
JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1

CoScal: Multi-faceted Scaling of Microservices
with Reinforcement Learning

Minxian Xu, Member, IEEE, Chenghao Song, Shashikant Ilager, Sukhpal Singh Gill, Juanjuan Zhao,
Kejiang Ye, Member, IEEE, and Chengzhong Xu, Fellow, IEEE

Abstract—The emerging trend towards moving from mono-
lithic applications to microservices has raised new perfor-
mance challenges in cloud computing environments. Compared
with traditional monolithic applications, the microservices are
lightweight, fine-grained, and must be executed in a shorter time.
Efficient scaling approaches are required to ensure microservices’
system performance under diverse workloads with strict Quality
of Service (QoS) requirements and optimize resource provision-
ing. To solve this problem, we investigate the trade-offs between
the dominant scaling techniques, including horizontal scaling,
vertical scaling, and brownout in terms of execution cost and
response time. We first present a prediction algorithm based on
gradient recurrent units to accurately predict workloads assisting
in scaling to achieve efficient scaling. Further, we propose
a multi-faceted scaling approach using reinforcement learning
called CoScal to learn the scaling techniques efficiently. The
proposed CoScal approach takes full advantage of data-driven
decisions and improves the system performance in terms of high
communication cost and delay. We validate our proposed solution
by implementing a containerized microservice prototype system
and evaluated with two microservice applications. The extensive
experiments demonstrate that CoScal reduces response time by
19%-29% and decreases the connection time of services by 16%
when compared with the state-of-the-art scaling techniques for
Sock Shop application. CoScal can also improve the number
of successful transactions with 6%-10% for Stan’s Robot Shop
application.

Index Terms—Cloud Computing, workload prediction, mi-
croservices, reinforcement learning, brownout, scalability

I. INTRODUCTION

The cloud computing paradigm needs to satisfy strict per-
formance requirements for diverse users hosting heterogeneous
workloads. These cloud workloads are driven by applications
belonging to various domains, including enterprise businesses
and government services that require uninterrupted, reliable
service delivery [1] [2]. The ever-increasing complexity of
these large applications has recently stipulated moving to-
wards microservice-based application development and de-
ployment. The microservice paradigm has shifted the tradi-
tional monolithic application design into decomposed and self-
contained standalone application components, which generally

M. Xu, C. Song, J. Zhao, K. Ye are with Shenzhen Institute of Advanced
Technology, Chinese Academy of Sciences, China. Email: {mx.xu, ch.song,
jj.zhao, kj.ye}@siat.ac.cn.

S. Ilager is with Vienna University of Technology, Austria. Email:
shashikant.ilager@tuwien.ac.at.

S. S. Gill is with School of Electronic Engineering and Computer Science,
Queen Mary University of London, London, UK. Email: s.s.gill@qmul.ac.uk.

C. Xu is with State Key Lab of IoTSC, University of Macau, Macau, China.
Email: czxu@um.edu.mo.

(Corresponding author: Kejiang Ye.)

communicate through a RESTful Application Programming
Interface (API) [3] [4]. The features of microservices include
lightweight design, flexible development, continuous deploy-
ment, and independent management. These attractive features
have promoted cloud computing providers, including Amazon,
Google, and Alibaba, to adopt microservice-based application
service delivery models and platforms.

The users request on-demand services from cloud service
providers under the specified Quality of Service (QoS) require-
ments with the pay-as-you-go model [5]. If the QoS is unsatis-
fied, service providers may suffer revenue loss due to a Service
Level Agreement (SLA) violation with their customers. The
QoS is defined in terms of different performance metrics,
including resource availability and latency. Satisfying the QoS
of microservices-based applications is more challenging than
traditional monolithic applications since the performance of
microservices is more sensitive to latency. This is further com-
plicated by dynamic workload levels. Thus, service providers
aim to allocate sufficient resources to application workloads
to avoid QoS degradation and performance bottlenecks and
prevent huge revenue loss.

Over-provisioning is an effective approach to ensure the
QoS of microservices. The over-provisioning method aims to
allocate additional resources for user workloads to provide
guaranteed performance [6]. However, provisioning as many
resources as possible is cost-ineffective due to the finite
hardware resources, energy budget, and operational costs of
the cloud data centers [7]. Maintaining a large number of
physical machines with lower utilization can lead to higher
costs for service providers. Therefore, resource scaling ap-
proaches have been applied to optimize resource planning and
provisioning in microservice-based applications. The resource
scaling methods are significant for infrastructure providers
as they can contribute to cost reduction, increase resource
utilization, and simultaneously improve the QoS parameters
of microservice applications.

The dominant resource scaling approaches for microservices
can be classified into two categories, horizontal scaling and
vertical scaling [8]. Horizontal scaling adjusts the provisioned
resource quantities by adding or removing microservice repli-
cas to improve resource usage and QoS parameters (e.g, sys-
tem availability, latency). In contrast, vertical scaling adjusts
the capabilities of existing provisioned resources by increasing
or decreasing the amount of CPU, memory, and network
resources. These two approaches have both been validated to
be effective for resource scaling.

Currently, Kubernetes (promoted by Google) has become

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

the most popular platform for container-based microservice
application deployment in Cloud [9]. Kubernetes supports hor-
izontal scaling based on a runtime usage threshold. However,
such a threshold-based scaling method only works well in
simple cases, and achieves sub-optimal solutions in complex
workload conditions (e.g. dynamic workload conditions). To
address this issue, many studies have proposed different auto-
scaling algorithms based on the default Kubernete’s auto-
scaling algorithms [10]. Nevertheless, these algorithms pri-
marily focus on a single type of resource, e.g., CPU, memory,
or bandwidth which are infeasible for many workload sce-
narios. In addition, Horizontal and vertical scaling has many
practical limitations when applied individually. For instance,
the communication overhead of horizontal scaling are non-
trivial, which directly impacts application QoS, especially in
microservice-based applications due to their shorter execu-
tion time and increased latency sensitivity. Although vertical
scaling can increase the capacity of a provisioned physical
machine’s resource, upgrading the resource capacity in run-
time is expensive. A recent study has considered combining
these two scaling approaches together [8], although it does not
address the complex real world scenarios such as infrequent
bursty workloads that leads to overloading of the whole
system, thus, affecting overall infrastructure and application
QoS [11].

Some recent methods, such as brownout techniques, [12]
have explored an alternative scaling method complementing
both the horizontal and vertical scaling. Brownout is a self-
adaptive approach for managing application components by
dynamically activating and deactivating optional application
components to be adaptive to the variance of workloads. The
brownout can effectively address the limitations of vertical
scaling (limited resource capacity of local machines) and
horizontal scaling (the resource usage of replicating the mi-
croservice to other machines) in overloaded conditions. In
the microservice-based application, a brownout can temporar-
ily deactivate some of the optional microservices to reduce
resource usage while ensuring the necessary functionalities
of microservice applications. Thus, comprehensive scaling
techniques addressing the limitations of existing individualistic
approaches are required for adaptive and efficient scaling in
microservice environments.

A. Existing Challenges

The efficient scaling of microservices poses several signif-
icant challenges. Firstly, the micro-service based cloud work-
loads have high-variance in resource usage and are sensitive
to resource types (CPU, network, memory). It is difficult
to predict the accurate amount of workloads in a specific
time period. An accurate workload prediction is an essential
element for auto-scaling approaches in microservices, e.g., in
horizontal scaling, the predicted workload can enable service
providers to boot up and deploy applications beforehand to
avoid startup cost and QoS degradation. Secondly, assigning
resources to microservices is an NP-hard problem considering
the multi-dimensional resources. Due to the various run-time
parameters of microservices and hardware configurations, it

is time-consuming to find the optimal results given the large
solution space [13]. Thirdly, there are trade-offs considering
when and how to trigger the auto-scaling algorithms to handle
the situations with high dynamics while ensuring the QoS
requirement. We propose multi-faceted, data-driven, and adap-
tive auto-scaling approaches for microservices to address the
above discussed challenges.

B. Our Contributions

In this paper, we investigate the promising approach called
CoScal that combines horizontal scaling, vertical scaling,
and brownout techniques to address the resource scaling
problem in microservice-based cloud computing environments.
The proposed approach exploits the advantages of above-
mentioned individual techniques, including the high avail-
ability of horizontal scaling, fine-grained control of vertical
scaling, and self-adaptability of brownout. This combined
auto-scaling approach is more effective under diverse and
complex workload scenarios derived from Alibaba traces [14].
The key contributions of this paper are:

• A performance analysis of horizontal scaling, vertical
scaling, and Brownout investigates the trade-offs in exe-
cution costs and performance of microservices.

• A Reinforcement Learning (RL) based scaling algorithm
for decision making to optimize the performance of
microservices, such as response time, connection time,
and the number of failed requests.

• A prototype system implementing the proposed approach
is evaluated with realistic traces and extensive experi-
ments.

The rest of the paper is organized as follows: Section
II discusses the related work for auto-scaling microservices
in the cloud computing environment. The motivation and
performance analysis of the applied techniques in this work
are introduced in Section III. Section IV depicts the system
model of our proposed approach. The proposed algorithm
based on RL is detailed introduced in Section V. The Section
VI illustrates the details of our experiments conducted using
a dataset derived from realistic traces and demonstrates the
feasibility of our approach to improve the resource scaling of
cloud data centers. Finally, conclusions along with the future
directions are given in Section VII.

