the total number of VM requests but vary 
their max durations

Figure 4 Imbalance value comparison when varying max
duration of VMs

Figures 4 to 6 show the imbalance level, capacity-
makespan and skew results respectively when fixing the
total number of VM requests as 500 but varying the max 
duration of all VMs. From these figures, we can notice 
that OLRSA algorithm shows a better performance, as 
for imbalance level and makespan,
Random>Round>Benchmark>OLRSA, as for skew, 
OLRSA is the larger than other three algorithms.

Figure 5 Capacity-makespan comparison when varying max
duration of VMs (maximum is normalized to 1)

Figure 6 Skew comparison when varying max duration of VMs
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2) Fixing max duration but varying the number of 
VM requests

Similar results are obtained. Because of page limit, we 
omit the details.

6 Discussion and conclusions
In this paper, we proposed an online load balance
resource scheduling algorithm (OLRSA) to solve the
real-time multi-dimensional resource scheduling 
problem in Cloud data centers. Simulations have shown 
that OLRSA has a better performance than a few 
existing algorithms at imbalance level, makespan and 
skew. We are comparing more algorithms with OLRSA
and considering many scenarios. Besides, an approach is 
under study to combine load balance and energy-saving.

Acknowledgment
This research is sponsored by the National Natural Science 
Foundation of China (NSFC) Grant 61150110486. 

References
[1] L. Andre, et al.,The Data center as a Computer: An

Introduction to the Design of Warehouse-Scale Machines,
Ebook. 2009.

[2] M. Armbrust et al., Above the Coulds: A Berkeley View 
of Cloud Computing, technical report, 2009.

[3] I. Foster, Y. ZHAO, I. RAICU, S. Lu, Cloud Computing 
and Grid Computing 360-Degree Compared, IEEE 
International Workshop on Grid Computing 
Environments (GCE) 2008, co-located with IEEE/ACM 
Supercomputing 2008.

[4] R. Buyya., R. Ranjan, , R.N. Calhiros, Modeling and 
Simulation of Scalable Cloud computing environments 
and the CloudSim tookit: Challenges and opportunities,
High Performance Computing & Simulation, 2009. 
International Conference on HPCS ’09.

[5] B. Wickremasinghe et al., CloudAnalyst: A CloudSim-
based Tool for Modelling and Analysis of Large Scale 
Cloud Computing Environments, Proceedings of the 24th 
IEEE International Conference on Advanced Information 
Networking and Applications (AINA 2010), 
Perth,Australia, April 20-23, 2010.

[6] T. Wood, et. al., Black-box and Gray-box Strategies for 
Virtual Machine Migration, in the proceedings of Symp. 
on Networked Systems Design and Implementation 
(NSDI), 2007.

[7] W. Zhang, Research and Implementation of Elastic 
Network Service, PhD dissertation, National University of 
Defense Technology, China (in Chinese) 2000.

[8] A. Singh, M. Korupolu, D. Mohapatra, Server-Storage 
Virtualization: Integration and Load balancing in Data 
Centers, International Conference for High Performance 
Computing, Networking, Storage and Analysis, 2008.

[9] E. Arzuaga, D. R. Kaeli, Quantifying load imbalance on 
virtualized enterprise servers, in the proceedings of 
WOSP/SIPEW’10, January 28-30, 2010, San Jose, 
California, USA.

[10] W. Tian, Adaptive Dimensioning of Cloud Data Centers: 
In the proceeding of the 8th IEEE International 
Conference on Dependable, Automatic and Secure 
Computing, DACS 2009.

[11] X. Sun, P. Xu, K. Shuang, et al., Multi-Dimensional 
Aware Scheduling for Co-optimizing Utilization in Data 
Center, China Communications 2011 8(6), 19-27.

[12] W. Tian, C.Jing, J.Hu, Analysis of resource allocation and
scheduling policies in Cloud datacenter, in the 
proceedings of the IEEE 3rd International Conference on 
Networks Security Wireless Communications and Trusted 
Computing. March 2011.

[13] K. Li, G. Xu, G. Zhao,et al., Cloud Task Scheduling 
Based on Load Balancing Ant Colony Optimization, 
chinagrid, pp.3-9, 2011 Sixth Annual ChinaGrid 
Conference, 2011.

[14] J. M. Galloway, K. L. Smith, S. S. Vrbsky, Power Aware 
Load Balancing for Cloud Computing, Proceedings of the 
World Congress on Engineering and Computer Science 
2011 Vol I WCECS 2011, October 19-21, 2011.

[15] J. Hu; J.a Gu; G. Sun, et al., A Scheduling Strategy on 
Load Balancing of Virtual Machine Resources in Cloud 
Computing Environment, Parallel  Architectures, 
Algorithms and Programming (PAAP), 2010 Third 
International Symposium on, vol., no., pp.89-96, 18-20
Dec.2010.

[16] A. Gulati, G. Shanmuganathan, A. Holler, I. Ahmad, 
Cloud-scale resource management: challenges and 
techniques, VMware Technical Journal, 2011.

[17] J. Kleinberg, E. Tardos, Algorithm Design, Pearson 
Education Inc., 2005.

[18] E. G. Coffman Jr., M. R. Garey, and D. S. Johnson, Bin-
Packing with Divisible Item Sizes,  J. Complexity 3(1987), 
406-428.

[19] H. Zheng, L. Zhou, J. Wu, Design and Implementation of 
Load Balancing in Web Server Cluster System, Journal of 
Nanjing University of Aeronautics & Astronautics, Vol.38 
No. 3 Jun. 2006.

[20] R.L. Graham. Bounds for certain multiprocessing 
anomalies. SIAM J. Applied Mathematics 17 (1969), 263-
269.

[21] Amazon, Amazon Elastic Compute Cloud, 
http://aws.amazon.com/ec2/, 2011.


