
Proceedings of IEEE CCIS2012

AN ONLINE LOAD BALANCING SCHEDULING
ALGORITHM FOR CLOUD DATA CENTERS

CONSIDERING REAL-TIME MULTI-DIMENSIONAL
RESOURCE

Minxian Xu, Wenhong Tian

School of Information and Software Engineering,
University of Electronic Science and Technology of China, Chengdu 610054, China

xmxyt900@gmail.com, tian_wenhong@uestc.edu.cn

Abstract: In general, load-balance scheduling is NP-
hard problem as proved in many open literatures. We
introduce an online load balancing resource scheduling
algorithm (OLRSA) for Cloud datacenters considering
real-time and multi-dimensional resources. Unlike
traditional load balance scheduling algorithms which
often consider only one factor such as the CPU load in
physical servers, OLRSA treats CPU, memory and
network bandwidth integrated for both physical
machines and virtual machines. We develop and apply
integrated measurement for each server and a Cloud
datacenter. Simulation results show that OLRSA has
better performance than a few related load-balancing
algorithms with regard to total imbalance level,
makespan, as well as overall load efficiency.

Keywords: Cloud computing; Load balance; On-line
resource scheduling algorithm; Cloud data centers

1 Introduction
One key technology playing an important role in Cloud
data centers is resource scheduling. There are quite many
researches conducted in load balance scheduling
algorithms. Most of them are for load balancing of
traditional web servers or server farms. One of the
challenging scheduling problems in Cloud data centers is
to consider allocation and migration of reconfigurable
virtual machines and integrated features of hosting
physical machines. Unlike traditional load balance
scheduling algorithms, which consider only physical
servers with one factor such as CPU, OLRSA treats CPU,
memory and network bandwidth integrated for both
physical machines (PMs) and virtual machines (VMs).

The major contributions of this paper are:

� Providing a modeling approach to virtual
machine scheduling problem with capacity
sharing by modifying traditional interval
scheduling problem and considering lifecycles
and multi-dimensional characteristics of both
VMs and PMs.

� Designing and implementing an online load
balancing scheduling algorithm with
computational complexity and approximation
analysis.

� Providing performance evaluation of multiple
metrics such as makespan, load efficiency and
imbalance value by simulating different
algorithms.

The remaining parts of this paper are organised as
following: Section 2 discusses the related work on load
balance algorithm. Section 3 introduces problem of
formulation. Section 4 presents OLRSA algorithm in
detail. Performance evaluation of different scheduling
algorithms is shown in Section 5. Finally in Section 6, a
conclusion is given.

2 Related works
Andre et al. [1] discussed the detailed design of a data
center. Armbrust et al. [2] summarized the key issues
and solutions in Cloud computing. Foster et al. [3]
provided detailed comparison between Cloud computing
and Grid computing. Buyya et al. Ref. [4] introduced a
way to model and simulate Cloud computing
environments. Wickremasinghe et al. [5] introduced
three general scheduling algorithms for Cloud
computing and provided simulation results. Wood et al.
[6] introduced techniques for virtual machine migration
and proposed some migration algorithms. Zhang [7]
compared major load balance scheduling algorithms for
traditional Web servers. Singh et al. [8] proposed a novel
load balance algorithm called VectorDot to deal with
hierarchical and multi-dimensional resources constraints
by considering both servers and storage in a Cloud.
Arzuaga et al. [9] proposed a quantifying measure of
load imbalance on virtualized enterprise servers. Tian et
al. [10] provided a comparative study of major existing
scheduling strategies and algorithms for Cloud data
centers. Sun et al. [11] present a novel heuristic
algorithm to gain approximate optimal solution based on
integrated resource scheduling. Tian et al. [12]
introduced a dynamic load balance scheduling algorithm
considering only current allocation period and multi-
dimensional resource but without considering life-cycles
of both VMs and PMs. Li et al. [13] proposed a cloud
task scheduling policy based on ant colony optimization
algorithm to balance the entire system and to minimize
the makespan of a given task set. Galloway in Ref. [14]
introduced an online greedy algorithm, in which PMs

978-1-4673-1857-0/12/$31.00 ©2012 IEEE

Proceedings of IEEE CCIS2012

can be dynamic turned on and off but the life-cycle of a
VM is not considered. Hu et al. [15] stated an algorithm
named Genetic, which calculates the history data and
current states to choose an allocation. Ref. [16]
introduces load-balance techniques for VMware.

