
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2023.026910

ARTICLE

Pedestrian and Vehicle Detection Based on Pruning YOLOv4 with
Cloud-Edge Collaboration

Huabin Wang1, Ruichao Mo2, Yuping Chen3, Weiwei Lin2,4,*, Minxian Xu5 and Bo Liu3,*

1School of Computer Science and Engineering, Huizhou University, Huizhou, 516007, China
2School of Computer Science and Engineering, South China University of Technology, Guangzhou, 510006, China
3School of Computer Science and Technology, South China Normal University, Guangzhou, 510631, China
4Department of New Network Technologies, Peng Cheng Laboratory, Shenzhen, 518066, China
5Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China

*Corresponding Authors: Weiwei Lin. Email: linww@scut.edu.cn; Bo Liu. Email: liugubin530@126.com

Received: 31 October 2022 Accepted: 03 February 2023 Published: 28 June 2023

ABSTRACT

Nowadays, the rapid development of edge computing has driven an increasing number of deep learning applications
deployed at the edge of the network, such as pedestrian and vehicle detection, to provide efficient intelligent services
to mobile users. However, as the accuracy requirements continue to increase, the components of deep learning
models for pedestrian and vehicle detection, such as YOLOv4, become more sophisticated and the computing
resources required for model training are increasing dramatically, which in turn leads to significant challenges
in achieving effective deployment on resource-constrained edge devices while ensuring the high accuracy perfor-
mance. For addressing this challenge, a cloud-edge collaboration-based pedestrian and vehicle detection framework
is proposed in this paper, which enables sufficient training of models by utilizing the abundant computing resources
in the cloud, and then deploying the well-trained models on edge devices, thus reducing the computing resource
requirements for model training on edge devices. Furthermore, to reduce the size of the model deployed on edge
devices, an automatic pruning method combines the convolution layer and BN layer is proposed to compress the
pedestrian and vehicle detection model size. Experimental results show that the framework proposed in this paper
is able to deploy the pruned model on a real edge device, Jetson TX2, with 6.72 times higher FPS. Meanwhile, the
channel pruning reduces the volume and the number of parameters to 96.77% for the model, and the computing
amount is reduced to 81.37%.

KEYWORDS
Pedestrian and vehicle detection; YOLOv4; channel pruning; cloud-edge collaboration

1 Introduction

Currently, with the rapid development of deep learning, more and more artificial intelligence
applications are beginning to prosper, such as pedestrian and vehicle detection. The maturity of
pedestrian and vehicle detection technologies is also driving the development of technologies such as
autonomous driving and connected vehicles [1,2]. To achieve better detection performance, pedestrian

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2023.026910
https://www.techscience.com/doi/10.32604/cmes.2023.026910
mailto:linww@scut.edu.cn
mailto:liugubin530@126.com

2026 CMES, 2023, vol.137, no.2

and vehicle detection implemented based on deep learning models often need to consume a large
amount of computing resources for training, which makes high-performance pedestrian and vehicle
detection models to be deployed in cloud computing centers with abundant computing resources, far
from the end users where the detection demand arises [3]. As a result, when end devices generate
detection tasks they need to send the data to the cloud for processing and later return the detection
results to the terminal, leading to long delay, which makes it difficult to meet the demand for efficient
detection in latency-sensitive applications such as autonomous driving.

Edge computing is a new computing paradigm that greatly reduces the transmission latency of
data at the edge by deploying computing resources close to where the data source is generated [4].
By deploying pedestrian and vehicle detection models on edge devices, data such as videos or images
generated by surveillance devices are sent to the nearest edge device for processing, greatly improving
the efficiency of pedestrian and vehicle detection [5,6]. However, limited by the size of the edge devices,
the computing resources deployed by the edge devices are limited and can only enable the training and
inference of lightweight deep learning models. The network structure of the model is sophisticated in
terms of improving the feature performance of the model to extract video or images, which also makes
it difficult for the integrity pedestrian and vehicle detection models to be adequately trained on the
edge, resulting in the accuracy of the model is difficult to be guaranteed. At the same time, pedestrian
and vehicle detection as a real-time task has a high demand for video and image data performance
metrics such as frame per second (FPS). With the increasing number of pedestrians and vehicles, it is
difficult for resource-constrained edge devices to ensure detection accuracy while improving detection
efficiency. Therefore, deploying pedestrian-vehicle detection models directly on resource-constrained
edge devices still faces significant challenges.

To achieve efficient deployment of complex deep learning models, especially pedestrian and vehicle
recognition detection models, on resource-constrained edge devices, model compression has received
wide attention from academia and industry as a way to reduce the computing and storage resources
required for training by reducing the useless parameters of the models, and thus. Currently, model
compression can be implemented in four ways, namely quantization [7], low-rank decomposition
[8], knowledge distillation [9], and model channel pruning [10]. Among them, quantization [11,12]
is used to reduce the memory usage by decreasing the bit width of the parameters and thus achieve the
compression of the deep learning model, but special hardware instructions are required to reduce the
latency in the process of implementing the model quantization. In addition, low-rank decomposition
is used to estimate the parameters of the deep learning model by using tensor decomposition, which in
turn achieves the compression of the model. Meanwhile, knowledge distillation is performed by first
training a large model with good performance using sufficient computing and labeled data resources,
and then knowledge distillation is performed on this model to obtain a small model with a smaller
parameter size but comparable performance to the large model, thus achieving the goal of model
compression. In addition, the similarities in the structures in the deep learning models make the
models have redundant parameters that need to be computed, taking up a large number of computing
resources [13]. Model channel pruning removes redundant parameters from a model by implement-
ing sparsity constraints. Specifically, model channel pruning requires initially training a large and

CMES, 2023, vol.137, no.2 2027

over-parameterized model (sometimes pre-trained models can also be used). Subsequently, performing
model channel pruning based on model characteristics. Eventually, fine-tuning the pruned model to
restore lost accuracy. In general, model channel pruning makes it easier to obtain a compact network
that can significantly reduce storage space and computing costs.

However, unreasonable model channel pruning strategies for pedestrian and vehicle detection
models based on the important assessment of model channels without considering multiple factors
can lead to the loss of important parameters in the model, resulting in a large loss of model accuracy
and making the usability of the pruned model impossible to be guaranteed. Meanwhile, the pruning
threshold of the model needs to be set empirically, which also makes unreasonable threshold settings
lead to a large reduction in the accuracy of pedestrian and vehicle detection models. Furthermore, the
pruned deep learning models still need to be fine-tuned, and the complex structure of pedestrian and
vehicle detection models makes it difficult to implement effective fine-tuning strategies for pedestrian
and vehicle detection models. At the same time, the performance of model channel pruning depends on
the sparsity of the model, and sparsity training requires a large number of computing resources, which
makes it difficult to implement sparsity training of deep learning models on resource-constrained edge
devices.

