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Abstract. In this paper, we consider a fundamental traffic grooming
problem in optical line-system: the number of total links with lengths
and the max number of wavelengths (capacity) of each fiber are given,
also a set of demands (jobs) and their routes are fixed so that the load of
each link is known, the problem is to construct a set of fiber intervals so
that the total fiber length is minimized (called Fiber Lengths Minimiza-
tion problem or FLM for abbreviation). It is known that FLM problem is
NP-complete in general. In this paper, we propose a 2-approximation al-
gorithm, Longest Link interval First (LLF), which is better than existing
best known bound.

Keywords: Traffic Grooming, Fiber Lengths Minimization problem,
Minimizing Total Fiber Length, Longest Link interval First (LLF).

1 Introduction

In optical network design, decomposing the network into a set of optical line
systems is one way of avoiding the expensive O-E-O (optical to electrical to op-
tical) conversion [13]. In this way, system becomes transparent, only demands
between different linesystems need O-E-O conversion; also routing is not neces-
sary in this case since wavelength assignment problem can be solved separately
in each linesystem. All-optical networks have been extensively studied in recent
years, especially for the core networks. A logical path formed by a signal trav-
eling from its source to its destination using a unique wavelength is termed a
lightpath. If the nodes have no conversion capability, then the requirement that
the same wavelength must be used on all the links along the selected route is
known as the wavelength continuity constraint and makes networking signifi-
cantly different from conventional circuit switched networks. Our work assumes
that the nodes are not capable of wavelength conversion.

The network usually supports traffic that is at rates that are lower than the
full wavelength capacity, and therefore the network operator has to be able to put
together (groom) low-capacity connections into the high capacity lightpaths. The
network operator often has to groom low-capacity demands into high capacity
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fibers to save cost (energy and equipment costs etc.). This can be viewed as
assigning colors to the lightpaths so that at most g of them can share the same
fiber, where g ≥ 1 is the capacity of a single fiber. This grooming problem is one
of very important issues in optimizing costs for optical networks.With MOADMs
(mesh optical add/drop multiplexer), there is polynomial time solution for this
problem [13].

Without MOADMs, the linesystem can be treated as a collection of fibers
each of which occupies an interval of the line, the problem is called packing
intervals in intervals, which is NP-complete (see a proof given in [13]; in this
case, each demand must be assigned not only a wavelength but also a fiber
which covers the intended interval; deploying fiber satisfying all demands but
minimizing total length (MinLength) of fibers is NP-hard when total number of
wavelength (µ) is larger than 1. In this paper, the case without MOADMs and
wavelength conversion is considered. The book [3] provides many research results
about scheduling algorithms that may be applied in job allocations. The paper
[13] discusses wavelength assignment and generalized interval graph coloring and
provides NP-complete proof for the problem. [8] reviews recent research into
the energy-efficiency in optical networks. [7] summarizes recent technologies for
reducing the power consumption of optical access networks. [9] [5] discusses the
regenerator placement and routing in translucent optical networks. [4] provides
approximating solution for traffic grooming with respect to ADMs and OADMs.
[2] provides a (logM) and (logµ) -approximation algorithms for minimizing total
number of fibers where M is the number of links in this system. [6] proposes
a general 4-approximation algorithm for minimizing total number of OADMs.
[10] discusses the online version of this scheduling problem. In this paper, 2-
approximation algorithm is proposed.

2 Problem Formulation

The problem can be formally stated as follows: an optical line-system has n links
e1, e2, . . . , en, with link ei carrying fibers and each fiber can carry g wavelengths,
the length of link ei is Li. Represent a demand by [i, j] for i ≤ j if it requires links
ei, . . . , ej; the set of demands (jobs) will be denoted by D. The load li = l(ei)
on link ei is the minimum number of fibers required to carry all the demands on
link ei, where di is the number of demands on link ei. Consider demands D are
given, together with link lengths, the objective is to construct a set F of fiber
intervals of minimum total length which can satisfy D, it is called Fiber Lengths
Minimization problem (FLM problem for abbreviation).

Theorem 1. The lower bound for FLM problem is the sum of the minimum
number of fibers used on each link multiplies the length of each link.