3 Problem formulation

3. 1 Problem description and formulation
In this paper we model the VM allocations as a modified
interval-scheduling problem (MISP) with fixed
processing time. More explanation and analysis about
traditional interval scheduling problems with fixed
processing time can be found in Ref. [17] and references
there in. We present a general formulation of modified
interval-scheduling problem and evaluate its results
compared with well-known existing algorithms.

[Definition 1. Traditional interval scheduling
problem (ISP) with fixed processing time]: A set of
requests {1, 2, …, n} where the i-th request corresponds
to an interval of time starting at si and finishing at fi ,
each request needs a capacity of 1, i.e. occupying the
whole capacity of a machine during fixed processing
time.

There are following assumptions:

1) All data are deterministic and unless otherwise
specified, the time is formatted in slotted windows. As
shown in Figure 2, we partition the total time period [0,T]
into slots with equal length (s0), the total number of slots
is k=T/s0. The start time si and finish time fi are integer
numbers of one slot. Then the interval of a request can be
represented in slot format with (start-time, finish-time).

Figure 2 Time in slotted format

2) All tasks are independent. There are no precedence
constraints other than those implied by the start and finish
time.

3) The required capacity of each request is a positive real
number between (0,1]. Notice that the capacity of a single
physical machine is normalized to be 1.

4) Assuming that, when processed, each VM request is
assigned to a single physical machine. Thus interrupting a
request and resuming it on another machine is not
allowed, unless explicitly stated otherwise.

5) Each physical machine is always available, i.e., each
�������	�
	�������
��	���������	��	���	�].

[Definition 2. Interval scheduling with capacity
sharing (ISWCS)]: The only difference from traditional
interval scheduling is that a resource (to be concrete, a
physical machine) can be shared by different requests if
the total capacity of all requests allocated on the single
resource at any time does not surpass the total capacity
that the resource can provide.

[Definition 3. Sharing compatible intervals for
ISWCS]: A subset of intervals with total required

capacity does not surpass the total capacity of a physical
machine at any time; therefore they can share the
capacity of a PM.

The formulation of ISWCS can be described as follows.
Given a set of m identical machines (PMs) PM1, PM2, ...,
PMm and a set of n requests (VMs), each request has a
processing time (consider only CPU processing for
example), the objective of load balance is to assign each
request to one of PMs so that the loads placed on all
machines are balanced.

[Theorem 1 The offline scheduling problem of
finding an allocation of minimizing makespan in
general case is NP-complete.

Remark: notice that Theorem 1 is considering offline
load-balancing scheduling for single resource CPU on
identical machines. When there are multiple resources to
be considered and in heterogeneous case (like in this
paper), the problem is more difficult and can be proved
that it is NP-complete too (a detailed proof is provided in
[17-18] by transforming the problem to 3-Dimensional
matching problem or a multi-dimensional vector bin
packing problem).

In this paper, each request needs only part of the whole
capacity of a machine. So we redefine the makespan as
capacity-makespan.

[Definition 4 Capacity-makespan] In any allocation of
VM requests to PMs, we can let A(i) denote the set of
VM requests allocated to machine PMi; under this
allocation; machine PMi will have total load

Li = max j in A(i) cj tj (1)

where cj is the CPU requests of VMj and tj is the span of
request j (i.e., the length of processing time of request j).
The goal of load balancing is to minimize the maximum
load (makespan) on any PM, L = maxi Li. Some other
related metrics such as imbalance value and load
efficiency are also considered and will be explained in
the following section.

3.2 Metrics for load balancing scheduling
algorithms
In this section, a few existing metrics and new metrics
for load balancing scheduling will be presented.