In this paper, to supplement the computing resource requirements of edge devices for efficient
deployment of pedestrian and vehicle detection models at the edge, a cloud-edge collaboration
pedestrian and vehicle detection framework is proposed to assist the training of pedestrian and vehicle
detection model by leveraging the powerful computing resources deployed in the cloud. In addition,
to improve the execution efficiency of trained models on edge devices, an automatic channel pruning
method is proposed to achieve compression of trained pedestrian and vehicle detection model to ensure
that the computing resources deployed on resource-constrained edge devices can meet the efficient
execution demand of the compressed models while ensuring the accuracy of pedestrian and vehicle
detection. Meanwhile, to obtain the optimal model channel pruning decision, a new sparsity method
for distinguishing model parameters is also proposed.

Specifically, the main contributions of this paper are as following:

• To give full play to the respective advantages of cloud computing and edge computing, a
pedestrian and vehicle detection framework based on cloud-edge collaboration is constructed
in this paper. Generally, the pedestrian vehicle detection model YOLOv4 is compressed and
optimized on the cloud server, and then the compressed lightweight model is delivered to
the edge end, and the edge server optimized the speed. Among them, the cloud adopts the
optimization method of network pruning, and the edge adopts the optimization method of
TensorRT layer and tensor fusion.

• A general deep neural network sparsity method is proposed, which makes the parameter
distribution of the model more obvious. It mainly considers the connection between the
convolution layer and BN layer, and obtains three influencing factors to determine the model by
analyzing the influence of their input on the network output of each layer: BN layer convolution
layer weight, BN layer scaling factor and BN layer bias factor, so that corresponding penalty
terms are added to these three factors in the loss function to minimize the MAP loss after
sparsity training of the model.

2028 CMES, 2023, vol.137, no.2

• A novel multi-polarization channel-pruning (MPCP) strategy is proposed, which makes the
compressed network model smaller in volume, has fewer parameters, less computation and
less inference time. It mainly judges the importance of channels by combining the convolution
weight, scaling factor and bias factor of the BN layer, and determines the pruning threshold
according to the convexity of parameter distribution, to cut out unimportant channels. The
experimental results show that the MPCP strategy reduces the number of parameters and
volume of the model to 96.77%, the computing amount to 81.37%, and the inference speed
of the model by 5.53 times.

The rest of this paper is organized as follows. In Section 2, the related work is listed. Then,
a method for optimzation of the pedestrian and vehicle detection model based on cloud-edge
collaboration is defined in Section 3. Futhermore, experimental evaluation is presented in Section 4.
Finally, conclusion and future work are drawn in Section 5.

2 Related Work

Nowadays, with the advent of the era of Internet of Everything, related technologies such as
artificial intelligence (AI) and edge computing (EC) have been applied on a wide scale. Meanwhile,
the combination of AI and EC is driving the rapid development of edge intelligence [14,15]. As an
application that has been widely deployed, target detection, especially pedestrian and vehicle detection,
deployed on edge devices can greatly improve the efficiency of target detection while ensuring the
privacy of end-users [16,17]. However, as a computation-intensive task, the resources deployed on edge
devices make it difficult to ensure that models are adequately trained, which poses a huge challenge
for pedestrian and vehicle detection in real-world application scenarios.

To enable the deployment of pedestrian and vehicle detection models on resource-constrained edge
devices, lightweight models are developed. Zhang et al. [18] proposed a cross-stage lightweight module
that generates redundant features from inexpensive operations and thus reduces the computation
overhead. In [19], Xu et al. proposed a lightweight target detection network, which constructs the
backbone of the whole model by using G-Module combined with depth-wise convolution, and adds
an attention mechanism to weight each channel to obtain more key features and remove redundant
features, thus enhancing the detection ability of the feature network model. Meanwhile, some less
important channels are removed to compress the size of the model to reduce the computing cost.
Wang et al. [20] reconstructed an efficient YOLO framework based on the traditional YOLOv3 by
using hierarchical pruning and channel pruning to lighten the parameters of the model. Moreover, an
iterative initialization strategy is designed to ensure the sparsity of the network during initial training.
In [21], Zhao et al. proposed Mixed YOLOv3-LITE, a lightweight real-time target detection network
that can be used for non-graphical processing units (GPUs) and mobile devices, achieving an optimal
balance of detection accuracy and speed on non-GPU based computers and portable end devices.
Wang et al. [22] pruned the convolution kernel of YOLOv4-tiny and introduced a scalable convolution
layer in the residual module of the network, which in turn led to an hourglass cross stage partial ResNet
structure, achieving an increase in the mean average accuracy and real-time detection of the model
while reducing the model size speed. In addition, the receptive field block simulating human vision
are added to increase the receptive field of the model, which in turn enhances the feature extraction
capability of the network. Wang et al. [23] proposed a lightweight target detection model based on
YOLOv4, which simplifies the network structure and reduces the size of the model parameters, thus
enabling further application and development of the target detection model on mobile and embedded
devices.

CMES, 2023, vol.137, no.2 2029

At the same time, channel pruning as a way of model compression to achieve acceleration of deep
learning model inference while ensuring that the model has high accuracy [24,25]. Therefore, edge
devices can deploy channel-pruned deep learning models to achieve efficient detection of pedestrians
and vehicles. In [26], Li et al. proposed a channel pruning method for target detection by using a multi-
task sensory loss algorithm to evaluate the contribution of each channel to the final detection, which
in turn retains the top-k representative channels and prunes the remaining channels. Chen et al. [27]
introduced network building blocks to analyze the YOLOv3-SPP3 and demonstrated the importance
of shift factor on channel saliency during pruning. Moreover, a high-ratio channel pruning method is
proposed to improve the performance of the pruning model based on the scale factor and shift factor
of the batch normalization layer to define the channel saliency. Based on discrimination aware channel
pruning, Xie et al. [28] proposed a localization-aware auxiliary network to find out the channels with
classification and regression key information, thus directly pruning the channels for target detection
and thus reducing a lot of time and computing resources. In [29], Chen et al. proposed a collaborative
channel pruning method based on convolutional layer weights and BN layer scaling factors to evaluate
the channel importance, which in turn enables the removal of unimportant channels from the model
without degrading the model performance. Jin et al. [30] proposed an effective method for dynamically
enhancing channel-level sparsity. The channel pruning is achieved by monitoring the saliency of
channels to evaluate their importance to the model performance in order to identify the insignificant
channels.

To the best of our knowledge, there are few studies on the optimization of the pedestrian and
vehicle detection model based on cloud-edge collaboration. Moreover, it is challenging to achieve
efficient channel pruning while maintaining the model performance. Therefore, an automatic pruning
method combining convolutional and BN layers is proposed in this paper to compress the model size
and thus achieve efficient pedestrian and vehicle detection in cloud-edge collaborative scenarios.

