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Abstract—The rapid integration of Internet of Things (IoT)
services and applications across various sectors is primarily
driven by their ability to process real-time data and create
intelligent environments through artificial intelligence for service
consumers. However, the security and privacy of data have
emerged as significant threats to consumers within IoT networks.
Issues such as node tampering, phishing attacks, malicious code
injection, malware threats, and the potential for Denial of Service
(DoS) attacks pose serious risks to the safety and confidentiality
of information. To solve this problem, we propose an integrated
autonomous IoT network within a cloud architecture, employing
Blockchain technology to heighten network security. The primary
goal of this approach is to establish a Heterogeneous Autonomous
Network (HAN), wherein data is processed and transmitted
through cloud architecture. This network is integrated with a
Reinforced Neural Network (RNN) called ClouD RNN, specif-
ically designed to classify the data perceived and collected by
sensors. Further, the collected data is continuously monitored
by an autonomous network and classified for fault detection
and malicious activity. In addition, network security is enhanced
by the Blockchain Adaptive Windowing Meta Optimization
Protocol (BAW MOP). Extensive experimental results validate
that our proposed approach significantly outperforms state-of-
the-art approaches in terms of throughput, accuracy, end-to-end
delay, data delivery ratio, network security, and energy efficiency.

Index Terms—Internet of Things, Reinforcement Neural Net-
work, Heterogeneous Autonomous Network, Cloud Computing,
Control System.

I. INTRODUCTION

IN addition to conventional human-to-human communi-
cation scenarios, the advent of mobile communications,

particularly 5G and beyond (B5G), will facilitate machine-
to-machine communication. This technological progression
acts as a pivotal force driving various applications across
industries [1], e.g., smart grids, collaborative robots, and
cooperative cars for consumers. To adequately serve this
diverse range of applications, mobile network operators are
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obliged to upgrade their network architectures to support a
substantial surge in connected devices and an exponential
growth in shared data [2]. Thus, networks must accommodate
specific use cases with custom architecture to become more
agile. The 5G standards development organisations anticipate
supporting three key service categories: Massive Machine
Type Communication (mMTCs), Enhanced Mobile Broadband
(eMBB), and Ultra-Reliability and Low Latency Communica-
tion (URLLC). [3]. Traditional system architectures use mono-
lithic systems, which are difficult to maintain and evolution
speed. Monolithic systems lack the flexibility to adjust quickly
as data demand increases, making them difficult to operate and
maintain.

To upgrade a monolith, system administrators must shut
down the entire system. Integration regression could cause
unexpected delays. Thus, monoliths cannot deliver the agility
needed for 5G and B5G, but Software-Defined Network-
ing (SDN) and Network Function Virtualization is useful.
(NFV) [4]. However, the cloud is pitching itself as a 5G/B5G
enabler and is highly effective for RAN. The cloud delivers
virtual but allocated resources using shared capabilities instead
of dedicated servers and private computing devices. Cloud
resources offer flexibility, faster deployment, updated software,
and auto-scalability [5]. The system can handle all service
scenarios. It will take years to accomplish this change, so we’re
introducing automation with AI capabilities into numerous
sectors to provide instant value [6]. Machine learning might
connect IoT device responses to the physical world. The
development of one does not need the development of the
other. IoT and Autonomous Computing Systems (ACS) were
originally different concepts. For example, smart thermostats
operate central heating methods independently based on the
presence of consumers as well as their routines.

The integration of 5G and Artificial Intelligence of Things
(AIoT) has the potential to usher in a groundbreaking era of
connectivity, characterized by their ability to provide ultra-low
latency, high data speeds, and extensive device connectivity
[7]. This combination, together with the use of Blockchain
and Recurrent Neural Networks (RNN), provides a robust
ecosystem that improves AIoT application security, scalability,
and predictive analytics [8]. Wireless networks connect IoT
devices to Access Points (AP), e.g., broadband systems that
serve as a gateway to the Internet and host cloud servers [9].
Integrating with the AIoT-5G framework, blockchain allows
safe and transparent data sharing between connected devices,
reducing security risks and allowing for trustworthy data
transactions. RNN, on the other hand, grants devices the
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ability to record sequential patterns and time-sensitive data,
which paves the way for instantaneous judgments and flexible
adjustments [10]. Following the acquisition of sensory data
that represents a complete or partial condition of the physical
method [11]. An AIoT method typically comprises a physical
method where AIoT devices with sensors as well as actuators
are installed, as depicted in Fig. 1

Fig. 1: Autonomous IoT system.

A. Motivation and Research Gaps

As demand for IoT services rises, its infrastructure needs a
scalable and dependable platform like the cloud to compute
and process huge amounts of data. However, IoT networks
and cloud-centric computing lack the requirements for services
such as latency-aware applications, ubiquitous availability,
high bandwidth, and Business Intelligence (BI) [12]. A new
approach in IoT applications that enables local and person-
alised cloud resource management is needed instead of cloud
service providers (CSP). Information transactions and data
transfers in the IoT network are vulnerable to several attacks,
raising security and privacy concerns. The lack of IoT-wireless
network trust causes these concerns. Trusted IoT networks that
deliver secure and risk-free services are essential.

To resolve the aforementioned issues, a blockchain-based
solution is proposed, which involves the implementation of a
blockchain-based system, leveraging trustless and immutable
public ledgers. A blockchain-based wireless trust avoids wire-
less attacks and false service record attacks [13]. This
technique determines IoT device offloading rates and wire-
less device processing efficiency, focusing on response time
and data integrity. The service record maintained by the
serving wireless node broadcasts information about wireless
and IoT devices. Utilizing a wireless blockchain, reputations
are stored and compensations are allocated accordingly, ef-
fectively diminishing the risk posed by selfish node attack-
ers. Blockchain’s decentralised ledger eliminates the need
for third-party transaction verification. Its integration into
the Internet of Things eliminates centralization, improving
transparency, autonomy, and safety. Blockchains as universal
ledgers enable trust in all intelligent device communications in
this design. Nguyen et al. [14] developed a blockchain-based,
smart-contract-enabled, cloud-centric architecture for IoT ap-
plication security. Blockchain technology securely records data
in ledgers and stores it in cloud data centres. Automated agree-
ments for cloud data interchange and collaboration support
secrecy and integrity, as seen in Fig. 2.