Zheng et al. in Ref. [19] introduced an integrated load
balance index and load balance algorithm:

 (2)

where i is the index of PM and m is the ID of referred
PM, N1 is the capability of CPU, N2 is the parameter of
memory, N3 refers to the parameter of bandwidth, C and
M are the utilization of CPU and memory, D is the
transferring rate of hard disk, Net is the network
throughput, and a, b, c, d are the compared weighted
value of CPU, memory, hard disk and network
respectively and initialized as 1. The optimization goal is

m

i

mm

ii

mm

ii

mm

ii

Net
Net

d
DN
DN

c
MN
MN

b
CN
CN

aB ��
�
�

��
�
�

��
�
�

��
3

3

2

2

1

1

Proceedings of IEEE CCIS2012

finding the PM with the smallest B value to allocate
requests.

For OLRSA algorithm, we take the following parameters
into consideration:

1) PM resource: , is
the index number of PM, are
the CPU, memory, storage capacity of that a PM provides.

2)VM resource:
, is

the VM type ID, are the

CPU, memory, storage requirements of VMj,
are the start time and end time, which are used to
represent the life cycle of a VM.

3) Time slot: we consider a time span from 0 to T be
divided into parts with same length . Then parts
can be defined as , each
time slot means the time span .

4) Average CPU utilization of PMi during some time
period:

 (3)

And memory () and storage () utilization of
both PMs and VMs can be computed in the same way.
Similarly average CPU utilization of a VM can be
computed.

5) Integrated load imbalance value () of PMi. The
variance is widely used as a measure of how far a set of
values are spread out from each other in statistics. Using
variance, an integrated load imbalance value () of
server is defined as:

 (4)

where

 (5)

and , , are respectively the
average utilization of CPU, memory and storage in a
Cloud data center. is applied to indicate load
imbalance level comparing utilization of CPU, memory
and network bandwidth of a single server itself. This
metric is very similar to VMware DRS load balance
metric—standard deviation as presented in Ref. [6].

6) Makespan and capacity-makespan:

In this paper, we define the makespan as capacity-
makespan as given in Definition 4. Therefore the

capacity-makespan of all PMs can be formulated as:

(6)

8) Load-efficiency (skew)

Load efficiency (skew) is defined as the (minimal
average load /maximal average load) on all machines:

 (7)

Skew shows the load balancing efficiency to some degree.

9) Imbalance level (IBL)

Imbalance level of CPU is defined as:

 (8)

where is the average utilization of all CPUs in a

data center. The imbalance level of memory
and imbalance level of storage can be
obtained in the same way. Then total imbalance level
of a data center is:

 (9)

4 OLRSA algorithm
Figure 3 shows that the core process of OLRSA
algorithm. For each request it firstly finds the PM with
lowest average capacity-makespan, and a PM with next
lowest average capacity-makespan would be turn-on
only if there is no enough resource left on the first PM,
so on so that all requests are allocated without rejection.

Figure 3 Pseudo code of OLRSA algorithm

Lemma 1. The computational complexity of OLRSA
algorithm is O(nlogm) using priority queue data
structure where n is the number of VM requests and m is
the number of needed PMs.

Lemma 2. The approximation ratio (comparing to
optimal solution) of OLRSA algorithm is (2-1/m) where
m is the total number of machines [20].

),,,(iiii PStoragePMemPCPUiPM i

iii PStoragePMemPCPU ,,

),,,,,.(end
j

start
jjjjj TTPStoragePMemVCPUjVM j

jjj VStorageVMemVCPU ,,
end
j

start
j TT ,

n 0S n
)](),...,(),[(11201 ���� nn tttttt

kT)(1�� kk tt

�

�

�

�

�

� n

k
k

n

k
k

T
i

U
i

T

TPCPU
PCPU

k

0

0

)(

U
iPMem U

iPStorage

iILB

iILB
i

A
uMEM

iILB

)
3

max(
U
i

U
i

U
i PStoragePMemPCPUmakespan ��

�

)max(
)min(

U
i

U
i

U
i

U
i

U
i

U
i

PStoragePMemPCPU
PStoragePMemPCPUskew

��

��
�

n

PCPUPCPU
IBD

n

i
avg

U
i

cpu

�
�

�

� 0

2)(

memIBD

storageIBD

storagememcputotal IBDIBDIBDIBD ���

Proceedings of IEEE CCIS2012

5 Performance evaluation
In this section, we compare simulation results of different
scheduling algorithms regarding total energy
consumption.