3 Method
3.1 Proposed Framework

To achieve efficient deployment of pedestrian and vehicle detection models at the edge, a
pedestrian and vehicle detection framework based on cloud-edge collaboration is proposed in this
paper, as shown in Fig. 1. Specifically, initially, a YOLOv4-based pedestrian and vehicle detection
model is constructed, and the pedestrian and vehicle detection model is trained until the model
accuracy is optimal by using the abundant computing resources deployed in the cloud and the huge
amount of historical data. Then, the pedestrian and vehicle detection model is compressed by the
model channel pruning strategy to reduce the number of parameters and scale of the models as possible
without excessive loss of accuracy. Finally, the compressed pedestrian and vehicle detection model is
deployed on the edge devices, which enables the inference of pedestrian and vehicle detection models
to be implemented close to the location where the data sources are generated, ensuring that pedestrian
and vehicle detection applications can be efficiently executed on the resource-constrained edge devices.
Meanwhile, the historical data collected at the edge devices will be sent to the cloud periodically to
enable scheduled updates of the pedestrian and vehicle detection model.

2030 CMES, 2023, vol.137, no.2

Figure 1: A framework of pedestrian and vehicle detection based on cloud-edge collaboration

Meanwhile, the workflow of the proposed framework in this paper is shown in Fig. 2. In particular,
images of pedestrians and vehicles are collected by the cameras deployed on the roadside and sent to
the cloud data center, and pre-processing of the images of pedestrians and vehicles is implemented
in the cloud. Then, the sufficient computing resources deployed in the cloud are leveraged to train
the pedestrian and vehicle detection model based on YOLOv4. Subsequently, sparsity training is
performed on the parameters (YOLOv4.weight) of the trained models to obtain the sparsity model
parameters (YOLOv4.pt). Furthermore, channel pruning is conducted on the pedestrian and vehicle
detection model to obtain the compressed model parameters (SilmYOLOv4.weight). Finally, the
compressed pedestrian and vehicle detection model is deployed on the edge devices to implement the
inference of the pedestrian and vehicle detection models. Moreover, TensorRT is used to accelerate
the inference of the models during the inference of pedestrian and vehicle detection on edge devices.
In addition, latency-sensitive and non-latency-sensitive pedestrian and vehicle detection tasks are
considered in this paper. 1) When the detection task comes from a latency-sensitive application, the
task is sent to the edge device to achieve pedestrian and vehicle recognition by utilizing the deployed
compressed pedestrian and vehicle detection models, which in turn reduces the data transmission
latency. 2) When the detection task comes from a non-latency-sensitive application, the task-related
data is sent to the cloud for pedestrian and vehicle detection, relieving the computing and network
pressure of the edge devices.

CMES, 2023, vol.137, no.2 2031

Figure 2: The workflow of cloud-edge collaboration pedestrian and vehicle detection framework

3.2 Correlation Factor Analysis
To implement channel pruning for pedestrian and vehicle detection models, the structure of

YOLOv4 is analyzed in depth in this paper. YOLOv4 is an improved version of YOLOv3, and its
core structure is similar to YOLOv3, but the performance of target detection is further improved by
incorporating several new network structures. the structure of YOLOv4 network can be divided into
three parts: Backbone, Neck and Head. The backbone network is based on the CSPNet structure and
incorporates DarkNet53 [31], which makes the performance of the backbone network significantly
improved. Besides, the Neck of YOLOv4 is mainly composed of SPP [32] and PAN [33]. The output
feature layer of the backbone network is processed to widen the receptive field, enhance the extraction
of feature maps, and effectively prevent overfitting. Furthermore, the Head of YOLOv4 is the same
as YOLOv3, which still uses a three-scale output for the detection of targets with different sizes, and
the heads with sizes 1/8, 1/16, and 1/32 of the original input size are used for the detection of large,
medium, and small targets, respectively [34].

Based on the above analysis, the convolutional layer plays an important role in YOLOv4. To
achieve efficient channel pruning, the inputs and outputs of the convolutional layer of the model need
to be analyzed. the convolutional operation in YOLOv4 is represented by Eq. (1).

zl = ωl × wl + bl, (1)

where xl is the input of the convolution at the first layer, ωl ∈ Rnl+1×nl×Kl×Gl (l ∈ [0, L]) is the weight of the
convolution at the l layer, and bl is the bias of the convolution at the l layer, nl+1 is the number of output
channels, nl is the number of input channels, Kl and Gl is the height and width of the convolution kernel,
zl is the output of the convolution at the first layer, and L is the maximum number of convolution layers.

When BN layer is not added to standardize the input value, it can be seen from Eq. (1) that
the output of the first layer is determined by ωl and bl. Therefore, Li et al. [35] believed that the

2032 CMES, 2023, vol.137, no.2

weight ωl and bias bl of the convolutional layer should be considered to judge the importance of the
channel. However, at present, most large convolutional networks choose to add BN layer to reduce
the occurrence of model overfitting. BN layer is added after convolutional layer in YOLOv4 target
detection network. The addition of BN layer will make the bias of the convolution layer discarded, so
the operation of the convolution layer of the first layer will become the following Eq. (2).

zl = ωl × xl. (2)

The function of batch BN layer [36] is to standardize input values and reduce numerical differences
to the same range. On the one hand, the convergence degree of gradient is improved and the training
speed of the model is accelerated. On the other hand, each layer can face the input value of the same
feature distribution as far as possible, which reduces the uncertainty brought by the change and also
reduces the influence on the subsequent network layer. The network of each layer becomes relatively
independent, which alleviates the problem of gradient disappearance in training. The BN layer first
calculates the expectation and variance of its input, as shown in Eqs. (3) and (4).

μB = 1
M

∑M

i=1 xi
l. (3)

σ 2
B = 1

M

∑M

i=1(x
i
l − μB)

2, (4)

where M is the batch size that represents the input to the BN layer of the first layer. Then, the BN
layer normalizes its input by the expected value and variance, and the transformation of the BN layer
can be represented by Eq. (5).

Yl = γl

Zl − μB√
σ 2

B + ε
+ βl, (5)

where Zl is the output of the l-layer convolution, which represents the expected value of a batch of
training data. σ 2

B is the variance of the input data, and ε is a non-zero constant to prevent the formula
from being meaningless. Besides, βl is the bias of the BN layer, and Yl is the output of the l layer. Based
on Eqs. (2) and (5) can be further expressed by Eq. (6).

Yl = γl

ωlxl − μB√
σ 2

B + ε
+ βl. (6)

According to Eq. (6), the output of the l layer is related to the parameters ωl of the convolutional
layer, γl of the BN layer, and βl of the BN layer, indicating that the performance of the model is
determined by these three learnable parameters. Therefore, γl, ωl and βl are used as evaluation metrics
to estimate the channels to achieve pruning of pedestrian and vehicle detection model channels.