II. RELATED WORK

In this section, we discuss existing research works in
microservices scaling. The current scaling approaches for
performance optimization in microservices can be mainly cate-
gorized into three categories: the performance model, resource
orchestration, and prototype systems.

A. Performance Model

The performance model is applied for modeling the resource
usage of the system and the performance of cloud services.
Thus, resource management policies can be designed to fit
the performance requirements. Nishtala et al. [24] [25] pro-
posed scalable QoS-aware resource management approaches

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

for latency-critical and co-located services in traditional cloud
data centers. The proposed approaches are based on heuristic
and reinforcement learning techniques to achieve energy-
efficient goals, which require no service or system-specific
information. Liu et al. [15] analyzed the bottlenecks of the
mainstream microservice applications and applied multiple
machine learning models to schedule resources. The first
model is used for finding the resource area that satisfies
the microservice performance. The second model investigates
the trade-offs between the QoS and allocated resources, and
the third model dynamically adjusts resources according to
the system states. Chang et al. [26] designed an automatic
resource planning approach and modeled application perfor-
mance based on an empirical model. Khazaei et al. [27]
constructed a performance model via analyzing microservice
platforms. This approach applies the Markov chain model to
represent microservice resources, virtual machine (VM) re-
sources, and physical machine resources. The number of tasks,
number of microservices, and number of VMs have all been
considered as the system states. Although the performance
model is a popular approach for performance optimization,
the model needs to be reconfigured or retrained when the
service or environment changes dramatically. Gan et al. [28]
exploited the prediction method for QoS violations, which
utilizes a set of machine learning models and large-scale
history data to locate the microservices that lead to QoS
violations. The approach can relieve the QoS degradation by
reallocating hardware resources. Qiu et al. [10] proposed a
fine-grained control framework to relieve resource competition
and optimize resource utilization and analyzed the microser-
vice dependency relationship, microservice chains, and key
call paths. Kannan et al. [16] modeled the multiple-stage tasks
as Directed Acyclic Graph (DAG) and used DAG to estimate
the task completion time. Yu et al. [17] proposed Microscaler
framework by using service mesh to record the resource usage
behaviors and applied online learning and heuristic approaches
to obtain the near-optimal solutions for resource demands.

Scaling commands must be configured manually based on
the performance model in all these approaches. Thus, they are
far slower to react to load variations. We apply neural network-
based workload prediction to achieve high adaptation to load
variances to solve this challenge.

B. Resource Orchestration

Other works apply vertical scaling or horizontal scaling
that are not required to be configured manually based on the
performance model, which utilizes resource orchestration to
optimize resource provisioning for microservices by allocating
and managing resources efficiently. Suresh et al. [29] inves-
tigated the overload control mechanism for a microservice
cluster with complex dependency. The proposed approach
considers the resource sharing problem under a multi-tenancy
scenario, in which all the tasks are modeled as DAG. The
scheduling is processed at the workflow level and requests
level separately. Zhou et al. [18] pointed out that monitoring
and collecting the data of each microservice under large-
scale and high-dynamicity scenarios is not feasible. Therefore,

authors proposed a workload control approach to maintain a
self-adaptive threshold and algorithm for each microservice.
Each microservice can shed the loads independently with
quite limited communication costs. Rzdaca et al. [19] designed
Auto-pilot as an auto-scaling approach to scale based on the
change of workloads. Auto-pilot combines time-series analysis
and scaling the number of microservices with related CPU
and memory amount. Kwan et al. [8] designed an approach
that combines vertical and horizontal scaling methods, which
deploy microservices to suitable hardware to efficiently reduce
service delay due to burst requests. Hou et al. [20] introduced
a power-aware and latency-aware scheduling approach to scale
resources from micro and macro perspectives. They also
apply the decision tree and tagging method to achieve fast
resources matching. He et al. [30] took advantage of genetic
and heuristic algorithms to find the optimized microservice
deployment place under an edge-cloud environment. Zhang
et al. [21] proposed a predictive RL algorithm to horizon-
tally scale containers based on the Autoregressive Integrated
Moving Average (ARIMA) model and neural network model,
which can ensure the predictability and accuracy of the scaling
process. Rossi et al. [22] introduced RL-based approaches to
control the horizontal and vertical scaling for containers to
increase system flexibility under varying workloads, which
also accelerate the learning process by exploiting different
degrees of knowledge about the environment. However, this
work was only evaluated with synthetic workloads. Gias et
al. [23] proposed a model-driven scaling approach, named
ATOM, for microservices via analyzing a layered queueing
network of applications. This approach can dynamically adjust
the number of replications via horizontal scaling.

In resource orchestration approaches, limited hybrid scaling
for microservices has been proposed, and most of them
focused on a single scaling technique, either vertical or
horizontal, but not on both. The existing hybrid approaches
are threshold-based or heuristic that requires heavy manual
configurations. Unlike these efforts, we apply a hybrid scaling
technique that combines vertical, horizontal, and brownout
together, making adaptive decisions via RL.

C. Prototype Systems and Tools
Kubernetes [31] and Docker Swarm have become the

dominant systems for managing microservices. However, the
scaling techniques in these systems are primarily threshold-
based or static policies. Kiss et al. [32] implemented a generic
microservice orchestration platform for heterogeneous cloud
clusters, which can auto-scale resources without binding to
specific applications. Zhou et al. [33] analyzed and com-
pared the interaction patterns of open-source microservice-
based applications. They found that the investigated open
source applications are small-scale and provided a medium-
scale application called TrainTicket. Xu et al. [12] proposed
a prototype system for managing co-located interactive and
batch microservices based on the brownout approach and
workloads deferral to achieve an energy-efficient cloud data
center.

In these prototype systems and tools, threshold-based
heuristic algorithms are applied popularly. However, heuristic

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

TABLE I: Comparison of related work

Approach Scaling Techniques workload prediction Scheduling Policy
Vertical Horizontal Brownout Linear Non-Linear Heuristic Supervised Learning

Liu et al. [15]
√ √ √

Qiu et al. [10]
√ √ √

Kannan et al. [16]
√ √ √

Yu et al. [17]
√ √ √

Zhou et al. [18]
√ √ √

Rzdaca et al. [19]
√ √ √ √ √

Kwan et al. [8]
√ √ √

Hou et al. [20]
√ √ √

Zhang et al. [21]
√ √ √

Rossi et al. [22]
√ √ √

Gias et al. [23]
√ √

Xu et al. [12]
√ √ √ √

CoScal (Our Approach)
√ √ √ √ √

algorithms can find a solution quickly, the performance needs
of manually tuning various configurations, especially in an en-
vironment with high dynamics [22]. Unlike these approaches,
we utilize the RL-based approach with an adaptive nature
to learn and make good decisions via interactions with the
environment.

D. Critical Analysis

This paper contributes to the growing body of research
related to the microservice area. The Table I compares the
proposed approach (CoScal) with related works based on
the scaling techniques, workload prediction techniques, and
type of scheduling algorithms. Given the contributions of the
existing works, it is important to highlight the key difference
between our work and the prior ones. To the best of our
knowledge, the proposed work is the first to offer a multi-
faceted scaling approach based on vertical scaling, horizontal
scaling, and brownout. Prior works only applied included one
or two techniques. We also utilize gradient recurrent units for
accurate workload prediction and apply an RL-based algorithm
for resource management to offer flexible adaption for a highly
dynamic environment.

III. MOTIVATION: PERFORMANCE TRADE-OFFS IN
INDIVIDUAL SCALING TECHNIQUES

In this section, we conduct experiments to investigate the ef-
fects of individual scaling techniques (vertical, horizontal, and
brownout) on important performance metrics in microservice-
based computing environments. The results illustrate that ap-
plying individual scaling techniques such as horizontal scaling
or vertical scaling does not yield desired results due to trade-
offs.

A. Use Case Setup

In this motivational study, we have used a microservice
application named Sock Shop1, which is an online e-commerce
website for products sale. The Sock Shop application consists
of multiple microservices representing different components
of the application, including front-end User Interface (UI),
catalog, carts, and some other supporting microservices, which
are deployed on two Docker Swarm nodes.

1microservices-demo.github.io

TABLE II: Request Distribution for Sock Shop application

Request Distribution
Microservice Type Home Orders Catalog Others

Percentage 83.8% 7.2% 5.4% 3.6%

In this study, we consider the browsing workload for the
Sock Shop application. The users can view the information
of the items, add or remove items in the carts, pay for the
items. The used microservices in the Sock Shop application
and the request distribution are summarized in Table II. We
have investigated the high load use case representing the
system’s over-utilized (when utilization is above a predefined
threshold) condition from Alibaba’s sample trace [14]. The
sample trace contains 1200 lines of data representing resource
utilization in 6000 seconds, where the data is collected every 5
seconds. We use JMeter2 toolkit to generate workloads for the
Sock Shop application, which simulates the scenario of users
visiting the website for shopping. JMeter is an open-source
and completely Java-based application. It is mainly used to
conduct stress tests of the target server and validate test-case
functionalities of service endpoints. Only one node is initially
deployed with microservices in our setup, and the second node
is kept in an idle state. In the horizontal scaling, the replicates
of Sock Shop microservices are deployed on the second node.
In the vertical scaling, the CPU is configured to be scaled to
a maximum of 8 cores, and the memory can be scaled to a
maximum of 3.5 GB. In the brownout approach, the optional
microservices (3 out of 14, i.e., the recommendation engine)
are temporarily deactivated (due to space limitation, please see
the more detailed descriptions in Section V-A.).