Fig. 2: The integration of blockchain technology with IoT
networks.

To secure IoT networks, this research shows cloud-based
autonomous system integration. Blockchain and Heteroge-
neous Autonomous Networks (HANs) improve data security
and processing efficiency. Use ClouD RNN, a specialised
Reinforced Neural Network, to classify sensor data to detect
threats. Problems with harmful actions are recognised faster
by the autonomous network’s continuous monitoring. Cloud
networks require scalability and processing complexity, while
blockchain’s original architecture lacks. Network security and
scalability are improved by the Blockchain Adaptive Window-
ing Meta Optimisation Protocol (BAW MOP). Throughput,
precision, and energy efficiency were all optimised in the
experimental findings, proving that the suggested method
works. Security challenges are addressed include DoS attacks,
malware, phishing, code injection, and tampered nodes. These
findings offer a comprehensive approach to IoT network safety.

An IoT network control system with a secure data-sharing
architecture requires a data owner, blockchain infrastructure,
and cloud computing. Managing IoT data and transactions on a
permissioned blockchain on top of the cloud-based IoT system
allows user access verification and data usage monitoring. Like
cloud-based blockchain key management systems, hierarchical
access control schemes are being studied. Distributed side
blockchains at fog nodes and a cloud-based multi-blockchain
would provide efficient network control and flexible storage
for scalable cloud IoT networks.

B. Problem Statement

The autonomous IoT network uses blockchain technology
to detect faults and malicious activity and improve network
security to become trusted. The Heterogeneous Autonomous
Network (HAN) uses RNN and cloud to categorise fault
detection and analyse data. This method works effectively in
extensive complex solution domains. Once correctly trained
and hyper-tuned, this approach is ideal for high-dimensional
data, sparse and delayed rewards, and consumer industrial use
cases involving feedback provided after a set sequence of
operations. The Blockchain Adaptive Windowing Meta Op-
timisation Protocol (BAW MOP) enhances network security.
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TABLE I: State-of-art approaches with their contributions and limitations

Work Techniques/Algorithms Contributions/Advantages Limitations/Disadvantages

Tsourdinis et al. [15] Deep learning (DL) for UAV Obstacle detection and collision avoidance Cloud based DL-UAV framework does not provide a
satisfactory solution to IoT applications

Kot et al. [16] Deep Learning for driving
control system

Estimate the accuracy and trajectory error Self-driving autonomous system without IoT technology

Chakraborty et al. [17] ANN for securing integrated
cloud fog environment

Detecting abnormal activity, and reducing the possi-
bilities of any vulnerabilities

Theoretically analyze the concept, lack of practical as-
pects and lack of transparency in the result is an issue.

Wu et al. [18] DL for edge-enabled IoT Evaluate and analyze the latency, computation and
transmission security, overhead

Authors did not discuss the offloading techniques for
IoT services and secure the edge-enabled IoT services
without blockchain

Zhang et al. [19] Secure framework using fed-
erated DL and Blockchain

Improve the accuracy, and loss Address the IoT data-based privacy and security issues
Partially resolve the challenges and need further im-
provement

Yin et al. [20] LSTM for autonomous vehi-
cles

Identify the intrusions and improve the rate of false
alarms, accuracy, recall, precision, etc

The proposed approach is tested for small-scale IoV
network, scalability is not guaranteed

Khan et al. [21] Edge computing and stacked
LSTM model for IoV

Improve the accuracy, recall and identify the suspi-
cious vehicle behavior

It did not discuss the use of blockchain technology to
protect the IoV network in any aspect.

Wazid et al. [22] Blockchain-enabled security
framework

Improve better accuracy and F1-score for ran-
somware attack detection

As new vulnerabilities and attack routes are uncovered,
they may require to be regularly updated and revised to
allow for consumers.

This Work Blockchain and RNN for IoT
networks

Detect the fault and any malicious behavior, then try
to enhance network throughput, accuracy, end-to-end
delay, data delivery ratio, and other metrics such as
network security

N/A

C. Our Contributions

The main contributions of this paper are four-fold:
• We develop a framework that integrates HAN with

the cloud computing paradigm, specifically designed to
address IoT use cases. The primary function of this
framework is to classify perceived data by using RNN.

• We integrate blockchain technology into underlying net-
works, as there are implications for fault detection mecha-
nisms and the recognition of malicious activities. This in-
corporation allows for persistent monitoring to safeguard
against potential attacks.

• We propose a novel technique known as the Blockchain
Adaptive Windowing Meta Optimization Protocol
(BAW MOP), which can enhance network security.

• We improve Quality of Service (QoS) metrics, including
throughput, delay, data delivery ratio, accuracy, network
security, and energy efficiency, while considering the
number of nodes and the data transmission rate.

The rest of the paper is structured as follows: Section II
details the related work, and Section III elaborates on the sys-
tem model. Section IV presents the enhancement of network
security through blockchain-adaptable windowing techniques.
Section V demonstrates the performance of the proposed
approach. Finally, a conclusion is given in Section VI.

II. RELATED WORK

Babbar et al. [23] conducted a study on 5G network slicing
with SDN and NFV, explored the various structures involved
in this technology, and also highlighted potential challenges
that may arise in the future. Notably, they advocated for
the utilization of containerization technologies as a pivotal
enabler for the progress of 5G networks. Furthermore, deep
learning can improve network quality and consumer experi-
ence, while resolving privacy concerns in 5G heterogeneous
radio access networks, beyond-RAN networks, and end-to-end
network slicing [24]. As a result, Qian et al. [25] proposed a
Docker-based microservice-based cloud-native architecture for

the prototype. The 5G-EmPOWER platform, which supports
complicated policy deployment and management across SDN,
was introduced in [26]. They used Long-Term Evolution (LTE)
network elements provided by software radio methods to
assess the performance of their platform. Gomez et al. [27]
described a virtualized 5G structure that supports network slic-
ing as a prototype. Huang et al. [28] looked into the use of an
Open-Air Interface (OAI) on top of M-CORD. They also used
a monolithic architecture to demonstrate a virtualized 5G RAN
and core deployment. Further, the O-RAN Alliance launched
an operator-led campaign to open RAN interfaces. MOSAIC-
5G [29] was a collection of projects aimed at transforming the
RAN as well as the core into an agile service delivery platform
that could quickly test new ideas, applications and business
demands. Zhang et al. [19] proposed an AI-enabled trusted
cloud edge framework, which is designed to enhance the
security of computation and transmission due to IoT devices
transmitting data to the network edge, which can be a target
for various types of modern cyber-attacks.