3.3 LP Sparsity Regularization
After correlation factor analysis in Section 3.2, it can be concluded that the output of the

model is not only related to BN layer, but also related to convolution layer. Zhuang et al. [37] also
carried out different punishment treatments for the parameters of the two layers, proposed their own
regularization method for the parameters of BN layer, and used L2 regularization for the weights
of the convolution layer. However, we believe that L2 regularization of network weights is of little
significance. It is well known that L2 regularization penalizes large numerical weights and encourages
smaller values. However, a small parameter does not mean that the parameter is 0. L1 sparsity will
generate many values of 0, and then the weight of 0 will be cut off, which will have no impact on

CMES, 2023, vol.137, no.2 2033

the model. Chen et al. [29] used L1 regularization for both ω and γ , but it ignored the importance
of distinguishing important channels from unimportant channels, and did not blindly sparsity all
parameters into 0 for subsequent pruning.

Therefore, the training loss function of the pedestrian and vehicle detection model is defined in
this paper as follows:

� = �(f (x, ω), y) + λ1R(ω) + λ2Rs(γ) + λ3R(β). (7)

where R(ω), Rs(γ) and R(β) are denoted as

R(ω) = ∑L

l=1

∑nl+1
j=1

∑Kl
k=1

∑Gl
g=1 ‖ωl‖1 . (8)

Rs(γ) = ∑L

l=1

∑nl+1
i=1 t |γi| − |γi − γ̄ | . (9)

R(β) = ∑L

l=1

∑nl+1
i=1 ‖β‖1 . (10)

x is the input data set, y is the corresponding label, ω is the set of weights for all convolution layers,
and γ is the set of scaling factors for all BN layers. � denotes training target loss of sparsity training,
�(f (x, ω), y) denotes normal training loss of data set x, R(ω) denotes L1 regularization of convolution
weight, Rs(γ) denotes polarization regularization applied to BN layer, R(β) denotes L1 regularization
applied to bias. λ1, λ2 and λ3 are hyperparameter that will be used to balance normal loss functions
and sparsity regularization terms. t is a hyperparameter of polarization regularization, which is used
to adjust the distribution of γ the left and right parts. t is approximately proportional to the number
of parts tending to zero. The larger t is, the more parameters tending to zero will be.

3.4 MPCP Stategy
The most important thing for channel pruning is to find a reasonable method to evaluate the

importance, then determine the appropriate threshold value, and then cut off the non-important
channels or layers according to the threshold value to minimize the loss. In Section 3.2, the network
structure for YOLOv4 is analyzed and concluded that the BN layer output is related to three learnable
parameters ω, γ and β. Therefore, this paper proposes multi-polarization-channel-pruning (MPCP),
a channel pruning method that is done in one step without human involvement, i.e., pruning is
performed by combining the weights ω of the convolutional layer, the weights γ and β of the BN layer.
In addition, to avoid the influence of bias factors, when the γ of a layer is 0, the size of β determines
whether the layer needs to be pruned or not.

The process of the MPCP is shown in Fig. 3. From left to right, the first three-dimensional graph
represents the input characteristic graph of the l layer, which Xl is the input of l layer. The second graph
represents the convolution weight two-dimensional graph of the l layer, and the blue graph represents
the channels to be deleted according to ω, nl is the number of input channels of the l layer, nl+1 is the
number of output channels of the l layer. γl and βl are the γ value and the β value of the channel
corresponding to each BN layer. The convolution weight ω and γ are combined to obtain the above
Sl. Blue represents Si

l = 0, which can be safely deleted. When both ω and β are about 0, βl determines
whether the channel is deleted. Orange indicates that βl has a channel corresponding to a larger value
β, which needs to be retained. Therefore, the red in Sl obtained by synthesis is the channel that is really
deleted, so the far right of the figure represents the two-dimensional graph of convolution weight that
is really deleted. If the output channels deleted at this layer affect the number of input channels at the
next layer, Xl+1 represents the input channels at the next layer, nl+1 is the number of input channels at

2034 CMES, 2023, vol.137, no.2

the l + 1 layer, and nl+2 is the output channels at the l + 1 layer X . Network pruning is carried out at
the next layer in turn.

Figure 3: The pruning process of the MPCP

Algorithm 1: Multi-polarization channel-pruning (MPCP)
Require: Convolution layer’s weights ∗ batch normalize’s γ and batch normalize’s β

1: SI
L = 0 Obtain the evaluation factors of all channels F

2: hist_F_x and hist_F_y = np.histogram(F)
3: hist_beta_x, hist_beta_y = np.histogram(β)
4: if hist_F_y_diff[i] ≤ 0 ≤ hist_F_y_diff[i + 1] then
5: Calculate global pruning threshF according to threshF = hist_F_x[i + 1]
6: end if
7: if hist_beta_y_diff[i] ≤ 0 ≤ hist_beta_y_diff[i + 1] then
8: Calculate pruning thresh_beta according to thresh_beta = hist_beta_x[i + 1]
9: end if
10: for l = 0 to L do
11: for i = 0 to I do
12: if Si

l = threshbeta then
13: if β i

l = threshbeta then
14: Si

l = 0
15: else
16: Si

l = 1
17: end if
18: end if
19: end for
20: end for
21: return The compact model

Algorithm 1 firstly obtains the evaluation factors of all channels according to formula Fl =
‖γl‖ ∗ ∑nl

i=1

∑Kl
k=1

∑Gl
g=1 ‖Wl‖, and the threshold is set to the tail closest to 0 according to the parameter

distribution graph after sparsity training. To avoid important model channels from being deleted by

CMES, 2023, vol.137, no.2 2035

mistake, a bias factor βl is introduced to enable the assessment of model channel pruning strategies
made based on the evaluation factors, and in turn pruning strategies are selected to enable pruning
of model channels. Then, the evaluation factors corresponding to each channel in the pedestrian and
vehicle detection model are compared with a set threshold, and when the evaluation factor is less than
the threshold, the channel is pruned. After Algorithm 1 is executed, the list mask of whether each
channel in each layer needs to be deleted can be obtained, Si

l = 0 indicating that the i channel in
the l layer needs to be deleted, Si

l = 1 indicating that the channel is reserved. In addition, the time
complexity of the MPCP is O(n2).

3.5 Acceleration of Edge Inference
When pruned pedestrian and vehicle and detection models are deployed to the edge devices, new

real-time image data is sent to the edge devices and the pruned models are used for inference to achieve
pedestrian and vehicle detection, which greatly reduces the data transmission latency. However, when
the number of pedestrian and vehicle detection tasks increases drastically, the computing resources
deployed in the edge devices have difficulty in meeting the response speed of delay-sensitive pedestrian
and vehicle detection inference tasks. Therefore, the TensorRT layer and tensor fusion are leveraged
in the proposed framework to optimize the inference speed of the model, and the semi-floating point
precision quantization method is also used to reduce the memory occupation of the model for better
pedestrian and vehicle detection. The flowchart of edge inference acceleration is shown in Fig. 4.

