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Abstract—Large language models (LLMs) have become in-
creasingly popular in various areas, traditional business grad-
ually shifting from rule-based systems to LLM-based solutions.
However, the inference of LLMs is resource-intensive or latency-
sensitive, posing significant challenges for serving systems. Ex-
isting LLM serving systems often use static or continuous
batching strategies, which can lead to inefficient GPU memory
utilization and increased latency, especially under heterogeneous
workloads. These methods may also struggle to adapt to dynamic
workload fluctuations, resulting in suboptimal throughput and
potential service level objective (SLO) violations. In this paper,
we introduce BucketServe, a bucket-based dynamic batching
framework designed to optimize LLM inference performance.
By grouping requests into size-homogeneous buckets based on
sequence length, BucketServe minimizes padding overhead and
optimizes GPU memory usage through real-time batch size ad-
justments preventing out-of-memory (OOM) errors. It introduces
adaptive bucket splitting/merging and priority-aware scheduling
to mitigate resource fragmentation and ensure SLO compliance.
Experiment shows that BucketServe significantly outperforms
UELLM in throughput, achieving up to 3.58x improvement.
It can also handle 1.93x more request load under the SLO
attainment of 80% compared with DistServe and demonstrates
1.975x higher system load capacity compared to the UELLM.

Index Terms—LILM Serving, Disaggregated Architecture, Re-
quests Orchestration, Resource Management.

I. INTRODUCTION

In the past few years, with the advancement of the artificial
intelligence (Al), large language models, such as GPT-4 [1],
[2], Deepseek-R1 [3], and LLaMA [4], based on Trans-
former [5] architecture and its variants (e.g., Encoder-Only
and Decoder-Only) have demonstrated remarkable capabilities
in natural language processing (NLP). Benefiting from the
attention mechanism inherent in the Transformer architecture,
LLMs can capture long-range dependencies and contextual
information, enabling them to perform a wide range of tasks,
such as text generation, translation, summarization, multi-turn
dialogue and delivering precise automated question-answering
services [6]—[8]. Thereby expanding the practical applications
of large-scale models. Leveraging their massive parameter
scales and deep learning capabilities, these models effectively
capture the complexity and semantic structures of human
language, marking a significant step toward achieving general
Al and human capability.

*M. Xu is the corresponding author.

However, these advancements in LLLMs have also driven a
growing demand for high-performance inference systems ca-
pable of meeting the computational and memory requirements
of increasingly LLMs [9]-[15]. Unlike traditional online ser-
vices that rely on lightweight models or database queries [9],
LLM inference typically demands substantial GPU resources
and storage capacity in Al infrastructure (e.g. cloud computing
data centers). In particular, real-time services such as chat-
bots [16], virtual assistants, and interactive Al systems [9]
require strict adherence to SLOs, where low latency and fast
response times are essential to user satisfaction. Performance
degradation for LLM inference services deployed on cloud
can lead to poor user experience, reduced engagement, and
potential business impact [17] [18]. On the other hand, there
are applications with more relaxed latency constraints, where
throughput and resource utilization are the primary concerns.
In these cases, the focus should shift toward maximizing
system efficiency and minimizing cost per request.

Therefore, it is crucial to design flexible and scalable LLM
inference systems that can adapt to diverse application re-
quirements [12]. For time-sensitive tasks, optimization efforts
should prioritize reducing end-to-end latency and ensuring
SLO compliance. For less latency-critical workloads, the em-
phasis should be on improving throughput and optimizing
resource allocation [19]. To address this challenge, researchers
and engineers have explored various techniques to enhance the
end-to-end performance of LLM inference, including dynamic
batching [20], and efficient scheduling strategies [19]. Among
them, recent research has shown increasing interest in disag-
gregated architectures [9], [21], [22], such as DistServe [9],
which decouples the prefill and decoding phases to enable
specialized optimizations for each stage. Building upon such
architectural innovations, further improvements, especially in
request scheduling, remain possible and highly valuable. Em-
pirical studies from major cloud providers demonstrate that in-
telligent scheduling can significantly improve both throughput
and resource efficiency without compromising service quality
[19]. This makes advanced scheduling strategies an essential
component in next-generation LLM serving systems, partic-
ularly under high concurrency and heterogeneous workload
conditions.