5.1 Mythology and simulation setting
In this part, we will show the simulation results between
the OLRSA algorithm and other existing algorithms. A
Java discrete simulator is developed for this purpose. All
simulations are conducted on a Pentium dual-core
computer with 3.2GHz CPU and 2GB memory.

We compare the simulation results of our proposed
algorithm with three existing algorithms:

1) Random Algorithm (Random): a general scheduling
algorithm by randomly allocating the VM requests to the
PM that can provide resource required.

2) Round-Robin (Round): a traditional load balancing
scheduling algorithm by allocating the VM request one
by one to each PM in turn that can provide resource
required.

3) ZHJZ algorithm: as defined in Ref. [19], it selects a
reference physical machine, and calculates the value
and chooses the physical machines with the lowest
value (as defined in Eq. (2)) and available resource to
allocate virtual machines.

We do the simulation with enough PM that would satisfy
all the VM requests (in the situation with VMs 500 and
max duration 800, the PM number is type-1 92, type-2
93, type-3 63) and VM numbers vary from 100 to 750
(each type approximately 1/8). And we do the simulation
with request duration time from 100 to 800 time slots
(each slot is 5 seconds). The simulations for different
algorithms are based on the same environment with
same VM requests.

5.2 Simulation results and analysis

5.2.1 Random configuration of VMs and PMs

In this paper, we also adopt the following random
configuration of VMs and PMs as shown in Tables I and
II. Note that one compute unit (CU) has equivalent CPU
capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon
processor [21].

Table I 8 types of virtual machine (VM) in Amazon EC2

Memory Compute Units Storage VM Type

1.0GB 2units 2GB 1-1 (1)

4GB 10 units 8GB 1-2 (2)

12.0GB 16 units 15GB 1-3 (3)

91GB 3 units 5GB 2-1 (4)

20.0GB 6 units 15GB 2-2 (5)

36GB 13 units 25GB 2-3 (6)

1GB 1 units 25GB 3-1 (7)

4.0GB 2 units 50GB 3.1 (8)

Table II 3 types of physical machine (PM)

PM Pool
Type

CPU
(Compute Units) Memory Storage

Type1 64units 120GB 200GB
Type2 96units 180GB 300GB
Type3 128units 240GB 400GB

To simplify the corresponding relationship mentioned in
section 3, we use VM type1, 2, 3 corresponds PM type1,
type 4, 5, 6 corresponds PM type2 and VM 7, 8
corresponds VM type 4.

1) Fixing the total number of VM requests but vary
their max durations

Figure 4 Imbalance value comparison when varying max
duration of VMs

Figures 4 to 6 show the imbalance level, capacity-
makespan and skew results respectively when fixing the
total number of VM requests as 500 but varying the max
duration of all VMs. From these figures, we can notice
that OLRSA algorithm shows a better performance, as
for imbalance level and makespan,
Random>Round>Benchmark>OLRSA, as for skew,
OLRSA is the larger than other three algorithms.

Figure 5 Capacity-makespan comparison when varying max
duration of VMs (maximum is normalized to 1)

Figure 6 Skew comparison when varying max duration of VMs

B
B

Proceedings of IEEE CCIS2012

2) Fixing max duration but varying the number of
VM requests

Similar results are obtained. Because of page limit, we
omit the details.

6 Discussion and conclusions
In this paper, we proposed an online load balance
resource scheduling algorithm (OLRSA) to solve the
real-time multi-dimensional resource scheduling
problem in Cloud data centers. Simulations have shown
that OLRSA has a better performance than a few
existing algorithms at imbalance level, makespan and
skew. We are comparing more algorithms with OLRSA
and considering many scenarios. Besides, an approach is
under study to combine load balance and energy-saving.

Acknowledgment
This research is sponsored by the National Natural Science
Foundation of China (NSFC) Grant 61150110486.

References
[1] L. Andre, et al.,The Data center as a Computer: An

Introduction to the Design of Warehouse-Scale Machines,
Ebook. 2009.

[2] M. Armbrust et al., Above the Coulds: A Berkeley View
of Cloud Computing, technical report, 2009.