Figure 4: The flow chart of edge inference acceleration

The configuration file needs to be loaded first and multiple threads are used to do edge inference.
The configuration file is determined by the parameters to be optimized. When the onboard camera of
Jetson TX2 captures new images, these images need to be pre-processed and converted into the tensor
needed for the model input. Moreover, a network thread needs to take the pruned lightweight model
to be transformed into an inference engine that TensorRT can accelerate, and another network thread

2036 CMES, 2023, vol.137, no.2

adopts the input data to execute the context. The inference engine is then loaded, the configuration
file is imported to accelerate the model, and the inference results are output.

4 Experimental Evaluation
4.1 Simulation Setup

In this paper, a server with Intel Xeon E5-2678 v3 @2.50 GHz, 32 GB RAM, NVIDIA
GTX2080Ti GPU and Ubuntu 18.04.5LTS is utilized as the cloud server. Meanwhile, the Jetson Tegra
X2 with a six-core CPU, Pascal GPU and with 8GB of global memory is utilized as the edge device.

4.2 Dataset and Evaluation Indexes
The dataset used in this experiment is pedestrian-vehicle data collected from a commercial

company, containing 3008 images taken by surveillance cameras at different time periods, which is
not publicly available. In addition, the dataset consists of 2402 images as the training set and 606
images as the validation set. These images are manually labeled into four predefined categories (i.e.,
people, heads, motorcycles, and bicycles).

Meanwhile, to validate the performance of the model, the evaluation metrics used in the exper-
iments are (1) MAP, (2) Parameters, (3) Volume, (4) FLOPs, (5) Inference time, and (6) FPS. In
generally, FPS is the transmission frame rate per second, which represents how many images per second
the target network can detect. The effectiveness of the MPCP strategy is verified using the inference
time, and the effectiveness of the model compression method is verified using the FPS.

4.3 Benchmark
The YOLOv4 [34] is chosen as the benchmark network for this experiment, and the Darknet is

utilized for training to get various indicators of pedestrian vehicle detection network, as shown in
Fig. 5.

Figure 5: YOLOv4 model indicators

CMES, 2023, vol.137, no.2 2037

Subsequently, L1 regularization proposed by Liu et al. [38] are used for sparse training of
YOLOv4, and channel pruning and channel-layer pruning are carried out, and the pruned model is
used as the basic model for comparison. The experimental results are shown in Table 1.

Table 1: L1 sparsity model pruning

Model Pruning MAP (%) Parameters
(M)

Volume
(MB)

FLOPs
(GFLOPs)

Strategy Percent
L1-YOLOv4 – – 72.73 63.95 244.45 29.89

Channel 80% 73.1 3.23 12.42 8.10
85% 72.5 2.05 7.92 6.58
90% 14.4 1.19 4.61 5.15

Pruned-LP-YOLOv4 Channel-layer 80% + 8 layer 72.9 3.24 12.42 8.12
80% + 16 layer 71.0 3.11 11.92 7.81
85% + 8 layer 72.73 2.19 8.41 6.69
85% + 16 layer 67.6 2.07 7.95 6.38

MPCP (best) 73.32 2.79 10.75 6.06

4.4 Comparison of Different Sparsity Training
4.4.1 Differences between Sparsity Regularization

As shown in Table 2, the benchmark method of the experiment is L1 [38], which only performs
L1 regularization for γ . Polarization-2020 [37] and CCprune [29] are improvements on L1. They both
regularize different parameters of the target loss function. In this paper, the two are applied to the
pedestrian and vehicle detection experiment, and their effectiveness is verified. Finally, the LP (L1-
Polarization) is proposed by comparing the experimental results. In addition, to verify the feasibility
and fairness of the algorithm, the hyperparameter and training parameter settings of all algorithms
in this paper are the same during sparsity training. The input size of the network is 416 × 416, and
all networks are trained with SGD. Momentum is set to 0.97, weight attenuation to 0.0004569, initial
learning rate to 0.002324, batchsize to 8, IoU threshold to 0.5, and confidence threshold to 0.001.

Table 2: Differences of four sparsity regularization methods

Approach γ ω β

L1-2017 L1 = ‖γ ‖1

Polarization-2020 Polar = t ‖γ ‖1 − ‖γ − γ̄ ‖1 L2 = ‖ω‖2

CCprune-2021 L1 = | γ ‖1 L1 = | ω‖1

LP (our) Polar = t ‖γ ‖1 − ‖γ − γ̄ ‖1 L1 = | ω‖1 L1 = | β‖1

2038 CMES, 2023, vol.137, no.2

4.4.2 Verify the Effectiveness of Sparsity Regularization of ω and β

In this subsection, the influence of sparsity on ω and β are verified. As shown in Table 2, there
are L1 and L2 regularization of the weight ω of the convolution layer. Therefore, in order to verify
the influence of weight ω sparsity at the convolutional layer, the statistical quantity of each interval
is counted in this section. As shown in Fig. 6 that the weights of the original model are large and the
number tending to 0 is small. After L2 sparsity, the values partial to 0 are more, but most of them are
still in the second and third intervals, and the overall value is still large. After L1 sparsity, most of the
weights of the convolution layer tend to 0, and the overall value is between 0 and 1. Therefore, it is
necessary to impose L1 penalty on ω.

Figure 6: The satistical histogram of ω

Furthermore, the effect of regularization on β is verified. To verify the effect of bias, their number
in each interval is counted here. As shown in Fig. 7 that the values of original model β are mostly partial
to 0, between 0 and 5, but there are still some numbers β with large values. However, the channel with a
large shift factor has a great influence on the subsequent layers, so it still needs to be sparse. The right
side of Fig. 7 is the quantitative statistics after sparsity. It can be seen that all displacement factors
are between 0 and 1, and those tending to 0 still occupy the majority. Therefore, it is necessary to
punish β.

CMES, 2023, vol.137, no.2 2039

Figure 7: The statistical histogram of β

4.4.3 Verify the Effectiveness of Sparsity Regularization on MAP

As shown in Table 3, compared with the non-sparse YOLOv4, the metrics such as the number of
model parameters, volume size and FLOPs remain the same after different sparsity methods, but there
is a certain improvement in MAP. Among them, The MAP after L1 sparsity and CCPrune sparsity are
72.73% and 73.10%, respectively. However, the MAP of the polarization sparsity and the LP sparsity
are 74.23% and 74.30%, respectively, which demonstrates the effectiveness of the polarization sparsity
and the LP sparsity. Meanwhile, the accuracy of the LP sparsity is higher compared to the polarization
sparsity, which also demonstrates the effectiveness of the LP sparsity.