In this paper, we propose BucketServe, a bucket-based
dynamic batching framework for efficient LLM inference,
designed to achieve both high throughput and low latency



under concurrent workloads. Built upon vLLM [10], Buck-
etServe extends its capabilities to support request scheduling
in a disaggregated serving architecture. The core idea of
BucketServe is to group incoming requests into buckets based
on their sequence lengths, enabling fine-grained and adap-
tive batching decisions. This approach allows the system to
prioritize latency-sensitive requests while maximizing overall
throughput. Experimental results demonstrate that Bucket-
Serve significantly improves system efficiency and scalability
compared to baselines while introducing negligible overhead.
Our contributions can be summarized as follows:

« Mitigate resource inefficiency in static batching strate-
gies: We address the critical issue of resource waste
caused by naive batching approaches through request or-
chestration based on input characteristics (e.g., sequence
length and memory footprint).

o Introduce a bucket-based dynamic batching strategy:
We propose a novel algorithm that dynamically adjusts
the border of the buckets and the batch size according to
real-time GPU memory constraints and workloads while
prioritizing high priority requests.

o Demonstrate the superior performance of Bucket-
Serve: We comprehensively evaluate BucketServe on
representative LLM serving workloads, showing its ef-
fectiveness in improving throughput and handling high-
concurrency scenarios. Our results indicate that Buck-
etServe significantly reduces SLO violations under high
heterogeneous workloads compared to existing systems.

II. BACKGROUND AND MOTIVATION

As LLMs are increasingly integrated into applications such
as text generation and conversational AI, LLM-based ser-
vices have rapidly transitioned from research prototypes to
large-scale production systems. The dominant deployment
paradigm is the client-server architecture, where user requests
are funneled through a gateway to backend inference servers
responsible for executing generative Al tasks and returning
results. These services encompass both real-time interactive
scenarios and offline batch processing tasks.

Despite their versatility, LLM inference remains highly
resource-intensive: a single inference with a large model can
occupy several gigabytes of GPU memory, and the autore-
gressive generation process leads to considerable variability
in response latency, varying from seconds to minutes. These
factors pose significant challenges for maintaining SLOs under
high concurrency.

A. Challenges in Disaggregated Architecture

Disaggregating LLM inference into prefill and decoding
phases is illustrated in Fig. 1, where the LLM reads the entire
prompt at once and computes the Key-Value (KV) Cache in
the prefill phase. During decoding phase, the model generates
new tokens incrementally, one token at a time, based on the
existing context and the previously computed KV cache. It
continuously updates the KV cache and passes the newly gen-
erated token back to the model. The Disaggregation enables
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Fig. 1: Prefill and Decoding disaggregation architecture for
LLM inference.

specialized optimizations for each stage, but also introduces
several significant challenges that must be addressed to achieve
efficient and reliable serving.

1) Resource Contention and Imbalance: The prefill phase
is highly compute-intensive, requiring substantial GPU com-
putation to process input prompts in parallel and construct
the initial KV cache. In contrast, the decoding phase gen-
erates output tokens sequentially and is often bottlenecked
by memory bandwidth due to frequent KV cache accesses.
This heterogeneity can lead to resource imbalance, where
compute resources may be under-utilized during decoding,
while memory bandwidth becomes a limiting factor, resulting
in suboptimal overall throughput.

2) Scheduling Complexity: Disaggregated architectures
require two-stage scheduling: requests must be efficiently or-
chestrated for both prefill and decoding phases. This increases
scheduling complexity, as requests may experience head-
of-line blocking if long-sequence prefill jobs delay shorter
ones, or if decoding jobs accumulate and saturate memory
bandwidth. Moreover, scheduling strategies must account for
request-specific attributes such as sequence length, priority,
and latency sensitivity to avoid resource monopolization and
ensure SLO compliance. Coordinating scheduling decisions
across both phases is non-trivial, especially under heteroge-
neous and bursty workloads.

3) Batching Challenges: Batching is essential for max-
imizing GPU utilization, but in disaggregated architectures,
the optimal batching strategy may differ between prefill and
decoding. Grouping requests with diverse sequence lengths in
a batch leads to excessive padding, wasting GPU memory and
compute. The prefill phase benefits from large, homogeneous
batches to maximize parallelism, while the decoding phase,
due to its sequential nature and variable output lengths, may
require smaller or more dynamic batches. Designing batching



strategies that adapt to the requirements of both phases,
minimize padding, and avoid fragmentation is a key challenge.