We apply the individual scaling techniques separately to
evaluate system performance regarding connection time, re-
sponse time, and success rate of requests. Connection time
represents the time required to establish a connection between
the user and the target microservice server. Response time
represents the total time from the start of the request to
the reception of the response. Success rate represents the
percentage of successful requests (i.e., expected response is
received for request) received by the user.

B. Comparison between Scaling Techniques

Fig. 1a represents the connection time achieved by three
different scaling techniques. The collected data is obtained

2https://jmeter.apache.org/

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

(a) Connection time (b) Response time (c) Success rate

Fig. 1: Performance comparison of different scaling techniques when applied separately

every 200 ms, and the average value is calculated based on
every 5-minute interval. We choose 5-minute interval based
on Alibaba’s practice where 5-minute minimum time interval
is considered for scheduling decisions. A smaller time interval
can lead to frequent scaling costs, while a longer time interval
cannot respond to the system change promptly. As this is a
motivational example, we only conduct the experiments one
time. We can observe that the vertical scaling converges faster
to a stable connection time than horizontal and brownout scal-
ing. However, at the initial period of scaling, its performance
for connection time is not as good as brownout. The brownout
approach initially achieves the best connection time as it de-
activates optional parts that help provide additional resources
for the front-end connections. After some periods, the con-
nection time keeps growing because all the available optional
components have been deactivated. Horizontal scaling can
achieve better connections than brownout since more resources
are provided regarding the number of nodes. However, the
extra communication costs involving two replicas of services
deployed on different hosts induce higher connection time in
horizontal scaling than vertical scaling, as the communication
in vertical scaling is negligible as it remain on the same host.

Figs. 1b and 1c represent the response time and success rate
achieved by different scaling methods. The vertical scaling
achieves the best performance with the lowest response time
and the highest success rate. The reason is that the vertical
scaling on the local machine can improve the system per-
formance without incurring additional overheads. In contrast,
Brownout can incur some delays induced by its resource
optimization technique. Moreover, the horizontal scaling leads
to poor performance in response time and success rate of user
requests due to its associated overhead, such as boot-up cost of
new instances and frequent scaling operations, which is crucial
in highly time-sensitive microservice environments. Although
vertical scaling achieves the best performance when compared
to the other two techniques, it is not effective when the
local machine is overloaded and constrained by the maximum
resource capacity of an individual physical machine.

To summarize, individual scaling techniques may not yield
the desired result in complex conditions. A multi-faceted
scaling can solve the limitations of individual techniques. For

instance, when a limited capacity is left on a hosted machine
(i.e., vertical scaling hits resource limitations), the brownout
technique can be triggered to maintain the connection time
by relieving resource overloading. Meanwhile, the horizontal
scaling can be applied when enough resources are available
to host additional workload, and optional components can be
reactivated further. However, the horizontal scaling requires
more time to take effect compared to brownout as it requires
significant time to activate host and initialize new container
instances. Thus, under the high-variable workloads, the choice
and combination of scaling techniques play an important role
in delivering reliable services, especially in latency-sensitive
microservice environments. Therefore, to overcome the limi-
tations of individual scaling techniques, a joint, data-driven,
and adaptive auto-scaling framework is necessary to provide
optimal scaling decisions based on the current infrastructure
and workload conditions.

IV. SYSTEM MODEL

In this section, we describe our proposed auto-scaling
system named as CoScal that is composed of three modules,
including Workload Analyzer, Workload Predictor, and RL-
based Resource Scaler, as shown in Fig. 2. It is noted that this
is a general system model, and the modules can be extended
to new workload analysis techniques and more advanced
RL-based resource scheduling solutions. The details of these
modules are given in the following subsections:

A. Workload Analyzer

The Workload Analyzer module analyzes system workload
and processes the raw data generated by log files. In this
module, the Requests Handler handles the user-generated
requests, which allocates the requests to hosts. The Pre-
processor extracts the required meta information of workloads
(e.g., time series and resource utilization metrics). Later, the
Workload Predictor module takes our inputs to perform its
stated operations (described in Section IV-B).

Fig. 3 shows a schematic diagram of load generation based
on JMeter. In this case, The JMeter Master and Workers
(Slaves) are regarded as part of the User Requests and Requests
Handler components. Web servers are the infrastructure to
provision resources. Based on our practice, when the number

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

Fig. 2: The CoScal system model

of requests is huge, a single JMeter server mode may not
function well due to overloads, then the master-worker will be
used collaboratively. With each test case, the data of collected
metrics will be stored locally, such as timestamps, response
time, connection time, and the number of failed requests.

Fig. 3: Schematic diagram of requests generation by JMeter

B. Workload Predictor

The Workload Predictor module in Fig. 2 is responsible
for estimating the expected load in the next scheduling win-
dow, which guides scaling methods to decide the amount
of resources to be added or removed. This module can be
constituted by different predictive models such as Multivariate
Time Series Forecaster [34], which accepts the pre-processed
information of workloads from the Workload Preprocessor
and predicts the future workload based on suitable predictive
models, such as long short-term memory (LSTM) or gated
recurrent unit (GRU) model. The responsibility of the Tensor-
Flow Server is to manage the Trained Model, including the
training process of the models and updating the trained models

if necessary, and finally deploying trained models. As shown
in Fig. 2, the communications between Workload Analyzer
and Workload Predictor transfer the inputs with past system
data to the TensorFlow Server (the left-bottom corner of this
module). It provides feedback such as predicted workload level
to Requests Handler.

To generate user requests for the prototype system, the load
generator toolkits, e.g., JMeter, can be utilized. And the typical
microservice application, like Sock Shop [35] as introduced in
Section III, can be deployed as benchmark application. The
profiling approach based on the stress test can establish a
model to represent the relationship between the number of
requests and resource utilization (see Section V-A for more
details.)

C. RL-based Resource Scaler

The CoScal Controller is the core component in this module
which makes decisions on scaling strategies based on the
RL framework. Compared with static performance models
and heuristic-based approaches that suffer from model recon-
structions and retraining problems, the RL-based approach is
well suited for learning resource scaling policies to address
dynamic system status [36]. The RL-based Resource Scaler in
Fig. 2 receives the user requests from Request Handler and
information like predicted workloads from Workload Predictor
in our system. After executing the scaling techniques, the
CoScal Controller collects the data of performance metrics,
such as response time, and sends the data back to the users.
The data is the response to the user request to the application.

In the RL-based Resource Scaler module, the supported
techniques work in different manners. Vertical scaling is ap-
plied to the local machine with multiple resources, e.g., CPU,
memory, and network capacity. The vertical scaling is faster
compared with other techniques as shown in Section III, it can
be leveraged initially. The brownout technique is also applied
to the local machine, where the optional microservices can
be dynamically deactivated to relieve the overloaded situation
that vertical scaling cannot handle alone. Horizontal scaling
is applied at the node level by adding or removing additional
nodes into the system. Considering the communication costs of
horizontal scaling, this technique can be applied when vertical
scaling and brownout cannot handle the workloads level and
keep the system in a normal state.

V. CoScal: A MULTI-FACETED AUTO-SCALING IN
MICROSERVICE ENVIRONMENTS

This section introduces the key elements to realize our
system model, including the performance profiling, neural
network-based workload prediction and RL-based policy for
scaling microservices.

A. Performance Profiling

To estimate the approximate resource usage correspond-
ing to a different amount of workloads with the Workload
Analyzer module in Fig.2, we use a deep neural network

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

model to profile the performance of machines. To simulate
the resource utilization in a realistic environment, we use the
data derived from Alibaba traces, including workload traces
of 4000 machines’ containing resource usage data for 8 days
[14].

The detailed profiling procedures are as follows: we con-
sider the scheduling interval as 5 minutes, as 5 minutes are
the minimum monitoring interval for data collection. A short
scheduling interval can make too frequent scaling operations to
influence system stability, while a long scheduling interval can
delay the adaptive scaling decisions. Firstly, we apply stress
test by gradually increasing the number of requests over 5
minutes with 200 requests in each test case and sending these
requests to the host. As the number of requests increases,
the host’s resource utilization also increases. Then we use
the nmon [37] performance monitoring toolkit to record the
change of utilization in the host as per the number of requests
sent. In this way, a detailed mapping relationship between
resource utilization and the number of requests is obtained.
Based on the profiled data, we apply a Multi-Layer Perceptron
(MLP) with three layers to establish a model to represent
the relationship efficiently. Compared with the traditional
regression-based approaches, the MLP-based approaches can
capture a more accurate relationship between workloads and
utilization. Finally, we can convert the host utilization into
the number of requests dispatching to our system for any
utilization level with the trained model.

As shown in Fig. 4, we demonstrate the results between
CPU utilization and the number of requests based on the tested
host. We can observe the CPU utilization change under the
different number of requests. The host consumes about 25%
CPU utilization when it does not handle any requests. This is
due to the resource consumption by the operating system and
deployed applications. The CPU utilization increases gradually
with the increased number of requests. In this experiment, a
host can accept at most 9000 requests. We can also obtain
the relationship between other resource types and the number
of requests. Based on our experiments for the Sock Shop
application, the CPU is a dominant resource type indicating
that the deployed application is mainly compute-intensive.