The convergence of IoT, blockchain, and reinforcement
neural networks is transforming industries, offering efficiency,
security, and creativity. This paradigm shift accelerates with
5G, which provides high-speed, low-latency connections for
IoT devices [30]. High data rates, low latency, and huge
device connectivity make 5G crucial for IoT’s scalability,
latency, and energy efficiency [31]. However, these advances
face challenges. Data integrity and security solutions are
needed for IoT networks due to security vulnerabilities, data
privacy concerns, and trust issues [32]. Blockchain technology
provides immutability, transparency, and decentralized con-
sensus for IoT networks. Blockchain topologies designed for
IoT applications boost their potential [33]. Integrating these
technologies creates new use cases that benefit smart cities,
healthcare, and supply chain management [34]. A blockchain,
reinforcement neural network, and 5G infrastructure create a
future-proof IoT ecosystem. Blockchain protects data integrity,
reinforcement learning optimizes resource allocation, and 5G
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provides fast connectivity [35]. Blockchain’s tamper-resistant
and auditable ledger supports IoT trust and security. It secures
data sharing, manages device identities, and promotes supply
chain transparency [36]. This paradigm optimizes IoT resource
allocation, energy management, and decision-making through
reinforcement learning [37]. Optimizing resource allocation,
spectrum sharing, and quality of service management with
5G [38]. However, computational complexity, scalability, in-
teroperability, and regulatory compliance remain. These chal-
lenges suggest future studies strengthen this integration and
realize its transformational promise [39].

The integration of blockchain, reinforcement neural net-
works, and 5G for IoT presents challenges such as compu-
tational complexity, scalability, interoperability, and energy
efficiency. Despite the benefits of blockchain, privacy and
security issues still exist. The practical implementation of these
systems can be influenced by the need for real-time decision-
making, adherence to predefined rules, and constraints re-
lated to limited resources. To address these challenges, a
Heterogeneous Autonomous Network (HAN) utilizing IoT
devices, Deep Neural Networks (DNN), and cloud computing
was proposed. A cloud-based Reinforcement Neural Network
(ClouD RNN) is used to classify data from sensor modules,
and then another network is used to detect faults and mali-
cious behavior. The use of the cloud for processing and the
implementation of the Blockchain-based Adaptive Windowing
Meta Optimization Protocol (BAW MOP) both contribute to
a more secure network.

III. SYSTEM MODEL

In this section, the proposed network model for HAN
control systems is shown in Fig. 3. The architecture uses net-
work sensor data and cloud-based data classification to detect
network failures and malicious nodes. These identified nodes
exhibiting malicious activity contribute to the enhancement of
network security. The implementation of BAW MOP along
with data optimization further enhances network security.

Fig. 3: Proposed architecture of a heterogeneous autonomous
network-based control system.

Initially, all nodes start with the same capabilities, but
diverse energy levels emerge post-deployment, and each node
is identified by a unique ID. The network nodes can exhibit ei-
ther homogeneous or heterogeneous characteristics. The nodes
lack GPS antennas, and thus are unaware of their location.

After deployment, the Sensor Nodes (SNs) operate unattended,
preventing any possibility of battery recharging. Within the
network, there is a single fixed Base Station (BS) positioned
at the center, benefiting from a reliable power source and free
from energy, memory, or processing constraints. Utilizing the
available received signal intensity, the distance between SNs
is computed, thereby establishing symmetrical wireless radio
links.

A. Network Model

In an ideal scenario, the number of nodes in a network and
their energy levels would be entirely independent. However, in
the context of this work, each SN is randomly assigned energy
from a specific energy interval, deviating from complete
independence between the number of nodes and their energy
levels. Even if two SNs initially possess the same amount
of energy, it is highly unlikely that they will maintain an
identical quantity of energy throughout their operation. The
total number of nodes in the network is denoted by N . The
secondary parameters in the model are influenced by the value
denoted as n. Essentially, the network model should have n
secondary parameters to define an n-level heterogeneity. The
hierarchy of inequalities is established by the energy levels
E1 < E2 < E3 < . . . < En. The interconnection among
the energy levels of various node types with constant (δ) is
described as follows:

Ej = E1(1 + (j − 1)δ), j = 1, 2, 3, . . . , n (1)

where E1 represents the energy of a type-1 node, and Ej
denotes the energy of a j-th node, α is constant calculated by:

Etotal = N [(α− β1)E1 + (α− β1)(α− β2)E2+

(α− β1)(α− β2)(α− β3)E3 + . . .+

(α− β1)(α− β2)(α− β3) . . . (α− βn)En]. (2)

The fundamental parameter in the model controls the net-
work’s heterogeneity level and is related to βi, i = 1, 2, . . . , n,
according to the subsequent formula:

(α−β1)(1+(α−β2)(1+(α−β3) . . . (1+(α−β(n−1))))) = 1,
(3)

where (α− βi) ≤ 1 and βi = βi−1 − 2Φ.
For a given level of heterogeneity (Φ) , we have

β1

2(n− 1)
> Φ. (4)

when α = β2, the network consists of only one type of
node, and the model reflects a 1-level heterogeneity, effectively
creating a homogeneous network. The total energy of a 1-level
heterogeneous network is defined as follows:

E1−level = N(α− β1)E1. (5)