4) Coordination and Data Transfer Overhead: The sep-
aration of prefill and decoding phases necessitates transferring
large KV cache between them, often across GPUs or nodes.
This introduces additional coordination and communication
overhead, which can degrade latency and throughput if not
carefully managed.

For the first and fourth challenges, which are highly de-
pendent on hardware characteristics, we adopt the best con-
figurations recommended by prior work [9]. The remaining
challenges require advanced scheduling and batching mecha-
nisms that are aware of both request characteristics and system
resource constraints.

B. Opportunities

As shown in Figs. 2 and 3, here we use Stanford Alpaca [23]
and LongBench [24] datasets to conduct the case study. Our
analysis of request characteristics and phase-specific resource
utilization reveals two critical opportunities for optimization:

Dynamic Batching with Prefill Bucketing. The hetero-
geneous sequence length distribution (Fig. 2) shows that the
input lengths exhibit a heterogeneous distribution, with Alpaca
sequences averaging 83 tokens and LongBench sequences
showing a long-tail pattern (median 41,417 tokens). For
LongBench’s ultra-long sequences, we truncate them to the
model and the dominance of long sequences in execution
time (Fig. 3a) motivate a two-stage batching strategy. For the
prefill phase, we adopt bucketing-based batching: requests are
grouped into size-homogeneous buckets (e.g., [0-256 tokens],
[256-1024 tokens]) to minimize padding overhead. This al-
lows direct batch formation from buckets with predictable
memory requirements, ensuring efficient GPU utilization for
static input sequences. In contrast, for the decoding phase that
have output lengths, we apply continuous batching [20] to
dynamically incorporate newly arriving tokens without waiting
for full batches. This combination leverages the static nature of
prefill inputs while adapting to the dynamic decoding process.

Bucket-Aware Scheduling. The low GPU utilization ob-
served in mixed-batch (containing samples from two datasets)
decoding (Fig. 3b) highlights the need for scheduling strategies
that align with workload characteristics. By first partition-
ing requests into buckets with minimal overhead, then ap-
plies phase-aware dispatching tailored to specific performance
goals:

In scenarios where requests per second (RPS) is the priority,
we consider applying shortest-job-first (SJF) within buckets to
minimize queuing latency and maximize throughput. By prior-
itizing shorter requests, this strategy ensures timely responses
for latency-sensitive tasks, even at the cost of reduced GPU
memory utilization for long sequences.

For workloads prioritizing token-per-second throughput, we
can use longest-job-first (LJF) within buckets to group long
sequences. This maximizes GPU utilization during decoding
by leveraging parallelized attention operations and reducing
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Fig. 2: Distribution of LLM Requests.

padding overhead, albeit at the expense of increased latency
for individual requests.

We address these issues by proposing adaptive bucketing
and dynamic batching strategies proposed above that jointly
optimize resource utilization, scheduling, and memory effi-
ciency across both phases of disaggregated LLM inference.
The implementation details are presented in Section IV.

III. SYSTEM OVERVIEW

As illustrated in Fig. 4, BucketServe adopts a three-tier
architecture, decoupling application workloads from hardware
resources via a middleware layer. The top-tier application layer
supports diverse LLM services, including both online and
offline tasks. When incoming requests arrive at the gateway,
they are routed to the appropriate services based on their type
and priority. The middleware layer then performs adaptive
request bucketing, grouping requests into buckets according
to their sequence length and task category.

The system employs a dynamic bucketing strategy to opti-
mize resource utilization across varying workloads:

Low-Load Scenarios: In situations where the RPS is low
and all requests can be processed in a single batch, the system
consolidates all requests into a single bucket to minimize
scheduling overhead.
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Fig. 3: Performance of batch execution and GPU utilization
across different workload types. Long refers to those exceeding
1024 tokens sampled from LongBench, Short denotes those
under 256 tokens from Alpaca, and Mixed contains sequences
from both datasets following a long-tail distribution pattern.