Fig. 4: The number of requests and the corresponding CPU
utilization

TABLE III: Defined Workload Levels and Corresponding
Meanings

Workload Level Meaning

Level 0
No loads are allocated to the host, and the hosts can be
switched into the low-power mode or turned off, i.e.,
the resource utilization is 0.

Level 1
The host is under light load, with low latency and low
CPU and memory usage, i.e., the resource utilization
ranges from 0% to 25%.

Level 2
The host is at a medium load level, the delay is low,
and the QoS is not significantly affected, i.e.,
utilization is between 25% and 50%.

Level 3

The host is potentially under heavy load, the CPU
or memory usage is high, and QoS may have affected;
thus, the scaling techniques may be triggered if
needed, i.e., utilization is between 50% to 75%.

Level 4
The host is overloaded, the QoS will be significantly
impacted, and the effective scaling approaches should
be performed, i.e., utilization is between 75% to 100%.

B. Neural Network-based Workload Prediction

To address the prediction of resource usage levels in the
Workload Predictor module in Fig. 2, we realize a neu-
ral network-based workload prediction approach. To reduce
the state space of the RL model, we consider dividing the
workloads into several levels (the exact number of levels
configured) representing different levels of utilization. More-
over, this also helps to apply similar scaling techniques for
workloads at the same level. This helps to significantly reduce
the state-action space in the RL-based approach. We divide
the workloads into five levels that can represent the degree of
overloads, as shown in Table III. The overloaded threshold is
configured as 75%, as it has been evaluated in our previous
work [12] that it can achieve good trade-offs between resource
utilization and QoS.

To accurately predict the server load status in the next
time interval, we apply the Multivariate Time Series forecast-
ing (MTFS) method, which converts multivariate time series
forecasting into supervised learning. The MTFS algorithm
can be applied to any time-related dataset, and it is highly
correlated to temporal aspects and contains all the data from
the previous time intervals. The MTFS makes each generated
supervised learning sequence to have sample labeled datasets
in the algorithm.

The Algorithm 1 shows the pseudocode of the MTFS algo-
rithm, which generates labeled time series data for supervised
learning. With the original time series dataset E, the algorithm
first generates an empty matrix S to store the supervised
learning sequence. After the labeled data is generated for
supervised learning, to achieve an accurate prediction for
workloads, we apply the Gated Recurrent Unit (GRU) [38]
derived from Recurrent Neural Network (RNN) [39], which
has been validated to have better performance in time series
related prediction than traditional RNNs. Although RNN can
use its memory to process a set of inputs sequentially, it is
inefficient to learn long-term memory dependencies due to
gradient vanishing, while GRU can overcome this limitation
by merging the data processing elements (gates).

Table IV shows the mean square errors (MSE) of actual
utilization and predicted utilization for Alibaba workloads
during different periods. The MSE has lower values about

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 8

Algorithm 1: CoScal: workload preprocessing
Input : Multivariate time series dataset E, time intervals T , k

time-related variables, and a dataset F needs to be forecast
Output: Supervised learning dataset S, each row of it has 2k + 3

data
1 Initialize an empty matrix S to record supervised time series data
2 for t from 1 to T do
3 Record data in current time interval: C(t) ← E(t)
4 if t = 1 then
5 Record NONE
6 else
7 Record data in last time interval: L(t− 1) ← E(t− 1)
8 end
9 if t = n− 1 then

10 Record NONE
11 else
12 Record data in next time interval: F (t+ 1) ← E(t+ 1)
13 end
14 Merge L(t− 1), C(t) and F (t+ 1) together into S(t):
15 S(t) ← {L(t− 1), C(t), F (t+ 1)}
16 L(t− 1), C(t) are marked as samples in supervised learning
17 F (t+ 1) are marked as labels in supervised learning
18 if S(t) contains NONE then
19 Remove S(t)
20 Update S
21 end

TABLE IV: MSE of our workload prediction algorithm

Time (minutes) 100 200 300 400 500
MSE (10−3) 3.3 2.8 4.2 4.8 6.2

3 × 10−3 to 7 × 10−3 (in [40], the RNN-based and LSTM-
based approaches have the MSE values about 4 × 10−2),
which demonstrates that our workload prediction algorithm
has a good performance in utilization prediction and validates
that the neural network based approach is suitable for cloud
workloads prediction.

C. RL-based Resource Scaling

The RL-based approach solves sequential decision-making
problems by modeling the problem as Markov Decision Pro-
cess [41]. At each time interval t, the system is at a state
st ∈ S, and performs an action at ∈ A based on policy
πθ, where θ are parameters configured in model. The state-
space S is mapped with action space A. In the following time
intervals, the current system state can reach another state by
taking actions and obtaining reward rt ∈ R, calculated via
reward function r(st, at). The next state will only rely on the
current state and the performed actions on it. The rewards
represent the benefits that can be achieved by transiting the
state from st to st+1. When transferring states, there is
also a transition probability of presenting the possibility to
take different actions. The objective of RL is to maximize
the expected cumulative reward by optimizing policy. Q-
learning [42] is a typical type of RL to maximize the value
function Qπθ

(s, a). The value function estimates the expected
cumulative reward of state s with action a under policy πθ.
Consider action at is selected at time interval t, and at time
interval t + 1 with reward r(st, at), the value of Q function
can be can be updated as:

Q(st, at) =Q(st, at) + α[r(st, at)]

+ γmaxa′Q(st+1, a
′)−Q(st, at)]

(1)

where α ∈ (0, 1] is the learning rate and γ ∈ [0, 1] is
the discount factor. The Equation defines a mapping table
containing states with actions and their expected value. The
learning process happens in the form of S∗A− > R over time
to achieve optimized results via iterative trials. We consider
the state S as workload level S = {0, 1, 2, . . . ,W}, where
W ∈ Z represents the maximum level of workloads and is a
non-negative value.

To illustrate our RL-based multi-faceted scaling framework
(CoScal), let us assume that we have a set of physical machines
P = (pm1, pm2, . . . , pmK) as infrastructure to provision
resources for microservices. Each pmk can be represented with
a tuple Uk = (u1

k, u
2
k, . . . , u

I
k), where ui

k represents resource
utilization of type i with total I types on physical machines.
For each pmk, the actions performed on it, which are denoted
as aik = {hk, v

i
k, bk}, where hk ∈ [−n, n] presents the n ∈ Z

number of replicates in horizontal scaling, vik ∈ [−m,m],
where m ∈ R, represents the amount of resources via vertical
scaling for resource type i, and bk ∈ {0, 1} represents the
whether brownout is triggered (bk = 1) or not (bk = 0).
The positive and negative values of hk and vik represent
more resources are added and removed respectively, and
value 0 means no change will be performed. Considering
the total number of physical machines is K, the final set
of actions is the Cartesian product of the sub-action sets as:
A =

∏K
k=1

∏I
i=1 a

i
k.

The objective of our technique is to find the suitable config-
uration of resources by dynamically adjusting the provisioned
resources to adapt to changes in the environments, e.g., the
load fluctuations. However, the amount of scaled resources is
limited by the available resources on physical machine pmk

and the minimum resources allocated to microservices. To
avoid unnecessary vertical scaling, we consider adding an ac-
tion ag to make decisions from the global view. Let us consider
the scenario that when the system with P = {pm1, pm2}
is running at the normal states that vertical scaling is suf-
ficient for adjusting resources. However, when unpredictable
workloads arrive, the physical machines are overloaded. To
handle such bursts, horizontal scaling must be performed on
the system. If both pm1 and pm2 are completed with vertical
scaling, two more physical machines are added. However, the
system may only need one more physical machine to keep the
system at the normal state. Therefore, to optimize resource
usage, the action ag is required to make scaling decisions
based on a global view.

CoScal incorporates the offline training and online training
approach together to achieve optimized actions. Once the
load change is identified, CoScal can select an action in
response to the QoS or performance degradation of deployed
applications. Given st as the observed state, a policy exploits
the knowledge of previous decisions (offline). It evaluates the
performance of new selected actions (online), improving the
mapping relationship between states and actions. We apply the
ϵ-greedy policy, [36] a standard policy to balance exploration

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

Algorithm 2: CoScal: General Procedure
Input : Table Q(s, a) contains all state/action pairs from

experience pool by offline training, time intervals T ,
probability of random action ϵ, learning rate α, discount
factor γ

1 Initialize system status, monitoring model;
2 for t from 1 to T do
3 Wt−1 ← Workloads level at time interval t− 1;
4 W p

t ← Predicted workload level according to Algorithm 1;
5 Ut

k ← Resource utilization of pmk at time interval t;
6 if W p

t −Wt−1 ̸= 0 then
7 Choose a action from action set A with ϵ probability, or

select an action with the max(Q(st, at));
8 Execute at according to Algorithm 3;
9 if online training is triggered then

10 st+1 ← system state at time interval t+ 1;
11 rt ← reward calculation by Equation (4);
12 Update Q value: Q(st, at) = Q(st, at) +

α[r(st, at)] + γmaxa′Q(st+1, a′)−Q(st, at)];
13 end
14 Store transition (st, atrt, st+1)in experience pool;
15 end
16 end

and exploitation [43]. In ϵ-greedy policy, a random action
with probability equals ϵ is selected. Otherwise, it chooses
the action with the maximum Q value.