The quantity of type-1 nodes in the network is denoted
as N1 = N(α − β1). When α = 3, it models a two-level
heterogeneous network whose total energy is calculated by:

E2−level = N((α− β1)E1 + ((α− β1)(α− β2)E2)). (6)
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Node type-1 and type-2 in the network are characterized as
follows, respectively:

N1 = N(α− β1), (7)
N2 = N(α− β1)(α− β2), (8)

where (α− β1) + (α− β1) ∗ (α− β2) = 1.
When α = β4, there exist three non-zero terms, portraying

a three-level heterogeneous network, with the total energy
determined by:

E3−level = N((α− β1)E1 + (α− β1)(α− β2)E2

+ ((α− β1)(α− β2)(α− β3))E3). (9)

Node type-1, type-2 and type-3 in the network are charac-
terized as follows, respectively:

N1 = N(α− β1), (10)
N2 = N(α− β1)(α− β2), (11)
N3 = N(α− β1)(α− β2)(α− β3), (12)

where (α − β1)(1 + (α − β2)(1 + (α − β3))) = 1 and the
associated condition is given by:

Ei−level = N(α− β1)E1 + (α− β1)(α− β2)E2 + . . .+

(α− β1)(α− β2)(α− β3) . . . (α− βi)Ej), (13)
N1 = N(α− β1), (14)
N2 = N(α− β1)(α− β2), (15)
N3 = N(α− β1)(α− β2)(α− β3)((α− β1)(1 + (α− β2)

(1 + (α− β3) . . .+ (1 + (α− βi − 1))))) = 1. (16)

B. Cloud architecture-based data classification using rein-
forcement neural network (ClouD RNN)

The Neural Network (NN) model is utilized to find patterns
in data streams. The result of the current state is anticipated
based on the output of previous states, although the feed-
forward NN computes in a single direction from input to
output. RNN models are more feasible for real-time imple-
mentation due to their significantly reduced execution time,
even though their performance is more effective than other
models in terms of throughput, authentic consumers, and
fairness metrics. In the network architecture depicted in Fig. 4,
the layers include the input layer, followed by the RNN
layer, Mapping layer, Background layer, De-mapping layer,
and finally the output layer. The RNN layer uses the Sig-
moid activation function to produce output values, which are
processed to derive anticipated values. Binary cross-entropy
loss is computed to evaluate the loss in predictions, ultimately
providing the final results in the output layer.

Interactions with the IoT environment occur in discrete time
steps, whereas learning in NN happens in real time. In a
conventional Reinforcement Learning (RL) cycle, the agent
engages by receiving environment states and choosing actions
(at). Then, in response to the activity carried out by the IoT
environment state, a new state (st + 1) is created. The agent
may or may not receive the reward (rt + 1) for the selected
action, and the agent may additionally identify the transition
(at, st + 1). After each cycle, the agent updates the action

Fig. 4: The system architecture with the RNN model.

value function (s, a) or value function V (s) according to a
policy. By presenting the policy, reward function, state value
function pairs, and policy, the most probable solution to the
RL problem is presented. The value functions are classified
as either action-value functions (Q) or state-value functions
(V ). Predictions for expected outcomes are conducted within
the state-value function, using the policy π and state s. The
incentives are applied at subsequent time steps to identify the
policy using the given discount factor (γ ∈ [0, 1]), which is
defined as:

V π(s) = Eπ
( n∑
k=0

γkrt+k+1| st = s
)
. (17)

The prediction of expected outcomes is conducted by the
action-value function, where the policy π is computed by
summing rewards for each state-action pair s, as shown below:

Qπ(s, a) = Eπ

(
n∑
k=0

γkrt+k+1| st = s, at = a

)
. (18)

The ideal policy has been achieved, and the Markov De-
cision Processes (MDP) have been solved using the dynamic
state-value function. In some simple instances, the Bellman
expectation equation is used to estimate the state-value func-
tion for a given policy, as shown below:

V π(s) = Em(rt+1 + γV π(st+1)| st = s). (19)

The goal of the policy evaluation process is to maximize
state-action values to derive the most effective policy π. How-
ever, when the environment is unknown, model-free methods
are utilized instead of relying on MDP. In some circumstances,
the action value is maximized rather than the state value, as
shown below:

Qπ(s, a) = En(rt+1 + γQπ(st+1, at+1)| st = s, at = a).
(20)

C. Cloud Architecture

The cloud architecture comprises several components, in-
cluding cloud servers and (many) customers. Authenticated
customers encrypt trained images and non-readable image
data, sending these to the cloud servers. Subsequently, the
server receives a content-based query image from the con-
sumers. The encrypted data is stored on cloud servers, which
perform content-based image retrieval using a large cloud
database requiring less computational power.
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As depicted in Fig. 4, two cloud servers C1 and C2, are
configured to identify the optimal policy and its value in the
following manner. Initially, they either iteratively enhance the
initial policy as a policy iteration or recursively refine the
arbitrary value function to compute the better action value,
utilizing it to store the encrypted sub-pictures. In general, the
linear layers of the pre-trained RNN model output images
undergo several heterogeneous processes. C1 keeps its private
keys k, and its operations are performed in C2 to execute com-
putations involving high security on the non-linear layers. The
interaction involves the exchange of the model’s features be-
tween the C1 and C2 cloud servers, followed by the encryption
of photos, respectively. consumers intact the similar Nearest
Neighbour (SNN) query on the unintelligible images together.
The trained model transforms into an encrypted data format
by the consumers and detects a test image by encrypting the
photographs provided by the consumers. However, the trained
image I consumer obtains the encrypted image Ia by summing
a stochastic matrix Ib along with it. However, Ia is transferred
to the cloud server C1, and Ib is transmitted to C2. A client
makes over the test image trapdoor in the same way as the
exploratory SNN images. C1 then uses BAW MOP with C2
to transform the unintelligible image Ib to the primary image
with key sk, which is then accepted Ia.