Table 3: Comparison of results of four regularization methods

Model MAP (%) Parameters Volume (MB) FLOPs (GFLOPs)

YOLOv4 72.7 63.95 244.22 29.89
L1-YOLOv4 72.73 63.95 244.50 29.89
Polarization-YOLOv4 74.23 63.95 244.50 29.89
CCprune-YOLOv4 73.10 63.95 244.50 29.89
LP-YOLOv4 (our) 74.30 63.95 244.50 29.89

2040 CMES, 2023, vol.137, no.2

4.5 Comparison of Different Pruning
4.5.1 Pruning Results

To verify the effectiveness of MPCP, three sparsity models with channel pruning and channel-
layer pruning are leveraged for comparative experiments. The results with different sparsity models
are shown in Tables 4–6, respectively. In general, compared with Polarization-YOLOv4 and CCPrune-
YOLOv4, LP-YOLOv4 is the best in terms of MAP performance with little difference in the number
of parameters, volume and FLOPs values. Meanwhile, under the three different models, the number
of model parameters and volume keep decreasing by increasing the ratio of channel pruning, but the
MAP performance also shows a sharp decline, which can even lead to the model not working at all.
However, MPCP achieves the premise that the model parameters and volume are drastically reduced
under the three models, and still ensures that the model has a high MAP performance, which fully
demonstrates the effectiveness of MPCP.

Table 4: Comparison of the polarization sparsity model pruning

Model Pruning MAP (%) Parameters (M) Volume
(MB)

FLOPs
(GFLOPs)

Strategy Percent
Polarization-YOLOv4 – – 74.23 63.95 244.57 29.89

Channel 80% 73.82 3.23 12.41 6.80
85% 49.75 2.19 8.46 5.36
90% 0 – – –

Pruned-Polarization-
YOLOv4

Channel-layer 80% + 8 layer 73.03 3.2 12.29 6.95

80% + 16 layer 55.90 2.88 11.04 6.17
85% + 8 layer 67.71 2.2 8.46 5.35
85% + 16 layer 45.67 1.95 7.47 4.71

MPCP (best) 73.32 2.79 10.75 6.06

Table 5: Comparison of the CCPrune sparsity model pruning

Model Pruning MAP (%) Parameters
(M)

Volume
(MB)

FLOPs
(GFLOPs)

Strategy Percent

CCPrune-YOLOv4 – – 73.1 63.95 244.57 29.89
Channel 80% 72.6 3.26 12.52 6.84

85% 49.7 2.21 8.53 5.37
90% 0 1.43 5.52 4.18

Pruned-CCPrune-YOLOv4 Channel-layer 80% + 8 layer 72.04 3.23 12.37 6.96
80% + 16 layer 70.19 2.8 11.02 6.13
85% + 8 layer 69.71 2.24 8.48 –
85% + 16 layer 48.67 1.95 7.5 –

MPCP (best) 72.51 2.83 10.75 6.15

CMES, 2023, vol.137, no.2 2041

Table 6: Comparsion of the LP sparsity model pruning

Model Pruning MAP (%) Parameters
(M)

Volume
(MB)

FLOPs
(GFLOPs)

Strategy Percent

LP-YOLOv4 – – 74.3 63.95 244.50 29.80
Channel 80% 74.1 3.11 11.97 8.10

85% 73.66 2.24 8.62 5.79
90% 0 1.38 5.36 4.23

Pruned-LP-YOLOv4 Channel-layer 80% + 8 layer 73.84 10.56 7.59
80% + 16 layer 60.11 2.41 9.24 6.76
85% + 8 layer 72.7 2.12 8.18 5.49
85% + 16 layer 60 1.79 6.89 4.91

MPCP (best) 73.48 2.06 7.91 5.57

4.5.2 Verify the Effectiveness of Sparsity Method on Pruning

The comparison of the effectiveness of pruning under different sparsity methods is shown in Fig. 8.
In Fig. 8a, the MAP performance of channel pruning with different pruning rates is shown, and it
can be seen that when the pruning rate of the channel is set to 80%, the MAP performance of the LP
sparsity method is the best. And when the channel pruning rate is set to 85%, the MAP performance of
the polarization sparsity and the CCPrune sparsity decreases more significantly to about 50%, while
the MAP of the LP sparsity and L1 sparsity does not decrease significantly. Meanwhile, the MAP
performance of the LP sparsity decreases less than that of the L1 sparsity, which in turn indicates that
the LP sparsity has the best performance. Furthermore, when the channel pruning rate is set to 90%,
the accuracy of the polarization sparsity, the CCPrune sparsity and the LP sparsity loses almost all,
and the accuracy of the L1 sparsity also decreases significantly, which also indicates that the model is
useless when the pruning rate is too high.

As shown in Fig. 8b, the MAP performance of the pedestrian and vehicle detection model after
channel-layer pruning at different pruning rates. It can be seen that when the pruning rate is set to 80%
and the number of channels removed layers is set to 8, the MAP performance of the model after the
four methods of sparsity does not show an excessive loss, but the MAP performance of the model after
LP sparsity is optimal. And when the pruning rate is set to 80% and the number of channel removed
layers is set to 16, the MAP performance of CCPrune is the best. Moreover, when the pruning rate is set
to 85% and the number of channels removed is set to 8, the MAP performance of the model processed
by the L1 sparsity and the LP sparsity is the same. Furthermore, when the pruning rate is set to 85%
and the number of channels removed layers is 16, the MAP performance of the model processed by
the L1 sparsity is optimal, and LP sparsity is sub-optimal, while the MAP performance of the model
processed by the polarization and CCPrune sparsity is too high in terms of performance loss.

2042 CMES, 2023, vol.137, no.2

Figure 8: Comprasion of the effectiveness with different sparsity method on pruning

The performance of MAP under the MPCP strategy is shown in Fig. 8c. The pruning needs to
be executed just once under the MPCP strategy without multiple trials. After pruning is completed,
the LP sparsity performs the best MAP performance and the CCPrune sparsity has the lowest
MAP performance. In addition, the MAP performance of the polarization sparsity decreases more
significantly. Therefore, the LP sparsity method has the best MAP performance under the MPCP
strategy.

4.5.3 Verify the Effectiveness of Pruning Strategy on FPS

In this subsection, to verify the performance of the proposed sparsity method LP and pruning
strategy MPCP on model inference time, we conduct experiments on the model performance after
LP and MPCP processing. As shown in Fig. 9, the performance of the model is in terms of the
number of parameters, FLOPs and inference time after channel pruning, channel layer pruning and
MPCP pruning. Specifically, compared with channel pruning and channel-layer pruning, MPCP can
significantly reduce the number of parameters and increase the inference speed of the model without
losing too much accuracy, further demonstrating the effectiveness of the proposed method.

CMES, 2023, vol.137, no.2 2043

Figure 9: Comparison of three pruning methods

4.6 Comparing Edge Deployment Results
As shown in Table 7, compared with the original YOLOv4, the pruned model is faster and more

accurate. When the model input image is 416 × 416, after L1 regularization sparsity and MPCP, the
model size is changed from 244.22 to 7.92 MB, the number of parameters is reduced from 63.95 to
2.05 million, and the FPS is changed to 3–5 times of the original. After LP regularization and MPCP,
the volume changed from 244.22 to 6.27 MB, the number of parameters decreased from 63.95 to
1.56 million, and the FPS became 5–6 times of the original. (Considering that the actual FPS may
be different due to the different environment of each person, the multiples of FPS variation are shown
here). Therefore, it can be concluded that our method is superior. As can be seen from Table 8, when
the image size is 416 × 416 and batch size is 1, TensorRT FP16 can accelerate YOLOv4 by about
2.3 times compared with FP32. When the compressed model is tested on the Jetson TX2, FP16 is
1.3 times faster than FP32. Moreover, compared with the model after pruning, the FPS of YOLOv4
before pruning is 5.1 times higher than that of the model after pruning. It can be concluded that the
cloud-edge collaboration framework proposed in this paper is reasonable and effective.