The final objective of CoScal is to improve the QoS of
services and utilization of physical machines. The reward
is modeled based on this objective which composes of two
parts. For the QoS, we choose to use response time as the
metric, representing the latency from submitting the request to
completion. We model the reward of response time Rqos(rt)
based on the maximum acceptable response time with RTmax.
As shown in Equation (2), when the system is working at the
normal status, the reward is 1. However, when the system
performance violates the RTmax, the reward converges to 0,
punishing the actions that lead to overloaded situations.

Rqos(rt) =

{
e−(rt−RTmax

RTmax
)2 , rt > RTmax

1 , rt ≤ RTmax

(2)

As for the reward of resource utilization (please note that the
utilization can also be referred as resource costs in our model),
we model it as shown in Equation (3). Here, Umax

k defines
the maximum utilization threshold of pmk, which is also the
highest utilization of all resource types (CPU and memory
utilization are both considered). uk is the current utilization
of pmk. Higher utilization without violating the threshold can
contribute positively to the reward, while utilization above the
threshold can undermine the reward.

Rutil(uk) =

{∑K
k=1 Umax

k −uk

K + 1 , uk ≤ Umax
k∑K

k=1 uk−Umax
k

K + 1 , uk > Umax
k

(3)

Equation (4) shows the final reward value based on response
time and resource utilization, in which the higher values of
Rqos and lower values of Rutil can increase the total reward.

r(st, at) =
Rqos(rt)

Rutil(ut)
(4)

Algorithm 3: CoScal: Action Execution
Input : Time interval t, action sets at = {aik(t)|i ∈ {0, 1, . . . , I},

k ∈ {1, 2, . . . ,K}}, aik(t) = {hk(t), v
i
k(t), bk(t)},

selected action at time t with horizontal scaling operation
hk(t) = n, vertical scaling operation vik(t) = m, and
brownout operation bk(t) ∈ {0, 1}

1 for k from 1 to K do
2 /*Vertical scaling*/
3 for i from 1 to I do
4 if m > 0 then
5 Add m resources of type i on local machine;
6 else
7 Remove m resources of type i on local machine;
8 end
9 end

10 end
11 /*Brownout control*/
12 if bk(t) > 0 then
13 Deactivate microservices via brownout;
14 else
15 Brownout will not be triggered;
16 end
17 /*Horizontal scaling*/
18 if n > 0 then
19 Add n microservices replicates ;
20 else
21 Remove n microservices replicates;
22 end

Algorithm 2 shows the general procedure of CoScal. The
algorithm initializes the monitoring model to collect system
status for the RL process (line 1), including workloads level,
utilization, and relevant metrics at each time interval (lines 4-
5). These observations constitute a state in the RL framework.
If the workload level changes (line 6), scaling approaches
should be applied to ensure QoS or optimize resource usage.
Thus, the Q-learning process will be started by choosing
actions from the experience pool and transiting the current
system state to another one (line 7). The actions are executed
based on the Algorithm 3 (line 8). CoScal also supports online
training, after CoScal transits the state st to st+1, CoScal
firstly stores the transition (st, at, rt, st+1) into the experience
pool. The reward rt is applied to evaluate the goodness of
(st, at) (lines 9-14).

Algorithm 3 shows the action execution process of CoScal.
The system states and corresponding actions are provided by
the Algorithm 2, which includes the decisions of horizontal
scaling, vertical scaling, and brownout. The algorithm will
first check the decision for vertical scaling. If the vertical
scaling should be performed, then resources of the specific
type will be added or removed (lines 1-10). After that, the
brownout will be examined. If the brownout is triggered, the
optional microservices are deactivated in this time interval
(lines 11-16). And finally, the horizontal scaling will be
checked and executed by increasing or decreasing the number
of replications. We consider the execution sequence based on
the execution costs of different scaling techniques as discussed
in Section III, as the vertical scaling can be completed within
the shortest time while the horizontal scaling brings much
longer processing time and communication costs (inter-process
communication costs between processes on different hosts
for user authentication, database access, remote function call,
image retrieval and etc.) than the other two techniques as

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

shown in the motivational example in Section III.
Decision-making complexity of CoScal: After the RL model

is trained based on historical data, the system states and
corresponding actions can be stored in a lookup table. At each
iteration to access and modify the lookup table, CoScal applies
the open addressing technique to resolve hash collisions to en-
sure the access and modification operations to take negligible
time. The open addressing technique has the computational
complexity as O(1).

Notes on model re-training: To be noted, when microser-
vices are updated and new optional components are added, the
RL model can be re-trained to improve the performance, as
the brownout part in CoScal is influenced by the identification
of the optional parts. If the model is not re-trained, the added
components will be regarded as the mandatory ones.

D. Auto-adapter for Unexpected Workloads Change
Although our workload prediction algorithm can achieve

high accuracy, fluctuations of cloud workload level during
the stable period (workload level remain unchanged) are
usually unpredictable. For instance, Fig. 5a shows a sample
of workload changes within 500 minutes. It can be observed
that during the first 100 minutes, the workloads change from
workload level 3 to level 4 and return to level 3 within a
short time (as the workload level is the average level during
a period of time, the changes represent the total amount of
workloads change significantly). This often happens when
there are bursts in the system. Such workload changes are
difficult to be predicted due to randomness.

Microservices are more sensitive to resource fluctuations
than traditional applications [10]. Therefore, bursts can cause
QoS violation, resource wastage, and system overload. To ad-
dress this challenge and complement the prediction algorithm,
we introduce a component named auto-adapter that detects
and adapts to these changes. The auto-adapter is integrated
into the CoScal Controller module in Fig. 2. Auto-adapter
collects the information at the first minute of each time interval
and examines whether the actual workload level (collected via
performance counters) equals the predicted one (via workload
predictor module). If not equal, auto-adapter applies vertical
scaling to optimize resource usage by adding or removing
resources according to the predicted and actual workload
difference.

The auto-adapter needs to be lightweight to avoid excessive
resource usage incurred by the auto-adapter. We measure
the resource usage in one hour caused by auto-adapter as
shown in Fig. 5b, which shows that auto-adapter only costs
about a maximum of 3% extra CPU and 1% extra memory
resources. This additional limited resource usage is acceptable
considering its optimization effects on resource usage.

VI. PERFORMANCE EVALUATION

To evaluate the performance of our proposed approach
for scaling microservices, we conduct experiments in the
container-based prototype system. We first present the exper-
imental settings in Section VI-A and then introduce the base-
lines in Section VI-B. The results and analysis are presented
in SectionVI-C.

(a) The fluctuations of workloads (b) Resource usage (auto-adapter)

Fig. 5: Auto-adapter resource consumption to handle work-
loads fluctuations

A. Experimental Setup

We built a cluster with heterogeneous nodes for the
microservice-based application deployment. The cluster con-
sists of four physical machines, including a machine with
an Intel Core i7-9700 CPU and 16GB of RAM, two ma-
chines with Intel Core i7-4790 and 4GB of RAM, and a
machine with two Intel Xeon E5-2660 CPUs and 48GB of
RAM. The containers or microservices are managed through
Docker Swarm, a container orchestrating tool. We deployed
the Sock Shop application, a microservice-based application.
The computing environment has been configured with Java
(version 1.8), Python (version 3.7), and TensorFlow (version
2.2.0) development toolkits. We use the cluster-trace-v2018 of
Alibaba dataset3 that contains workloads of machines. And we
use 500-minute data for evaluations.

To enable our scaling algorithms to support the brownout
mechanism, we categorize the individual microservices in
Sock Shop into two categories: mandatory microservices and
optional microservices. Mandatory microservices include mi-
croservices that are are the key components (e.g. database-
related microservices) of the system, and the optional mi-
croservices (e.g., recommendation engine) can be dynamically
activated or deactivated, In our testbed, the CPU can be scaled
from one core to a maximum of 8 cores, memory can be
scaled from 2 GB to 3.75 GB, and for horizontal scaling, the
maximum number of hosts is set to 3.

B. Baselines

We compare the performance of CoScal with several state-
of-the-art algorithms for scaling microservices. Some baselines
have been used in dominant microservice platforms, including
Docker Swarm and Kubernetes.

DoScal [22]: it is derived from the resource scaling ap-
proach implemented in native Docker Swarm, which is mainly
based on vertical scaling. For instance, when one of the
microservice instances is overloaded, DoScal can reallocate
the microservices equipped with sufficient resources.

KuScal [31]: this scaling approach has been used in Ku-
bernetes, which is mainly based on horizontal scaling that
can dynamically increase or decrease the number of replicates.
KuScal decides on how many replicates should be added or

3https://github.com/alibaba/clusterdata

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 11

removed based on the resource fluctuations, e.g., CPU and
memory, on the current servers.

HyScal [8]: it is a hybrid scaling approach for microser-
vices. Apart from scaling CPU utilization, the HyScal algo-
rithm also scales memory resources. The HyScal algorithm
applies a similar approach to the KuScal, allocating resources
and monitoring resource utilization.