Algorithm 1 ClouD RNN

1: Input: Training data D=(x1, l1), (x2, l2), . . . , (xT , lT )
2: Output: Trained parameters θ of the ClouD RNN model; Start

experience replay memory M; Start simulation environments ε
3: Randomly initialize parameters θ
4: for episode k = 1 to K do Rearrange training data D
5: for t = 1 to T do Start state s1 = x1
6: Select an action based ε-greedy policy: at = πθ(st)
rt, terminalt = STEP (at, lt)

7: Set st+1 = xt+1

8: Store (st, at, rt, st+ 1, terminalt) to M
9: Randomly sample (sj , aj , rj , sj+1, terminalj)

10: Perform a gradient descent step on L(θ) w.r.t. θ: L(θ) =(
yj −Q(sj , aj ; θ)

)2
11: if terminalt = True then L break
12: end if
13: Function STEP(at ∈ A, lt ∈ L)
14: Initialize terminalt = False
15: if st ∈ Dp then . Dp represents the minority class

sample set
16: if at = lt then Set rt = 1
17: else
18: Set rt = −1
19: if at = lt then Set rt = λ
20: else if LSetrt = −λ then return rt and

terminalt
21: end if
22: end if
23: end if
24: end for
25: end for

The architecture of the Q network is defined by the com-
plexity and the size of the training dataset. The Q network’s
input aligns with the structure of the training sample, and
the number of outputs corresponds to the number of sample
classes. Essentially, the Q network, in its form without the

last softmax layer, functions as an NN classifier. The training
process of the Q network is described in Algorithm 1. The
deep Q-learning algorithm completes approximately 120,000
iterations. The parameters of the converged Q network are
saved, and when combined with a softmax layer, it is consid-
ered an NN classifier trained on skewed data.

IV. NETWORK SECURITY WITH DATA OPTIMIZATION
USING BAW MOP

The key privacy aims of BAW MOP are: i) Keeping local
data points within devices to prevent them from being exposed
to external entities, ii) Safeguarding local data from the server
by not divulging individual local method updates to it, and
iii) Ensuring that irrelevant internal and external entities are
excluded from local and global model modifications. Under
the security goals, the aims are to ensure the security and
integrity of committed clients’ local method updates and to
verify the provenance of model updates.

Fig. 5: Architecture of BAW MOP.

We propose a BAW MOP architecture, as illustrated in
Fig. 5, which incorporates five components focused on ensur-
ing both security and privacy protection. One of its aspects
involves a technique for training a privacy-preserving LR
method using vertical adaptive windowing. This approach
is particularly beneficial when two datasets share the same
sample ID space but have varying feature spaces. This scenario
is defined as:

Xi 6= Xj , Yi 6= Yj , Ii 6= Ij ,∀Di, Dj , i 6= j, (21)
Xi 6= Xj , Yi 6= Yj , Ii 6= Ij ,∀Di, Dj , i 6= j. (22)

The adaptable windowing technique implemented across
three blockchains offers flexibility, allowing its application in
diverse IoT scenarios based on specific requirements. In the
context of various industrial situations, data is channeled into
a local model. The local model is then updated by uploading
its outcomes to the global aggregation process, depicted in
Fig. 6. The federation model takes the global outcomes as its
input. To standardize the data object within the dataset, a 0-1
standardization process is employed, transforming data from
various dimensions into the [0, 1] dimension with x̄ state.
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This conversion is achieved through the following mapping
function:

x̄ =
x−mini

maxi −mini
, i = 1, 2, . . . , k. (23)

For an arbitrary dimensionality in a data object, the max-
imum is “1” and the minimum is “0” in the dataset after
normalization. Before running the clustering method, data nor-
malization is used to improve convergence speed and accuracy.
As a result, the server can’t retrieve individual local changes
from the ledger; instead, it can only recover aggregated values
once the aggregator collects updates and re-encrypts them
with the transformation key. Despite the lower influence on
classification accuracy, the goal here is to protect sensitive
private data when large datasets are classified. To begin, the
specified privacy budget is divided evenly across all trees in
the forest and it is given as:

ε′ =
ε′

ntrees
. (24)

Given that the samples were randomly selected, there may
be some overlap. Additionally, the privacy budget ε for each
tree is uniformly distributed across each tier using Eq. (25).

ε′′ =
ε

max depth+ 1
. (25)

The blockchain keeps track of encrypted model revisions,
allowing clients’ contributions to the globally optimized model
to be tracked and verified. The verifier, in particular, can
retrieve all of a client’s updates in a batch and produce an
aggregate without the suspect client’s input. The established
fundamental verification function in the preliminary experi-
ment, in which the server acts as a verifier, evaluates gradients
after recovering aggregate in each round.

Fig. 6: Proposed HAN-based cloud architecture integrated with
ClouD RNN.

In this technique, a less cost-based spanning tree is built
between CHs and sinks.

a) Initiate CHs as the starting point for virtual ants, with
the sink as the designated endpoint.

b) The quantity of pheromones on the paths between CHs

distances determines the range that virtual ants can
travel.

c) The initial step in the Minimum Cost Optimization
Problem (MOP) might involve trail collection between

Algorithm 2 for BAW MOP:

1: Input: encrypted dataset D′ = x(i)|0 ≤ i ≤ n (privacy budget
is ε

2n
; positive integer g = n+ 1), clustering number k.