[3] I. Foster, Y. ZHAO, I. RAICU, S. Lu, Cloud Computing
and Grid Computing 360-Degree Compared, IEEE
International Workshop on Grid Computing
Environments (GCE) 2008, co-located with IEEE/ACM
Supercomputing 2008.

[4] R. Buyya., R. Ranjan, , R.N. Calhiros, Modeling and
Simulation of Scalable Cloud computing environments
and the CloudSim tookit: Challenges and opportunities,
High Performance Computing & Simulation, 2009.
International Conference on HPCS ’09.

[5] B. Wickremasinghe et al., CloudAnalyst: A CloudSim-
based Tool for Modelling and Analysis of Large Scale
Cloud Computing Environments, Proceedings of the 24th
IEEE International Conference on Advanced Information
Networking and Applications (AINA 2010),
Perth,Australia, April 20-23, 2010.

[6] T. Wood, et. al., Black-box and Gray-box Strategies for
Virtual Machine Migration, in the proceedings of Symp.
on Networked Systems Design and Implementation
(NSDI), 2007.

[7] W. Zhang, Research and Implementation of Elastic
Network Service, PhD dissertation, National University of
Defense Technology, China (in Chinese) 2000.

[8] A. Singh, M. Korupolu, D. Mohapatra, Server-Storage
Virtualization: Integration and Load balancing in Data
Centers, International Conference for High Performance
Computing, Networking, Storage and Analysis, 2008.

[9] E. Arzuaga, D. R. Kaeli, Quantifying load imbalance on
virtualized enterprise servers, in the proceedings of
WOSP/SIPEW’10, January 28-30, 2010, San Jose,
California, USA.

[10] W. Tian, Adaptive Dimensioning of Cloud Data Centers:
In the proceeding of the 8th IEEE International
Conference on Dependable, Automatic and Secure
Computing, DACS 2009.

[11] X. Sun, P. Xu, K. Shuang, et al., Multi-Dimensional
Aware Scheduling for Co-optimizing Utilization in Data
Center, China Communications 2011 8(6), 19-27.

[12] W. Tian, C.Jing, J.Hu, Analysis of resource allocation and
scheduling policies in Cloud datacenter, in the
proceedings of the IEEE 3rd International Conference on
Networks Security Wireless Communications and Trusted
Computing. March 2011.

[13] K. Li, G. Xu, G. Zhao,et al., Cloud Task Scheduling
Based on Load Balancing Ant Colony Optimization,
chinagrid, pp.3-9, 2011 Sixth Annual ChinaGrid
Conference, 2011.

[14] J. M. Galloway, K. L. Smith, S. S. Vrbsky, Power Aware
Load Balancing for Cloud Computing, Proceedings of the
World Congress on Engineering and Computer Science
2011 Vol I WCECS 2011, October 19-21, 2011.

[15] J. Hu; J.a Gu; G. Sun, et al., A Scheduling Strategy on
Load Balancing of Virtual Machine Resources in Cloud
Computing Environment, Parallel Architectures,
Algorithms and Programming (PAAP), 2010 Third
International Symposium on, vol., no., pp.89-96, 18-20
Dec.2010.

[16] A. Gulati, G. Shanmuganathan, A. Holler, I. Ahmad,
Cloud-scale resource management: challenges and
techniques, VMware Technical Journal, 2011.

[17] J. Kleinberg, E. Tardos, Algorithm Design, Pearson
Education Inc., 2005.

[18] E. G. Coffman Jr., M. R. Garey, and D. S. Johnson, Bin-
Packing with Divisible Item Sizes, J. Complexity 3(1987),
406-428.

[19] H. Zheng, L. Zhou, J. Wu, Design and Implementation of
Load Balancing in Web Server Cluster System, Journal of
Nanjing University of Aeronautics & Astronautics, Vol.38
No. 3 Jun. 2006.

[20] R.L. Graham. Bounds for certain multiprocessing
anomalies. SIAM J. Applied Mathematics 17 (1969), 263-
269.

[21] Amazon, Amazon Elastic Compute Cloud,
http://aws.amazon.com/ec2/, 2011.