C. Experiment Analysis

The results are collected from JMeter log files, including
connection time, response time, and a number of failed re-
quests. The lower values of connection time and response time
represent better QoS performance. A lower number of failed
requests is desired, indicating a higher number of successful
requests processed by the deployed applications.

We conducted 500-minute experiments to accurately ob-
serve and analyze the advantages and disadvantages of the
scaling approaches in different periods. We demonstrated the
average value of each metric with an interval of 100 minutes
(i.e., 100 minutes, 200 minutes, to 500 minutes) to represent
the statistical change, and the experiments are repeated 3 times
to avoid randomness.

Connection Time: Fig. 6a shows the comparison of the
average value of connection time during 500 minutes. The
results of the baselines vary between 0.75 ms and 1.25 ms.
More specifically, HyScal keeps the connection time at a high
level, from 1.1 ms to 1.25 ms, and finally reaches around
1.25 ms at peak since the number of requests increases during
the observed period. KuScal can achieve a better performance
than HyScal with about 1.1 ms. The reason lies in that
KuScal can scale resources more sufficiently than HyScal
that pre-configures some limitations on resources allocated to
microservices. The connection time achieved by DoScal is
1.1 ms. CoScal can achieve the best performance compared
with the baselines, and it can reach around 0.8 ms within 500
minutes. Although the results of the CoScal vary slightly, the
connection time is still 19.3% to 29.3% lower than the average
value of the other baselines.

Response Time: Fig. 6b illustrates the comparison of the
average value of response time in the first 500 minutes. The
average response time values for all four scaling approaches
show a decreasing trend. DoScal remains at the highest value
but shows an overall decreasing trend from 419.9 ms to
242.1 ms. KuScal and HyScal show irregular fluctuations,
which are caused by the different number of requests during
different time periods, and their values worse than CoScal.
For CoScal, it maintains the lowest response time throughout
the observed time and finally drops to 198.4 ms. CoScal can
reduce 16.1% response time compared with the baselines,
which shows that combining different techniques can achieve
better performance.

Number of Failed Requests: Fig. 6c demonstrates the com-
parison of failed requests during the experiments. The results
show that CoScal can significantly decrease the failed requests.
For instance, after 100 minutes experiments, DoScal has
31574 failed requests, HyScal brings 28666 failed requests,
KuScal reduces the number to 22756, and our CoScal only

TABLE V: Connection time (ms) comparison based on CDF
percentile

Percentile DoScal KuScal HyScal CoScal
20th (ms) 0.758 0.780 0.782 0.752
40th (ms) 0.805 0.812 0.828 0.775
60th (ms) 0.847 0.887 0.936 0.807
80th (ms) 1.208 1.3 1.241 0.896
95th (ms) 2.469 2.129 2.651 1.407
99th (ms) 5.336 4.437 4.614 1.550

TABLE VI: Response time (ms) comparison based on CDF
percentile

Percentile DoScal KuScal HyScal CoScal
20th (ms) 3.26 3.22 3.22 3.38
40th (ms) 4.25 4.23 4.30 4.37
60th (ms) 378.46 353.99 336.84 342.46
80th (ms) 378.46 476.36 464.52 370.56
95th (ms) 567.20 583.55 561.84 412.70
99th (ms) 629.21 641.63 640.09 425.51

has 2345 failed requests. For other observations with longer
time, CoScal always has the lowest number of failed requests
with 92% to 96% reduction compared with other baselines.
In conclusion, CoScal can ensure more requests are processed
successfully.

Transaction Per Second (TPS): it is an important metric
to that shows the number of requests per second a system
can handle. The higher TPS value represents the better per-
formance of the algorithm. As DoScal has achieved better
performance than KuScal and HyScal, we compare DoScal
and CoScal in Fig. 7. We can observe that the TPS value
of CoScal is greater than DoScal. CoScal can handle requests
stably under heavy loads, and its TPS value fluctuates slightly.

As experimental results of connection time and response
time during first 200 minutes are quite close, to better demon-
strate the differences between the values of the four scaling
approaches, we use the Cumulative Distribution Function
(CDF) as the metric which is the integral of the probability
density function representing the sum of the probability of
occurrence of all values less than or equal to x. The formula
of the CDF function is FX(x) = P(X ≤ x).

Fig. 8 shows the CDF curves of connection time and
response time. There is a clear gap between the CoScal and
the baselines. Almost all requests can establish the connection
within 2 ms by CoScal, while other baselines can only have
about 90% requests in this range. CoScal can respond within
400 ms for most of the requests, while other baselines need
more than 500 ms. The increase in response time around
0.43 results from the change of workload level. Therefore, we
can conclude that CoScal achieves better performance overall
compared to the other baselines.

Tables V and VI also demonstrate the connection time and
response time at different percentiles. From Table V, we can
notice that CoScal outperforms other baselines during the
observed period, for instance, the connection time of 95%
requests falls into 1.407 ms in CoScal, while other baselines
require 2.129 to 2.651 ms. When comparing the response time
in Table VI, we can observe that although CoScal is not the

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 12

(a) Average connection time (b) Average response time (c) Number of failed requests

Fig. 6: Performance Comparison of DoScal, KuScal, HyScal, and CoScal: (a) Average Connection Time. (b) Average Response
Time. (c) Number of Failed Requests

Fig. 7: Comparison of TPS for DoScal and CoScal

Fig. 8: CDF of connection time and response time curves

best one before 60th percentile, it performs the best at 80th,
90th and 99th percentile. For example, the response time of
80% requests are 370.56 ms in CoScal, while other baselines
need 464.53 to 476.36 ms.

RL Decisions Analysis: to investigate the essential reasons
for resource optimization by applying different techniques in
CoScal, we summarize the adopted techniques by our RL
agent under different workload levels as shown in Table VII,
which are collected by the log files that record the adopted
operations. The first row represents the original workload level
and the first column represents the transferred workload level.
The contents in other cells represent the techniques that have
been applied, where V stands for vertical scaling, B stands for
brownout, H stands for horizontal scaling, and NA means no
action is conducted. For example, if the workload level needs

TABLE VII: Multi-faceted scaling techniques adopted under
different loads by CoScal (the first row represents the current
workload level, and the first column represents the next
workload level)

Next Level
Current Level 1 2 3 4

1 NA H H NA
2 V NA H NA
3 V+B V NA NA
4 V+B+H V+B+H V+B NA

to be transferred from level 1 to 4, vertical scaling, horizontal
scaling, and brownout should be applied together, since the
workloads change significantly. While if the workloads are
increased from level 2 to 3, only vertical scaling is required.
When the workload level is 4, the response time is high thus
the reward function in Equation (4) will not guide horizontal
scaling to reduce available resources. It indicates that our RL
agent in CoScal effectively learns the environment complexity
and workload characteristic and accordingly takes the suitable
combinations of scaling decisions to increase application QoS
and optimize resource usage of physical infrastructure.

Fig. 9: Reward value during learning process

RL Convergence Analysis: to observe the convergence be-
havior of our RL-based approach, we train the RL model
following the same steps of resource scaling according to
Section IV-C. Fig. 9 shows that the approach updates its

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 13

TABLE VIII: Experimental results with Stan’s Robot Shop

Metrics DoScal KuScal HyScal CoScal
TPS 909 915 882 980

Successful TPS 825 841 815 892
No. of Failures per Second 74 74 68 88

Response Time (ms) 45.1 43.8 61.4 47.2

scaling policy as the training progresses and improves the
total reward value. As the RL agent spends initially in the
exploration phase, it exponentially increases the reward. After
the 16522 epochs, it converges to a stable reward.

D. Experimental Analysis with Stan’s Robot Shop

To further evaluate the effectiveness of CoScal, we also
conduct experiments with another Docker-based microservice
application, named Stan’s Robot Shop4, which is an online
system composed of 12 microservices for robots sale. We
use Locust5, a Python-based testing tool similar to JMeter,
to generate requests based on Alibaba’s trace [14], and send
the requests to the homepage of Stan’s Robot Shop. The
experiments are conducted in a Docker Swarm cluster with
5 homogeneous machines equipped with Intel Xeon CPU E5-
2630 v3 and 64GB RAM.

We compare several metrics in Table VIII collected from
Locust, including TPS, successful TPS, response time and the
number of failed requests, which have also been evaluated
in our previous experiments with Sock Shop application. The
final results of each approach are the average value of 300
minutes, and the experiments have been repeated 3 times to
avoid randomness. The results show that CoScal can improve
7%-11% TPS compared with the other three baselines, and
CoScal can achieve the highest successful TPS. In terms of
the number of failures, CoScal is very close to the best result
of HyScal. Moreover, CoScal can obtain the lower response
time than HyScal, and achieve close results with KuScal. In
conclusion, the experiments with Stan’s Robot Shop applica-
tion also validate the effectiveness of our proposed approach
in improving system performance. CoScal can achieve good
performance as it is adaptive to the change of environments
and it searches large solution space.