Proof: For a given set of jobs J and demands D, we can find the minimum
number of fibers needed for each link, denoted as li, l2, . . . , lk,

li = l(ei) = �di
g
� (1)
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for total k links under consideration, where li is the minimum number of fibers
needed for link ei. Then ideally, the min length of all fibers is the sum of (the
minimum number of fibers used in each link) multiplies (the length of each link
(denoted as Li)), i. e. :

MinLength(OPT ) =

n∑

i

liLi (2)

Example 1: As shown in Fig.1. , there are four requests j1 to j4 and three

Fig. 1. An example of MinLength problem

links e1, e2, e3. j1, j2 and j3 pass through link e1, e2 and e3; j4 passes through
link e2. Each fiber has wavelengths (capacity) g = 3. Therefore, the lower bound
of total number of fibers needed on link e1 to e3 is 1, 2, 1 respectively; and the
total length of all fibers is (L1+2L2+L3 = l1L1+ l2L2+ l3L3), i. e., the sum of
(the minimum number of fibers used in each link) multiplies (the length of each
link (denoted as Li)).

Observation 1: The lower bound for FLM problem is to allocate exactly �d
g �

number of fibers to each link, where di is the fiber length on link i.

Remark 1: The lower bound is not easy to achieve. One way to achieve this
is to apply First Fit Decreasing (FFD) algorithm in [6] to sort all requests in
non-increasing order of their spans, and allocate the subset of longest span jobs
first. By sorting all requests in non-increasing order of their spans and allocate
the subset of longest span jobs first, the long span jobs will not be distributed to
too many other fibers, so that the total fiber length may be minimized. However,
FFD may not work well in some cases. It is shown that FFD has approximation
ratio 4 in the worst case [6].

In the following, we consider that the nodes have no wavelength conversion
capability. The paper [6] showed that it is NP-hard to approximate our problem
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already in special case where all jobs have the same span and can be allocated
on one fixed link, by a simple reduction from the subset sum problem. To see
the hardness of the FLM problem, THEOREM 2 is given as follows:

Theorem 2. FLM problem is NP-complete problem in general case.

We sketch a simpler proof than [10] as follows:
Proof: In the following, we show that the well-known NP-complete problem, K-
PARTITION problem can be reducing to FLM problem in polynomial time. K-
PARTITION problem is well-known NP-complete (see [3] and reference therein):
for a given arrangement S of positive numbers and an integerK. Partition S into
K ranges so as to sums of all the ranges are close to each other. K-PARTITION
problem can be reduced to our FLM problem as follows. For a set of jobs J , each
has capacity demand and span constraints (set as positive numbers), partitioning
J by their capacities into K ranges, is the same to allocate K ranges of jobs with
capacity constraint g (i.e. the sum of each range is at most g). On the other hand,
if there is a solution to K-PARTITION for a given set of intervals, there exists
a schedule for the given set of numbers. Since K-PARTITION is NP-hard in the
strong sense, our problem is also NP-hard. In this way, we have found that that
our FLM problem is NP-complete problem.

Definition 1. Approximation ratio: an offline deterministic algorithm is said
to be C-approximation for the objective if it obtains results in a polynomial time
at most C times that of an optimal solution.

Since the general FLM problem is NP-complete, in the following, we propose an
efficient approximation algorithm.

3 The Approximation Algorithm: Longest Link Interval
First

In this section, a 2-approximation algorithm called Longest Link interval First
(LLF) is introduced. The LLF algorithm is described in Algorithm 3.1. The LLF
algorithm allocates the requests from the longest link interval to the shortest
interval. Each job is scheduled to the first fiber which can fit. This algorithm has
computational complexity O(N max(M, logN)) where N is the number of jobs
and M is the number of fibers needed on any link. Because The LLF algorithm
firstly sorts all jobs (requests) in non-decreasing order of their start points (line
1), this takes O(NlogN) time. The load of each link is represented by min
number of fibers needed (line 2-4). Then the algorithm finds a fiber for a request
needs O(M) steps where M is the min number of fibers need on any link (line
5-12), N jobs altogether need O(MN) steps. Therefore, the entire algorithm
takes O(N max(M, logN)) time where normally N > M .