2: Output: center, c|x(i) ∈ D′, i = 0, . . . , n; 0 ≤ c ≤ k.
3: Get centroids µj , 0 ≤ j ≤ k
4: while J(c, µ) 6=

∑m
i=1 ||x

(i) − µci)||2 do
5: for c = 1 to k do
6: c(i) = argminj

∥∥∥x(i) − µj∥∥∥2
7: for j = 0 to k do
8: µj =

∑n
i=1 x

(i)|ci=j∑n
i=1 1ε(i−j)

9: end for
10: end for
11: end while
12: return center

adjacent clusters, accomplished by simulating synthetic
nodes from CHs towards the sink.

d) The subsequent group of nodes can analyze the
pheromone deposits left by previously successful node
routes and navigate to take the most efficient path.

e) When the node moves from CHi to CHj , the selection
principle for a regular node is determined as:

Pij =
(τij)

x + (ηiu)l∑
(τij)x(ηij)l

. (26)

where τij is used to update the quantity of pheromone
from transmission state i to j, x ≥ 0 controls heuristic
visibility function τij and l ≥ 1 controls the transmission
state ηiu and can be adjusted.

f) If a link exists between two CHs, then Pij will be
updated; otherwise, Pij will be set to 0. Calculate the
Euclidean Distance between CHi and CHj using the
following formula:

Dij =
√

[CHi − CHj) · xq]2 + [(CHi − CHj) · yq]2.
(27)

g) All nodes that have successfully reached the Base Sta-
tion (BS) will update their Dij values. The pheromone
evaporation (q) on the boundary between CHi and
CHj is τij − (1 − ρ)τij . The evaporation process is
a prerequisite before adding P . This step supports the
identification of the shortest path and guarantees that
no other path is regarded as the shortest. The degree of
pheromone evaporation is determined by the value of q.

h) MOP does not select CHs, causing a rapid decrease in
the quantity of P .

i) When all nodes reach the sink during each iteration, the
value of τij is calculated as:

τij(t+ n) = ρτi(t) + ∆tij ,∀t = 1, 2, . . . , n, (28)

where ρ is the pheromone evaporation distance and ∆tij
denotes the quantity of deposited pheromone. τij can be
calculated as:

τij ← (1− ρ)τij +

m∑
k=1

∆τ x̄i , (29)

where m is an optimal path and τ x̄i represents the visited
edges.
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j) Finally, we obtain the quantity of visited edges as
follows:

∆τxij =

{
1/Cx

0
(30)

where the path with the lowest Cx value is chosen as
the initial solution and x uses the path i → j for the
optimal distance.

V. PERFORMANCE EVALUATION

To evaluate the performance of the proposed approach, we
employed an Intel (R) Xeon (R) system with the Processor E5-
2640 (2.50 GHz) and 16 GB of primary memory for the exper-
imental simulation. Our simulations, performed using MAT-
LAB, involved deploying 100 Sensor Nodes (SNs) randomly
within a square area measuring 100×100m2 with dataset1. In
this scenario, the concept of a distributed blockchain network
consisting of 100 nodes, where the starting trust value for
each node is 1. For every block time, we’ve fixed the BS
position at 50. After the first ten nodes with the same trust
value are found, choose the nodes with the most feedback for
inclusion. To commit violations like broadcasting transactions
involving lacking service and disclosing fault scores, a subset
of nodes N must be malicious. Table II summarizes the
input parameters used in our simulations for configuring the
model. Our dataset comprises metrics obtained from connected
devices like smartphones and IoT technology, among other
network and device attributes. Common metrics for consumer
QoS, such as data transfer speed, power consumption, and
network safety, are derived from the control packets that
carry consumer data within the network. These metrics are
conveniently accessible as our model operates locally within
the network.

We used a dataset that is trained by the Cloud-RNN
model to simulate the performance of HAN and BAW MOP
techniques. Once trained and optimized, this method excels
at handling high-dimensional input, learning with sparse and
delayed rewards, and receiving feedback after a predetermined
series of operations, all of which are common in consumer
industrial enterprises. To integrate the data into our model,
we sequenced the consumers in each run and trained the two
RNN models using the allocation results from BAW-MOP as
labels. Training uses 67% of the set, while testing uses 33%.
Using both deep learning-trained images and stock images,
information is encrypted before being sent to cloud services
by authorized clients. Thereafter, the server gets a content-
based query picture from the clients. The encrypted data is
kept on cloud servers so that content-based picture recovery
can be done using very large cloud datasets that use slightly
less energy.

The comparative analysis of suggested and existing methods
of control systems for autonomous networked systems is
shown in Tables III, IV, V and VI. In the wireless net-
work, throughput is represented as the number of packets
that are successfully transmitted. If we assume that “rate”
denotes throughput, then “inventory” equals “rate” multiplied

1https://github.com/adtmv7/DeepSlice

TABLE II: Simulation setup

Description Symbol Value
BS position Sp (50, 50)
No of sensors N 100
Threshold distance d0 70 m
Energy consumed by the amplifier to
transmit messages (long distance)

εmp 0.0013 nJ/bit/m4

Initial energy E1 0.2 J
Cluster radius Cr 25 m
Energy consumed by electronics circuit Eelec 50 nJ/bit
Constants αandφ 0.5 and 0.025
Energy consumed by the amplifier to
transmit message at a shorter distance

qEs 10 nJ/bit/m2

Simulation time St 900 s
Secondary model parameter value β1 0.4
Bandwidth Bw 1 Mbps
Data packet size Dps 512 bits
Message size L 4000 bits

by “time”, which is the most basic formula for determining
throughput efficiency. The throughput of the wireless net-
work improves the data transmission rate. Increases in the
throughput of wireless networks indicate that more data may
be successfully transmitted in the same amount of time. The
physical layer parameters of the network can be optimized,
better modulation techniques used, the signal-to-noise ratio
increased, interference decreased, and more efficient data
transmission protocols implemented. The comparative analy-
sis clearly shows that the ClouD RNN with BAW MOP is
the most significant approach from both the OpenAirInter-
face (OAI) and Mobile Central Office Re-architected as a
Datacenter (M-CORD) respectively and also a well-known
energy efficient protocol as well. Both OAI and M-CORD
are essential initiatives in the telecoms sector, contributing
to the development of mobile communication technologies
as well as the progression of network topologies towards
solutions that are more flexible and software-driven. Network
working environments depend on when the initial and last
nodes in the network are exhausted. The designed techniques
have significant improvements in energy consumption to other
compared techniques. Since wireless networks are deployed
randomly, the results have some fluctuations and variations,
which are denoted with the help of ±. Here, the monitoring
of the control system and malicious fault detection have been
analyzed in terms of throughput, accuracy, end-to-end delay,
data delivery ratio, network security and energy efficiency for
the number of nodes and data transmission rate. The period
that is needed for a data packet to be transmitted from its point
of origin to its endpoint is known as its end-to-end delay. In
contrast to Round-trip time (RTT), such a term used in IP
network analysis only counts the time it takes for data to travel
in only one path, from base to endpoint. Network efficiency
refers to the greatest quantity of data that can be sent via an
autonomous network to a specific set of consumers per second
and still maintaining a satisfactory level of operation. Accuracy
measures how well our method did in making predictions. The
percentage of network packets that were successfully delivered
after being sent is known as the data delivery ratio.