VII. CONCLUSIONS AND FUTURE WORK

The microservice-based applications have been widely
adopted in cloud computing environments, converting mono-
lithic applications into lightweight, flexible, and loosely-
coupled application components. Such a modular design of
the application helps achieve CI/CD (continuous integration,
continuous delivery, and continuous deployment) of the ap-
plication life cycle in cloud environments. However, efficient
algorithms for resource scaling in cloud infrastructure are
required to ensure the sustainable development of microser-
vice technology. In this paper, we proposed a multi-faceted
scaling approach, named CoScal, for scaling resources for
microservices that combine the three techniques, including

4https://www.instana.com/blog/stans-robot-shop-sample-microservice-
application/

5https://locust.io/

horizontal scaling, vertical scaling, and brownout. It ensures
cloud service providers optimize their resource usage while
guaranteeing QoS. CoScal utilizes deep learning approaches
for workload prediction to predict load more accurately com-
pared to traditional regression-based prediction approaches.
Furthermore, leveraging the RL framework takes decisions on
scaling strategies, adapting to the load changes, and allocating
the appropriate resources. To evaluate the performance of
CoScal, we deployed our algorithms on a prototype system
with representative microservices application. The results are
compared with popular state-of-the-art algorithms from re-
search and industry domains with two microservice applica-
tions. The experimental results have demonstrated that CoScal
can outperform the baseline algorithms in connection time,
response time and number of failed requests for Sock Shop
application, and improve the number of successful transactions
with 6%-10% for Stan’s Robot Shop application with slight
degradation in response time.

As for future work, we would like to investigate network
resource scaling to extend to the suitable scenarios of our scal-
ing approach. As the size of Q-table can increase significantly
when the state-action space increases largely, we would also
like to investigate Deep Q-Learning with workloads prediction
to improve the speed and accuracy of inference, which can
also address the limitation in Q-Learning based approach that
heavily relies on Q-table. Moreover, we plan to migrate our
system to a Kubernetes-based platform to evaluate medium-
scale microservice applications, such as TrainTicket and Hotel
Reservation applications.

ACKNOWLEDGMENTS

This work is supported by National Key R&D Pro-
gram of China (No. 2021YFB3300200), National Natural
Science Foundation of China (No. 62102408, 62072451),
Shenzhen Science and Technology Program (Grant No.
RCBS20210609104609044), Youth Innovation Promotion As-
sociation CAS (2019349), and CCF-Huawei Innovative Re-
search Plan. The authors would like to thank Dr. Zhicheng
Cai for his suggestions to improve this work.

SOFTWARE AVAILABILITY

The source codes of CoScal project can be found at the
GitHub repository: https://github.com/Kminassch/CoScal

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica et al., “A view of cloud
computing,” Communications of the ACM, vol. 53, no. 4, pp. 50–58,
2010.

[2] M. Kumar, S. Sharma, A. Goel, and S. Singh, “A comprehensive survey
for scheduling techniques in cloud computing,” Journal of Network and
Computer Applications, vol. 143, pp. 1–33, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1084804519302036

[3] S. Newman, Building Microservices. ” O’Reilly Media, Inc.”, 2015.
[4] F. Al-Doghman, N. Moustafa, I. Khalil, Z. Tari, and A. Zomaya, “Ai-

enabled secure microservices in edge computing: Opportunities and
challenges,” IEEE Transactions on Services Computing, pp. 1–1, 2022.

[5] M. Kumar, A. Kishor, J. Abawajy, P. Agarwal, A. Singh, and A. Zomaya,
“Arps: An autonomic resource provisioning and scheduling framework
for cloud platforms,” IEEE Transactions on Sustainable Computing, pp.
1–1, 2021.

https://github.com/Kminassch/CoScal
https://www.sciencedirect.com/science/article/pii/S1084804519302036

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 14

[6] J. Son and R. Buyya, “Sdcon: Integrated control platform for software-
defined clouds,” IEEE Transactions on Parallel and Distributed Systems,
vol. 30, no. 1, pp. 230–244, 2019.

[7] M. S. Hasan, F. Alvares, T. Ledoux, and J.-L. Pazat, “Investigating
energy consumption and performance trade-off for interactive cloud
application,” IEEE Transactions on Sustainable Computing, vol. 2, no. 2,
pp. 113–126, 2017.

[8] A. Kwan, J. Wong, H.-A. Jacobsen, and V. Muthusamy, “Hyscale:
Hybrid and network scaling of dockerized microservices in cloud data
centres,” in 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2019, pp. 80–90.

[9] L. Toka, G. Dobreff, B. Fodor, and B. Sonkoly, “Machine learning-based
scaling management for kubernetes edge clusters,” IEEE Transactions
on Network and Service Management, vol. 18, no. 1, pp. 958–972, 2021.

[10] H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, and R. K.
Iyer, “FIRM: An intelligent fine-grained resource management
framework for slo-oriented microservices,” in 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20).
USENIX Association, Nov. 2020, pp. 805–825. [Online]. Available:
https://www.usenix.org/conference/osdi20/presentation/qiu

[11] L. Tomás, C. Klein, J. Tordsson, and F. Hernández-Rodrı́guez, “The
straw that broke the camel’s back: safe cloud overbooking with ap-
plication brownout,” in Proceedings of the 2014 IEEE International
Conference on Cloud and Autonomic Computing, 2014, pp. 151–160.

[12] M. Xu, A. N. Toosi, and R. Buyya, “A self-adaptive approach for
managing applications and harnessing renewable energy for sustainable
cloud computing,” IEEE Transactions on Sustainable Computing, vol. 6,
no. 4, pp. 544–558, 2021.

[13] Z. Zhong, M. Xu, M. A. Rodriguez, C. Xu, and R. Buyya, “Machine
learning-based orchestration of containers: A taxonomy and future
directions,” ACM Comput. Surv., jan 2022, just Accepted. [Online].
Available: https://doi.org/10.1145/3510415

[14] W. Chen, K. Ye, Y. Wang, G. Xu, and C. Xu, “How does the workload
look like in production cloud? analysis and clustering of workloads on
alibaba cluster trace,” in 2018 IEEE 24th International Conference on
Parallel and Distributed Systems (ICPADS), 2018, pp. 102–109.

[15] L. Liu, “Qos-aware machine learning-based multiple resources
scheduling for microservices in cloud environment,” arXiv preprint
arXiv:1911.13208, 2019.

[16] R. S. Kannan, L. Subramanian, A. Raju, J. Ahn, J. Mars, and
L. Tang, “Grandslam: Guaranteeing slas for jobs in microservices
execution frameworks,” in Proceedings of the Fourteenth EuroSys
Conference 2019, ser. EuroSys ’19. New York, NY, USA:
Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3302424.3303958

[17] G. Yu, P. Chen, and Z. Zheng, “Microscaler: Automatic scaling for
microservices with an online learning approach,” in 2019 IEEE Inter-
national Conference on Web Services (ICWS), July 2019, pp. 68–75.

[18] H. Zhou, M. Chen, Q. Lin, Y. Wang, X. She, S. Liu, R. Gu,
B. C. Ooi, and J. Yang, “Overload control for scaling wechat
microservices,” in Proceedings of the ACM Symposium on Cloud
Computing, ser. SoCC ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 149–161. [Online]. Available:
https://doi.org/10.1145/3267809.3267823

[19] K. Rzadca, P. Findeisen, J. Swiderski, P. Zych, P. Broniek, J. Kusmierek,
P. Nowak, B. Strack, P. Witusowski, S. Hand, and J. Wilkes, “Autopilot:
Workload autoscaling at google,” in Proceedings of the Fifteenth
European Conference on Computer Systems, ser. EuroSys ’20. New
York, NY, USA: Association for Computing Machinery, 2020. [Online].
Available: https://doi.org/10.1145/3342195.3387524

[20] X. Hou, C. Li, J. Liu, L. Zhang, Y. Hu, and M. Guo, “Ant-man: towards
agile power management in the microservice era,” in 2020 SC20:
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC). IEEE Computer Society, 2020, pp. 1098–
1111.

[21] S. Zhang, T. Wu, M. Pan, C. Zhang, and Y. Yu, “A-sarsa: A predictive
container auto-scaling algorithm based on reinforcement learning,” in
2020 IEEE International Conference on Web Services (ICWS), 2020,
pp. 489–497.

[22] F. Rossi, M. Nardelli, and V. Cardellini, “Horizontal and vertical scaling
of container-based applications using reinforcement learning,” in 2019
IEEE 12th International Conference on Cloud Computing (CLOUD),
2019, pp. 329–338.

[23] A. U. Gias, G. Casale, and M. Woodside, “Atom: Model-driven autoscal-
ing for microservices,” in 2019 IEEE 39th International Conference on
Distributed Computing Systems (ICDCS), 2019, pp. 1994–2004.

[24] R. Nishtala, P. Carpenter, V. Petrucci, and X. Martorell, “Hipster:
Hybrid task manager for latency-critical cloud workloads,” in 2017 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2017, pp. 409–420.

[25] R. Nishtala, V. Petrucci, P. Carpenter, and M. Sjalander, “Twig: Multi-
agent task management for colocated latency-critical cloud services,” in
2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2020, pp. 167–179.

[26] M. A. Chang, A. Panda, Y.-C. Tsai, H. Wang, and S. Shenker,
“Throttlebot-performance without insight,” arXiv preprint
arXiv:1711.00618, 2017.

[27] H. Khazaei, C. Barna, and M. Litoiu, “Performance modeling of
microservice platforms considering the dynamics of the underlying cloud
infrastructure,” arXiv preprint arXiv:1902.03387, 2019.