Example 2:As shown in Fig. 1 where each fiber can carry max g=3 wavelengths.
Without loss of generality, assuming that link length L2 > L1 = L3. According
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Input: A job (demand) instance J = {j1, j2, . . . , jn}, and the max capacity g of
a fiber (g is the grooming papameter)

Output: The allocated jobs and total length of all fibers
1 Sort all jobs in non-decreasing order of their start-points (si for job i), such that

s1 ≤ s2... ≤ sn, set f=1 forall the links under consideration do
2 represent load of link ei by the min number of fibers needed, denoted as li

(take integral value by ceiling function).
3 end
4 forall the jobs under consideration do
5 Find the longest continuous link interval with same load first, denoted as

[z1, z2]; If two link interval have same length, consider larger load first
forall the jobs ended or started in [z1, z2] do

6 always consider the longest job when other parameters are the same;
7 allocate to the first fiber which can fit, use a new fiber and set f=f+1 if

needed
8 end
9 remove allocated jobs, update load of each link

10 end
11 Count load of all links and total length of all fibers.

Algorithm 3.1: Longest Load First Algorithm

to LLF algorithm, j4 is allocated firstly to the first fiber on link e2 since the
longest link interval is on it, j2 and j3 are also allocated to the first fiber on link
e2 since j1, j2 and j3 have the same start-point and length. j1 is then allocated
to another fiber on link e2 since g=3 on any fiber. Notice that j1, j2 and j3 can
be allocated in any order in this case.

Theorem 3. The approximation ratio of our proposed Longest link interval
First(LLF) algorithm for FLM problem has an upper bound 2.

Proof : We provide a proof by induction. Consider there are n requests and a
fiber can carry g wavelengths.

1. Since one fiber can host at most g requests, let firstly consider n=g + 1,
we have LLF (J) ≤ 2OPT in this case. The adversary is that these g + 1
jobs have different start-points, end-points, shorter jobs are contained by the
longer ones, and are sorted in non-decreasing order of their start-points as
shown in Fig. 3(b) where f is set as 2 in this case. The total fiber length of
optimal solution is dominated by the length of the longest job with span T1,
(g+1)-th job with span Tg+1 (assuming it is the shortest span length but has
link length longer that other links). LLF treats most-load links first when
two load spans have same length, its total fiber length is dominated by the
2-nd longest job with span T2, and the longest job with span T1 (one job left
for a single fiber). Therefore we have:

LLF (J)

OPT (J)
=

T1 + T2

T1 + Tg+1
=

1 + T2

T1

1 +
Tg+1

T1

(3)
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Equ. (3) will have upper bound 2 when T1=T2 and other span lengths are
negligible comparing to T1; for other cases, LLF(J) equals to OPT(J).

2. Assuming that LLF (J) ≤ 2 OPT (J) holds for n=k under clique, one-sided
clique, container and other cases. And there are total f fibers used. Let us de-
note the optimal solution and LLF solution as OPTk and LLFk respectively,
we have:

LLFk ≤ 2OPTk (4)

3. Next, we consider n=k+1. For this case, there are following situations after
sorting all k + 1 jobs in increasing order of their start-points:

(a) The total number of fibers needed is still f , i.e., the (k + 1)-th job can
be allocated to one of f existing fibers. There are following two sub con-
ditions:
i). The (k+1)-th job can be allocated to one of f existing fibers and the
total fiber length of all fibers will not change, i.e., LLFk=LLFk+1 and
OPTk = OPTk+1. In this case, obviously, LLFk+1 ≤ 2OPTk+1 holds.
ii). Assuming that the allocation of (k + 1)-th job will increase the to-
tal fiber length of LLF and OPT by lk+1 for the upper bound. i. e.,
LLFk+1=LLFk + lk+1, OPTk+1=OPTk+lk+1, and lk+1 ≤ len(jk+1).
(As for other scenarios, such as the (k+1)-th job only increases the total
fiber length of LLF (i.e., (k+1)-th job is contained by some longer jobs)
or only increases the total fiber length of OPT, one can easily check that
LLFk+1 ≤ 2OPTk+1 holds). We then have:

LLFk + tk+1 ≤ 2OPTk + tk+1 ≤ 2OPTk + 2tk+1 ≤ 2OPTk+1

(5)

(b) The total number of fibers needed will increase by 1, i.e., (f+1) fibers are
needed. This means that the (k+1)-th job intersects with all existing jobs
and cannot be hosted by any existing fiber. We consider the following
three typical hard sub-conditions (other scenarios are trivial and easy to
show so that we omitted the proofs for them) :
i). One-sided clique: in this case, all job intervals form a one-sided clique,
either started or ended at the same node as shown in Fig.2, assuming link
e1 has longest length. In this case, optimal solution is to allocate longest
group of jobs to a fiber, the second longest group of jobs to another fiber,
and so on. The total fiber length of optimal solution is dominated by the
span length of the longest job with span T1, (fg + 1)-th job with span
Tfg+1 (the shortest one). Let us denote total length of other fibers as
TO in optimal solution. LLF treats most-load links first when two load
span have same lengths, its total fiber length is dominated by the 2-nd
longest job with span T2, and the longest job with span T1 (one job left
for a single fiber), denote total length of other fibers as TH . therefore:

LLFk+1

OPTk+1
=

T1 + T2 + TH

T1 + Tg+1 + TO
=

1 + T2+TH

T1

1 +
Tg+1+TO

T1

(6)
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Equ. (6) will have upper bound 2 when T1=T2 and other span lengths are
negligible comparing to T1; for other cases, LLFk+1 equals to OPTk+1.

Fig. 2. One-sided clique case for LLF algorithm

ii). Clique case: Let us consider all jobs started and ended at different
time as shown in Fig. 3 (a). The adversary is that two or more jobs with
longest spans are spreading left and right across the point where all job
intervals intersect, assuming the center link ex (the cross point for all
jobs) has longest length. Optimal solution will allocate others to one or
more fiber and allocate jg+1 to a separate fiber with total fiber length of
(Tg+1+Tg+TO); LLF algorithm will allocate jg+1 and jg to one fiber, so
on and the shortest one left for a single fiber, let set it as j1. therefore:

LLFk+1

OPTk+1
=

Tg+1 + Tg + TH + T1

Tg + Tg+1 + TO
=

1 + TH+T1

Tg+Tg+1

1 + TO

Tg+Tg+1

(7)

Equ. (7) will have upper bound 2 when T1+TH=Tg+Tg+1 and other span
lengths are negligible comparing to Tg + Tg+1; for other cases, LLFk+1

equals to OPTk+1. A similar 2-approximation algorithm by consider span
distance is also provided in [6] for this case.

iii). The container case: The adversary is shown in Fig. 3 (b), i.e., shorter
interval jobs are contained in longer interval jobs and assuming link
ex is longer than other links, this is one of the worst cases for LLF
algorithm. Let us set these (k+1) jobs have lengths T1, T2, ..., Tk, Tk+1

in non-increasing order. The (k+1)-th job is the longest jobs for LLF, so
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Fig. 3. Clique and Container Case for LLF algorithm

that LLFk+1=(Tk+1 +LLFk−1) + T1=Tk+1 +LLFk. As for the optimal
solution, one can allocates the longest job first, so OPTk+1=OPTk +
Tk+1. Therefore LLFk+1=LLFk + Tk+1 ≤ 2OPTk + Tk+1 ≤ 2OPTk +
2Tk+1=2OPTk+1, this means LLFk+1 ≤ 2OPTk+1.

By combining the above analyses, we have proved Theorem 3.

4 Conclusion

In this paper, an efficient traffic-grooming algorithm, LLF, for minimizing to-
tal fiber length is proposed. Both theoretical lower bound and approximation
are discussed. The proposed algorithm can help network designer to save the
deployment cost, management cost and energy etc. We are still looking for near-
optimal solution for this problem. There are a few more open research issues
for the problem: including finding better near-optimal solution and providing
theoretical proofs for the approximation algorithms; extending to other net-
work topologies, like in [1][2][6]; considering stochastic demands such as in [11]
[12]; and considering other optimization objectives. With the above-mentioned
extensions and other related issues, it is possible to develop comprehensive cost-
efficient methods for traffic grooming in optical networks.
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