Figs. 7-10 illustrate a comparative analysis of an au-
tonomous network-based control system for monitoring and
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(a) Throughput (b) Accuracy (c) End-to-end delay

Fig. 7: A comparative analysis of autonomous network-based control system with different numbers of nodes.

(a) Throughput (b) Accuracy (c) End-to-end delay

Fig. 8: A comparative analysis of autonomous network-based control system with different data transmission rates.

(a) Data transmission rate (b) Network security (c) Energy efficiency

Fig. 9: A comparative analysis of autonomous network-based control system with different numbers of nodes.

(a) Data transmission rate (b) Network security (c) Energy efficiency

Fig. 10: Comparative analysis of autonomous network-based control system with different data transmission rates.
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TABLE III: Network-based control system of throughput

No. of Nodes OAI M-CORD ClouD RNN-
BAW MOP

0 61.14 ± 2.3 68.25 ± 2.3 81.45 ± 3.8
25 64.27 ± 2.9 72.62 ± 3.0 85.59 ± 2.6
50 66.91 ± 3.11 74.75 ± 2.8 86.98 ± 2.9
75 67.34 ± 3.8 76.24 ± 2.9 89.14 ± 2.3
100 69.57 ± 2.9 81.60 ± 3.2 94.70 ± 2.7

TABLE IV: Network-based control system of accuracy

No. of Nodes OAI M-CORD ClouD RNN-
BAW MOP

0 65.04 ± 2.61 71.95 ± 2.21 75.05 ± 3.47
25 69.11 ± 2.18 75.78 ± 3.30 79.56 ± 2.5
50 70.91 ± 3.18 78.65 ± 2.8 85.88 ± 2.6
75 72.43 ± 3.08 85.47 ± 2.11 88.19 ± 2.02
100 79.87 ± 2.9 89.96 ± 3.1 95.67 ± 2.4

TABLE V: Comparison of network packet end-to-end delay

Data Transmission
Rate

OAI M-CORD ClouD RNN-
BAW MOP

0 81.28 ± 2.8 75.62 ± 3.0 69.29 ± 2.6
25 74.42 ± 3.1 73.75 ± 2.8 67.77 ± 2.9
50 68.89 ± 3.4 67.53 ± 3.5 59.60 ± 3.4
75 67.34 ± 3.8 62.24 ± 2.9 57.14 ± 2.3
100 53.57 ± 2.9 50.60 ± 3.2 38.70 ± 2.7

TABLE VI: Comparison of network security analysis

Number of
Nodes

OAI M-CORD ClouD RNN-
BAW MOP

0 70.04 ± 2.8 78.9 ± 2.7 81.96 ± 3.3
25 75.17 ± 2.7 82.32 ± 2.9 85.88 ± 2.4
50 82.41 ± 3.8 84.95 ± 2.02 87.98 ± 2.5
75 85.04 ± 2.97 88.43 ± 2.71 88.53 ± 2.2
100 88.89 ± 2.27 91.60 ± 2.08 98.93 ± 2.06

detecting malicious faults. This analysis evaluates various
parameters, including throughput, accuracy, end-to-end delay,
data delivery ratio, network security, and energy efficiency.
The comparison is based on variations in the number of
nodes within the network and the data transmission rate. The
proposed technique obtained throughput up to 95%, accuracy
up to 95%, end-to-end delay up to 40%, data transmission
rate up to 69%, network security up to 95% and energy
efficiency up to 95% as the number of nodes increased up
to 100. The proposed approach optimized the throughput up
to 35.71%, accuracy up to 18.75%, end-to-end delay up to
27.27%, data transmission rate up to 38%, network security
up to 13.04% and energy efficiency up to 13.04% compared
with baseline algorithms. The proposed technique obtained
throughput up to 96%, accuracy of 99%, end-to-end delay of
35%, data transmission rate of 80%, network security of 95%,
and energy efficiency of 97% based on the data transmission
rate. The QoS parameters have been improved by the proposed
approach throughput up to 29.72%, accuracy up to 17.85%,
end-to-end delay up to 22.22%, data transmission ratio up to
17.64%, network security up to 9.19% and energy efficiency
up to 9.87% as compared with baseline approaches. Table VII
depicts the improvement of results in percentage form. The
proposed technique obtained optimal results under varying
numbers of nodes and data transmission rates.

This study develops and secures conventional approaches

TABLE VII: Results improved by proposed approach com-
pared with baseline approaches

Based on No. of nodes Based on data transmission rate
Parameters Percentage

Improve-
ment

Parameters Percentage
Improve-
ment

Throughput 35.71% Throughput 29.72%
Accuracy 18.75% Accuracy 17.85%
End to end delay 27.27% End to end delay 22.22%
Data Transmission
Rate

38% Data Transmission
Rate

17.64%

Network Security 13.04% Network Security 9.19%
Energy Efficiency 13.04% Energy Efficiency 9.87%

for wireless communications operations. if 5G networks use
IoT HAN and deep learning with cloud architecture. Security
is essential in 5G networks. To address this, we proposed
HAN and BAW MOP techniques. These methods not only
demonstrate efficiencies in resource utilization, such as data
storage and network bandwidth speed, but also provide robust
and optimal security assurances for the network. Information
collected from IoT sensors within wireless networks, along-
side the cloud-designed information framework, is utilized
for identifying network faults and potential malicious points.
Following the characterization process, nodes displaying ma-
licious behavior are identified. Subsequently, network security
is improved by using the blockchain adaptive windowing
meta-optimization protocol (BAW MOP) alongside the data
optimization. BAW MOP algorithm ensures against different
kinds of safety parameters, including those of (a) privacy
protection of the information within the sight of attackers
who might have the option to read the information with
addressed energy levels E1 < E2 < . . . < En, (b) getting
the information from malicious defilement when an attacker
can manipulate the information, (c) safely sending information
across a wireless network, and (d) safeguarding the security of
any demand made to a dataset by the client. Our BAW MOP
approach is functional from a computational complexity and
execution point of view, and is likewise demonstrated to be
hypothetically ideal regarding the different resources within
reach.