[28] Y. Gan, Y. Zhang, K. Hu, D. Cheng, Y. He, M. Pancholi, and
C. Delimitrou, “Seer: Leveraging big data to navigate the complexity
of performance debugging in cloud microservices,” in Proceedings of
the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
19–33. [Online]. Available: https://doi.org/10.1145/3297858.3304004

[29] L. Suresh, P. Bodik, I. Menache, M. Canini, and F. Ciucu, “Distributed
resource management across process boundaries,” in Proceedings of
the 2017 Symposium on Cloud Computing, ser. SoCC ’17. New York,
NY, USA: Association for Computing Machinery, 2017, p. 611–623.
[Online]. Available: https://doi.org/10.1145/3127479.3132020

[30] X. He, Z. Tu, X. Xu, and Z. Wang, “Re-deploying microservices in edge
and cloud environment for the optimization of user-perceived service
quality,” in International Conference on Service-Oriented Computing.
Springer, 2019, pp. 555–560.

[31] B. Burns, J. Beda, and K. Hightower, Kubernetes: up and running: dive
into the future of infrastructure. O’Reilly Media, 2019.

[32] T. Kiss, P. Kacsuk, J. Kovács, B. Rakoczi, Á. Hajnal, A. Farkas,
G. Gesmier, and G. Terstyanszky, “Micado—microservice-based cloud
application-level dynamic orchestrator,” Future Generation Computer
Systems, vol. 94, pp. 937–946, 2019.

[33] X. Zhou, X. Peng, T. Xie, J. Sun, C. Xu, C. Ji, and W. Zhao, “Poster:
Benchmarking microservice systems for software engineering research,”
in 2018 IEEE/ACM 40th International Conference on Software Engi-
neering: Companion (ICSE-Companion). IEEE, 2018, pp. 323–324.

[34] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system for large-scale
machine learning,” in 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16). Savannah, GA: USENIX
Association, Nov. 2016, pp. 265–283.

[35] “Sock shop: a microservices demo application.
available:https://microservices-demo.github.io/,” 2017.

[36] S. Kardani-Moghaddam, R. Buyya, and K. Ramamohanarao, “Adrl:
A hybrid anomaly-aware deep reinforcement learning-based resource
scaling in clouds,” IEEE Transactions on Parallel and Distributed
Systems, vol. 32, no. 3, pp. 514–526, 2021.

[37] A. Mendoza, “Using nmon to monitor sas applications on aix servers,”
in SAS Global Forum. Citeseer, 2008, pp. 16–19.

[38] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” in NIPS 2014
Workshop on Deep Learning, December 2014, 2014.

[39] T. Mikolov, S. Kombrink, L. Burget, J. Černocký, and S. Khudanpur,
“Extensions of recurrent neural network language model,” in 2011 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2011, pp. 5528–5531.

[40] Z. Chen, J. Hu, G. Min, A. Y. Zomaya, and T. El-Ghazawi, “Towards
accurate prediction for high-dimensional and highly-variable cloud
workloads with deep learning,” IEEE Transactions on Parallel and
Distributed Systems, vol. 31, no. 4, pp. 923–934, April 2020.

[41] S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, and X. Shen, “Delay-
aware microservice coordination in mobile edge computing: A rein-
forcement learning approach,” IEEE Transactions on Mobile Computing,
vol. 20, no. 3, pp. 939–951, 2021.

[42] G. Yin, C. Z. Xu, and L. Y. Wang, “Q-learning algorithms with random
truncation bounds and applications to effective parallel computing,”
Journal of optimization theory and applications, 2008.

[43] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement
learning: Tutorial, review, and perspectives on open problems,” arXiv
preprint arXiv:2005.01643, 2020.

https://www.usenix.org/conference/osdi20/presentation/qiu
https://doi.org/10.1145/3510415
https://doi.org/10.1145/3302424.3303958
https://doi.org/10.1145/3267809.3267823
https://doi.org/10.1145/3342195.3387524
https://doi.org/10.1145/3297858.3304004
https://doi.org/10.1145/3127479.3132020

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 15

Minxian Xu is currently an Associate Professor
at Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences. He received the BSc
degree in 2012 and the MSc degree in 2015, both in
software engineering from University of Electronic
Science and Technology of China. He obtained
his PhD degree from the University of Melbourne
in 2019. His research interests include resource
scheduling and optimization in cloud computing. He
has co-authored 40+ peer-reviewed papers published
in prominent international journals and conferences,

such as ACM CSUR, ACM TOIT, IEEE TSUSC, IEEE TCC, IEEE TASE,
IEEE TGCN, JPDC, JSS and ICSOC. His Ph.D. Thesis was awarded the 2019
IEEE TCSC Outstanding Ph.D. Dissertation Award. More information can be
found at: minxianxu.info.

Chenghao Song received his BSc degree from
University of Electronic Science and Technology of
China. Now he is a master student at University of
Melbourne, he is also a visiting student at Shen-
zhen Institutes of Advanced Technology, Chinese
Academy of Science. His research interest includes
deep learning for cloud resource optimization.

Shashikant Ilager is a postdoctoral researcher at
Vienna University of Technology (TU Wien), Aus-
tria. He completed his PhD at the University of
Melbourne in 2021. His research interests covers
the boundaries of large scale Distributed Systems
and Machine Learning. He published several pa-
pers in leading journals and conferences including
IEEE Transactions on Parallel and Distributed Sys-
tems, IEEE Transactions on Mobile Computing, and
IEEE/ACM International Symposium on Cluster,
Cloud and Internet Computing (CCGRID). He is a

recipient of Best Paper award from CCGRID 2020 conference.

Sukhpal Singh Gill is a Lecturer (Assistant Profes-
sor) in Cloud Computing at the School of Electronic
Engineering and Computer Science, Queen Mary
University of London, UK. Prior to his present stint,
Dr. Gill has held positions as a Research Associate
at the School of Computing and Communications,
Lancaster University, UK and also as a Postdoctoral
Research Fellow at CLOUDS Laboratory, The Uni-
versity of Melbourne, Australia. Dr. Gill is serving
as an Associate Editor in Wiley ETT and IET Net-
works Journal. His research interests include Cloud

Computing, Fog Computing, Internet of Things and Energy Efficiency. For
further information, please visit: http://www.ssgill.me.

Juanjuan Zhao received her Ph.D degree from
Shenzhen College of Advanced Technology, Univer-
sity of Chinese Academy of Sciences in 2017, and
received the M.S. degree from the Department of
Computer Science, Wuhan University of Technology
in 2009. She is an Associate Professor at Shen-
zhen Institutes of Advanced Technology, Chinese
Academy of Sciences. Her research topics include
data-driven urban systems, mobile data collection,
cross-domain data fusion, heterogeneous model in-
tegration.

Kejiang Ye received his BSc and PhD degree in
Computer Science from Zhejiang University in 2008
and 2013, respectively. He was also a joint PhD
student at The University of Sydney from 2012
to 2013. After graduation, he works as Post-Doc
Researcher at Carnegie Mellon University from 2014
to 2015 and Wayne State University from 2015 to
2016. He is currently a Professor at Shenzhen In-
stitutes of Advanced Technology, Chinese Academy
of Science. His research interests focus on the per-
formance, energy, and reliability of cloud computing

and network systems.

Chengzhong Xu (Fellow, IEEE) is the Dean of Fac-
ulty of Science and Technology and the Interim Di-
rector of Institute of Collaborative Innovation, Uni-
versity of Macau, and a Chair Professor of Computer
and Information Science. Dr. Xu’s main research
interests lie in parallel and distributed computing
and cloud computing, in particular, with an emphasis
on resource management for system’s performance,
reliability, availability, power efficiency, and secu-
rity, and in big data and data-driven intelligence
applications in smart city and self-driving vehicles.

He published two research monographs and more than 300 peer-reviewed
papers in journals and conference proceedings; his papers received about
10K citations with an H-index of 59. He serves or served on a number of
journal editorial boards, including IEEE Transactions on Computers (TC),
IEEE Transactions on Cloud Computing (TCC), IEEE Transactions on Parallel
and Distributed Systems (TPDS) and Journal of Parallel and Distributed
Computing (JPDC). Dr. Xu has been the Chair of IEEE Technical Committee
on Distributed Processing (TCDP) since 2015. He obtained BSc and MSc
degrees from Nanjing University in 1986 and 1989 respectively, and a PhD
degree from the University of Hong Kong in 1993, all in Computer Science
and Engineering.

	Introduction
	Existing Challenges
	Our Contributions

	Related Work
	Performance Model
	Resource Orchestration
	Prototype Systems and Tools
	Critical Analysis

	Motivation: Performance Trade-offs in Individual Scaling Techniques
	Use Case Setup
	Comparison between Scaling Techniques

	System Model
	Workload Analyzer
	Workload Predictor
	RL-based Resource Scaler

	CoScal: A Multi-faceted Auto-scaling in Microservice Environments
	Performance Profiling
	Neural Network-based Workload Prediction
	blackRL-based Resource Scaling
	Auto-adapter for Unexpected Workloads Change

	Performance Evaluation
	Experimental Setup
	Baselines
	Experiment Analysis
	blackExperimental Analysis with Stan's Robot Shop

	Conclusions and Future Work
	References
	Biographies
	Minxian Xu
	Chenghao Song
	Shashikant Ilager
	Sukhpal Singh Gill
	Juanjuan Zhao
	Kejiang Ye
	Chengzhong Xu