Table 7: Performance comparison of pedestrian and vehicle detection model

Model Input size MAP (%) Volume
(MB)

Parameters
(M)

FPS (frame/s)

C++ Python

YOLOv4 416 73.4 244.22 63.95 1.7 0.79
L1-MPCP (our) 416 72.06 7.92 2.05 8.7 3.75
LP (our)-MPCP (our) 416 73.5 6.27 1.56 9.4 3.92

2044 CMES, 2023, vol.137, no.2

Table 8: TensorRT inference acceleration on Jetson TX2

Model Calibration standard Per frame time cost (ms) FPS

YOLOv4 FP32 439 2.28
FP16 189 5.28

LP (our)-MPCP (our) FP32 72.2 13.85
FP16 56.8 17.6

5 Conclusion and Future Work

In this paper, a pedestrian and vehicle detection framework based on cloud-edge collaboration
is proposed to achieve efficient deployment of the pedestrian and vehicle detection model on edge
devices. Specifically, initially, the pedestrian and vehicle detection models built on yolov4 are trained
by utilizing sufficient computing resources deployed in the cloud computing center. Then, the model
is compressed using model channel pruning techniques, and the compressed model is deployed on
edge devices to reduce the resource overhead required for model training. Finally, TensorRT layer
and tensor fusion optimization methods are used on the edge devices to further improve the accuracy
of the model. In addition, a general DNN sparsity method is proposed to achieve a more distinct
parameter distribution of the model, which in turn improves the MAP performance of the model.
Furthermore, a new multi-polarization channel pruning strategy, MPCP, is proposed in this paper
making the compressed model smaller in size and with fewer parameters while ensuring no excessive
loss of accuracy. Numerous experimental results demonstrate the effectiveness of the method proposed
in this paper.

Regarding future work, we will make further improvements to deploy the method proposed in
this paper in the actual cloud-edge collaboration scenario for implementing efficient pedestrian and
vehicle detection. Moreover, we will consider incorporating efficient data pre-processing techniques
into the edge training process to further the efficiency and accuracy of model training and inference
on edge devices.

Acknowledgement: We are grateful to the editors and reviewers for their helpful suggestions, which
have greatly improved this paper.

Funding Statement: This work is supported by Key-Area Research and Development Program of
Guangdong Province (2021B0101420002), the Major Key Project of PCL (PCL2021A09), National
Natural Science Foundation of China (62072187), Guangdong Major Project of Basic and Applied
Basic Research (2019B030302002), Guangdong Marine Economic Development Special Fund
Project (GDNRC[2022]17) and Guangzhou Development Zone Science and Technology (2021GH10,
2020GH10).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

CMES, 2023, vol.137, no.2 2045

References
1. Boukerche, A., Sha, M. (2021). Design guidelines on deep learning–based pedestrian detection methods for

supporting autonomous vehicles. ACM Computing Surveys (CSUR), 54(6), 1–36.
2. Camara, F., Bellotto, N., Cosar, S., Weber, F., Nathanael, D. et al. (2020). Pedestrian models for autonomous

driving Part II: High-level models of human behavior. IEEE Transactions on Intelligent Transportation
Systems, 22(9), 5453–5472. https://doi.org/10.1109/TITS.2020.3006767

3. Rasouli, A., Tsotsos, J. K. (2019). Autonomous vehicles that interact with pedestrians: A survey
of theory and practice. IEEE Transactions on Intelligent Transportation Systems, 21(3), 900–918.
https://doi.org/10.1109/TITS.2019.2901817

4. Premsankar, G., di Francesco, M., Taleb, T. (2018). Edge computing for the Internet of Things: A case
study. IEEE Internet of Things Journal, 5(2), 1275–1284. https://doi.org/10.1109/JIOT.2018.2805263

5. Liu, S., Liu, L., Tang, J., Yu, B., Wang, Y. et al. (2019). Edge computing for autonomous driving:
Opportunities and challenges. Proceedings of the IEEE, 107(8), 1697–1716. https://doi.org/10.1109/
JPROC.2019.2915983

6. Su, C. L., Lai, W. C., Li, C. T. (2021). Pedestrian detection system with edge computing integration on
embedded vehicle. 2021 International Conference on Artificial Intelligence in Information and Communication
(ICAIIC), pp. 450–453. Jeju Island, Korea (South). https://doi.org/10.1109/ICAIIC51459.2021.9415262

7. Kryzhanovskiy, V., Balitskiy, G., Kozyrskiy, N., Zuruev, A. (2021). Qpp: Real-time quantization parameter
prediction for deep neural networks. Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 10684–10692. Virtual Event.

8. Xu, Y., Li, Y., Zhang, S., Wen, W., Wang, B. et al. (2020). Trp: Trained rank pruning for efficient deep neural
networks. arXiv preprint arXiv:2004.14566.

9. Liu, Y., Shu, C., Wang, J., Shen, C. (2020). Structured knowledge distillation for dense prediction. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 1. https://doi.org/10.1109/TPAMI.2020.3001940

10. Blalock, D., Gonzalez Ortiz, J. J., Frankle, J., Guttag, J. (2020). What is the state of neural network pruning?
Proceedings of Machine Learning and Systems, 2, 129–146.

11. Zhao, K., Huang, S., Pan, P., Li, Y., Zhang, Y. et al. (2021). Distribution adaptive INT8 quantization
for training CNNs. Proceedings of the AAAI Conference on Artificial Intelligence, 35(4), 3483–3491.
https://doi.org/10.1609/aaai.v35i4.16462

12. He, Y., Liu, P., Wang, Z., Hu, Z., Yang, Y. (2019). Filter pruning via geometric median for deep
convolutional neural networks acceleration. Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 4340–4349. Long Beach, CA.

13. Wang, H., Qin, C., Zhang, Y., Fu, Y. (2021). Emerging paradigms of neural network pruning. arXiv preprint
arXiv:2103.06460.

14. Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K. et al. (2019). Edge intelligence: Paving the last mile of
artificial intelligence with edge computing. Proceedings of the IEEE, 107(8), 1738–1762. https://doi.org/
10.1109/JPROC.2019.2918951

15. Zhang, J., Letaief, K. B. (2019). Mobile edge intelligence and computing for the internet of vehicles.
Proceedings of the IEEE, 108(2), 246–261. https://doi.org/10.1109/JPROC.2019.2947490

16. Chen, J., Ran, X. (2019). Deep learning with edge computing: A review. Proceedings of the IEEE, 107(8),
1655–1674. https://doi.org/10.1109/JPROC.2019.2921977

17. Ren, J., Guo, Y., Zhang, D., Liu, Q., Zhang, Y. (2018). Distributed and efficient object detec-
tion in edge computing: Challenges and solutions. IEEE Network, 32(6), 137–143. https://doi.org/
10.1109/MNET.2018.1700415

18. Zhang, Y. M., Lee, C. C., Hsieh, J. W., Fan, K. C. (2021). Csl-yolo: A new lightweight object detection
system for edge computing. arXiv preprint arXiv:2107.04829.

https://doi.org/10.1109/TITS.2020.3006767
https://doi.org/10.1109/TITS.2019.2901817
https://doi.org/10.1109/JIOT.2018.2805263
https://doi.org/10.1109/JPROC.2019.2915983
https://doi.org/10.1109/ICAIIC51459.2021.9415262
https://doi.org/10.1109/TPAMI.2020.3001940
https://doi.org/10.1609/aaai.v35i4.16462
https://doi.org/10.1109/JPROC.2019.2918951
https://doi.org/10.1109/JPROC.2019.2947490
https://doi.org/10.1109/JPROC.2019.2921977
https://doi.org/10.1109/MNET.2018.1700415

2046 CMES, 2023, vol.137, no.2

19. Xu, H., Guo, M., Nedjah, N., Zhang, J., Li, P. (2022). Vehicle and pedestrian detection algorithm
based on lightweight YOLOv3-promote and semi-precision acceleration. IEEE Transactions on Intelligent
Transportation Systems, 23(10), 19760–19771. https://doi.org/10.1109/TITS.2021.3137253

20. Wang, Z., Zhang, J., Zhao, Z., Su, F. (2020). Efficient YOLO: A lightweight model for embedded
deep learning object detection. 2020 IEEE International Conference on Multimedia & Expo Workshops
(ICMEW), pp. 1–6. London, UK. https://doi.org/10.1109/ICMEW46912.2020.9105997

21. Zhao, H., Zhou, Y., Zhang, L., Peng, Y., Hu, X. et al. (2020). Mixed YOLOv3-lite: A lightweight real-time
object detection method. Sensors, 20(7), 1861. https://doi.org/10.3390/s20071861

22. Wang, G., Ding, H., Yang, Z., Li, B., Wang, Y. et al. (2022). TRC-YOLO: A real-time detec-
tion method for lightweight targets based on mobile devices. IET Computer Vision, 16(2), 126–142.
https://doi.org/10.1049/cvi2.12072

23. Wang, C., Tong, X., Gao, R., Yan, L. (2022). Mobile-YOLO: A lightweight and efficient implementation
of object detector based on yolov4. In: Hu, Z., Dychka, I., Petoukhov, S., He, M. (Eds.), Advances
in computer science for engineering and education, pp. 221–234. Springer, Cham. https://doi.org/10.1007/
978-3-031-04812-8_19

24. Deng, L., Li, G., Han, S., Shi, L., Xie, Y. (2020). Model compression and hardware acceleration for
neural networks: A comprehensive survey. Proceedings of the IEEE, 108(4), 485–532. https://doi.org/
10.1109/JPROC.2020.2976475

25. Mishra, R., Gupta, H. P., Dutta, T. (2020). A survey on deep neural network compression: Challenges,
overview, and solutions. arXiv preprint arXiv:2010.03954.

26. Li, S., Xue, L., Feng, L., Wang, Y. F., Wang, D. (2022). Object detection network pruning with multi-task
information fusion. World Wide Web, 25, 1667–1683. https://doi.org/10.1007/s11280-021-00991-3

27. Chen, Y., Li, R., Li, R. (2021). HRCP: High-ratio channel pruning for real-time object detection on resource-
limited platform. Neurocomputing, 463, 155–167. https://doi.org/10.1016/j.neucom.2021.08.046

28. Xie, Z., Zhu, L., Zhao, L., Tao, B., Liu, L. et al. (2020). Localization-aware channel pruning for object
detection. Neurocomputing, 403(3), 400–408. https://doi.org/10.1016/j.neucom.2020.03.056

29. Chen, Y., Wen, X., Zhang, Y., Shi, W. (2021). CCPrune: Collaborative channel pruning for learning compact
convolutional networks. Neurocomputing, 451, 35–45. https://doi.org/10.1016/j.neucom.2021.04.063

30. Jin, Y., Liu, T., Chen, J., Fu, Y. (2021). Dynamic channel pruning for real-time object detection networks.
International Conference on Neural Information Processing, Springer International Publishing, Sanur, Bali,
Indonesia.

31. Wang, C. Y., Liao, H. Y. M., Wu, Y. H., Chen, P. Y., Hsieh, J. W. et al. (2020). CSPNet: A new backbone
that can enhance learning capability of CNN. Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops, pp. 390–391. Virtual Event.

32. He, K., Zhang, X., Ren, S., Sun, J. (2015). Spatial pyramid pooling in deep convolutional networks for
visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(9), 1904–1916.
https://doi.org/10.1109/TPAMI.2015.2389824

33. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J. (2018). Path aggregation network for instance segmentation.
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8759–8768.
Salt Lake City, Utah.

34. Bochkovskiy, A., Wang, C. Y., Liao, H. Y. M. (2020). YOLOv4: Optimal speed and accuracy of object
detection. arXiv preprint arXiv:2004.10934.

https://doi.org/10.1109/TITS.2021.3137253
https://doi.org/10.1109/ICMEW46912.2020.9105997
https://doi.org/10.3390/s20071861
https://doi.org/10.1049/cvi2.12072
https://doi.org/10.1007/978-3-031-04812-8_19
https://doi.org/10.1109/JPROC.2020.2976475
https://doi.org/10.1007/s11280-021-00991-3
https://doi.org/10.1016/j.neucom.2021.08.046
https://doi.org/10.1016/j.neucom.2020.03.056
https://doi.org/10.1016/j.neucom.2021.04.063
https://doi.org/10.1109/TPAMI.2015.2389824

CMES, 2023, vol.137, no.2 2047

35. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H. P. (2016). Pruning filters for efficient convnets. arXiv
preprint arXiv:1608.08710.

36. Santurkar, S., Tsipras, D., Ilyas, A., Madry, A. (2018). How does batch normalization help optimization?
Advances in Neural Information Processing Systems, 31, 1–11.

37. Zhuang, T., Zhang, Z., Huang, Y., Zeng, X., Shuang, K. et al. (2020). Neuron-level structured pruning using
polarization regularizer. Advances in Neural Information Processing Systems, 33, 9865–9877.

38. Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S. et al. (2017). Learning efficient convolutional networks through
network slimming. Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2736–
2744. Venice, Italy.

	Pedestrian and Vehicle Detection Based on Pruning YOLOv4 with Cloud-Edge Collaboration
	1 Introduction
	2 Related Work
	3 Method
	4 Experimental Evaluation
	5 Conclusion and Future Work
	References