To check the node tempering, if the length of the com-
promised light node is larger than the average length of the
mining nodes, then the Power of work (PoW) verification
has succeeded and required high. Both PoW and Proof-of-
Stake (PoS) rely on computational power to resolve issues.
Because of this, permissionless blockchain consensus methods
are computationally and time-intensively expensive to defend
against attacks. Proof-of-Device (PoD) is an identity-based
consensus mechanism that enables devices to use their distinct
identifiers to choose newly created blocks. Since miners in
PoD only have to check a hash function that once for each
timestamp, the computational difficulty is lower compared to
PoW. Even if a single consumer or group were to own a
majority of a network’s devices, they would still be unable
to exert complete control over the blockchain. This light node
will have no eligible peers and communicate its immediate
transactions to none until the conventional chain is extended.
Single login credentials can authenticate and grant access
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permissions to all IoT-based services and applications in a
cloud platform, preventing consumers from being contacted
again. However, CSP requires Multi-Factor Authentication,
requiring consumers to use various forms of identification and
access control. BAW MOP is a blockchain-based signature-
based detection mechanism for 5G HAN threats. Known web-
based attack types like Structured Query Language (SQL)
Injection, Cross-Site Scripting (XSS), and Command Injection
can be spotted with the help of BAW MOP’s detection using
signatures. Each ClouD RNN server has the Multi Chain tool
applied to contain a blockchain node. To detect attacks against
5G HAN online apps, both the signature list stored in the web
application and the signature list stored on the blockchain
are used. Protecting against DoS attacks can be achieved
by BAW MOP’s based mitigation strategies including traffic
classification, load balancing, and rate limiting. Distributing
traffic and mitigating the impact of an attack can be achieved
through content delivery networks by using blockchain-based
adaptive windowing meta-optimization protocol. Autonomous
network-based control system in monitoring and malicious
fault detection based on the number of nodes in the network
and the data transmission rate.

Using Cloud-RNN we tested scalability, and optimal net-
work performance, a customer using the update feature will see
their evaluated transmission added to the log in a few blocks.
When this is used in the real-life environment [40], connection
delays between consumers and slot heads of state could cause
a transmission to be left out of the phase. To fix this problem,
we can raise the number of slots and connections to peers for
the consumer Integrity node at the accumulation stage. To fix
the revelation problem, we can raise the number of slots and
connections to peers for the consumer Integrity node at this
time. Consider implementing a threshold encryption method
to enhance efficiency and mitigate against decryption failure
caused by stakeholders who fail to update their decryption
keys.

The system consists of diverse components, encompassing
cloud servers (C1 and C2) and multiple client entities. Using
deep learning-trained images along with stock images, infor-
mation undergoes encryption and is subsequently transmitted
to the cloud servers by authorized clients. Following this,
the server retrieves a content-based query image from the
clients. The encrypted information is stored on cloud servers
to execute content-based image recovery by utilizing huge
cloud datasets with less energy consumption. In particular,
the linear layers of the pre-trained RNN model result images
are imposed on various heterogeneous processes. C1 keeps
its private keys k and the IIES operation is applied in C2
to decide the computations with high security on the non-
linear layers. Where the cloud servers C1 and C2 transfer the
model’s elements and encrypt the images, individually. Clients
unblemished the Similar Nearest Neighbor (SNN) query based
on the illegible images together. The trained deep learning
model is changed to encrypt information designed by clients
and distinguishes a test image by encrypting images given
by clients. However, with the trained images, I client gets
the encrypted image Ia by computing a stochastic matrix Ib
alongside it. So, Ia is moved to the cloud server C1, and Ib is

passed on to C2. A client makes over the test image a secret
entrance similar to the exploratory SNN images. C1 then, at
that point, utilizes BAW MOP with C2 to change the illegible
image Ib to the essential image with a key sk, which is then
acknowledged Ia.

VI. CONCLUSIONS AND FUTURE WORK

IoT has become a prominent technology in the last decades
to offer services and create smart environments like smart
homes, cities, transportation, autonomous vehicles, healthcare,
etc for consumers. Security and privacy along with energy con-
sumption and latency are major challenges with IoT devices
due to resource constraint nature. Cutting-edge technologies
exist to address these issues and offer better services. The
proposed approach used cloud computing, blockchain tech-
nology and deep learning to overcome the modern attacks in
IoT networks and optimize QoS parameters. We have designed
and developed a heterogeneous autonomous network (HAN)
that collects data from the sensor modules, classified using a
cloud-based reinforcement neural network (ClouD RNN). The
IoT network is monitored continuously to detect abnormal or
malicious activity by the control system. The blockchain-based
adaptive windowing meta-optimization protocol (BAW MOP)
is used in heterogeneous IoT networks, where data is processed
via the cloud paradigm, to increase network security. The data
transmission rate and number of nodes were used to analyze
the experimental results. The proposed technique performs
outstanding compared with other approaches and improved
the given QoS parameters like throughput up to 35.71%,
accuracy up to 18.75%, network security up to 13.04% and
energy efficiency up to 13.04%, etc. for the number of nodes.
For the data transmission rate, throughput up to 29.72%,
accuracy up to 17.85%, end-to-end delay up to 22.22%, etc,
as compared with baseline approaches. The proposed work
used a deep learning-based model that lacks transparency
and trustworthiness in the results, we can improve it using
explainable AI in the future. In the future, we will reduce
the complexity and focus on lightweight encryptions as well
as hashing schemes with modified blockchain. Furthermore,
deep learning algorithms are used to accurately collect data
from Industry 5.0 environments.
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