High-Load Scenarios: If the number of requests in a bucket
exceeds a threshold and exhibits uneven distribution (e.g., a
mix of short and long sequences), the system dynamically
adjusts the bucket count and boundaries to reduce padding
overhead and improve batch efficiency. This adaptive mech-
anism ensures optimal performance across diverse workloads
and is discussed in detail in Section IV.

Request Bucketing Manager is responsible for grouping
incoming requests into buckets based on their sequence lengths
and task categories. It dynamically adjusts the number of buck-
ets and their boundaries to minimize padding overhead and
ensure efficient batching. In low-load scenarios, it consolidates
all requests into a single bucket to reduce scheduling overhead.
In high-load scenarios, it splits buckets when the number
of requests exceeds a threshold or when the distribution of
sequence lengths becomes uneven. This adaptive approach
helps maintain optimal resource utilization and throughput
across diverse workloads.

Dynamic Batching Controller takes requests from the
buckets and groups them into batches for processing. It dy-
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Fig. 4: The Architecture of BucketServe.

namically computes the optimal batch size based on current
GPU memory constraints and bucket boundaries. By adjusting
the batch size according to available resources, the controller
prevents OOM errors while maximizing throughput. Addition-
ally, the controller prioritizes requests that have been waiting
the longest, ensuring they are processed quickly and efficiently.

P/D Scheduler manages the transition of requests between
the prefill phase and the decoding phase. Once the requests are
batched, they are assigned to the waiting queue of the prefill
phase. A First-Come-First-Served (FCFS) scheduling strategy
is adopted by the workers to process the requests in order of
their arrival. This ensures fairness and simplicity in execution
order. After the prefill phase completes, the corresponding
KV cache is transferred to the decoding phase via NVLink,
enabling high-bandwidth, low-latency communication between
GPUs. In the decoding phase, continuous batching is applied,
as the output length during token generation is typically
variable and hard to predict.

Global Monitor continuously collects and aggregates
system-wide metrics, including GPU memory usage, queue
lengths, request arrival rates, average sequence length, and
batch processing latency. These metrics provide a real-time
view of resource availability and workload characteristics,
enabling the system to make data-driven decisions.

In particular, the Global Monitor feeds critical information
to the Dynamic Batching Controller and P/D Scheduler. For



example, it informs the batching controller about current
memory pressure and expected future demand, allowing it to
adjust batch sizes dynamically without risking OOM errors. It
also provides the scheduler with queue occupancy and waiting
time statistics, supporting fair and efficient scheduling policies.

IV. ADAPTIVE BUCKETING AND DYNAMIC BATCHING
WITH MEMORY SAFETY

In this section, we present the design and implementation of
our strategy. For offline tasks with relaxed latency constraints,
requests are grouped into buckets based on sequence length
to minimize padding overhead. For online tasks requiring
low latency, the number of buckets and their boundaries are
dynamically optimized in real-time. The batching module
computes optimal batch sizes using the following equations
to maximize throughput while preventing OOM errors.

The KV cache memory footprint for a batch is calculated
as:

Memoryky cache =2 X L X H x DX

1
SmaxXBXN7 ()

where L is the number of layers, H is the number of attention
heads, D is the dimension per head, Sp,.x is the maximum
sequence length in the batch, B is the bytes per element (e.g.,
2 for FP16), and N is the batch size.

To quantify the inefficiency introduced by padding, we
define the wasted memory ratio as:

Smax - Savg
Smax

where S,ys is the average sequence length in the batch.
Bucketing reduces Siax — Savg, thereby minimizing memory
waste.

To further analyze the expected memory waste across all
buckets, we define the expected waste rate as:

E[Waste] = EK:/Ub (1 - S) F(S)ds, 3)

U,
b=1" Lo b

) 2)

Wasteratio =

where f(S) is the distribution of incoming request lengths
of batch S, and [Lp, Up) denotes the range of the b-th bucket.
This formulation provides a more comprehensive view of how
different bucketing strategies affect overall padding overhead.

The optimal bucket boundary that minimizes E[Waste] is

given by: v
b
U = L?] Sf(S)dS' @
L, f(8)ds
This indicates that the upper bound of each bucket should
be set to the conditional expectation of sequence lengths
within that bucket. Our adaptive algorithm approximates this
condition dynamically during runtime.

Although the optimal bucket boundary that minimizes
E[Waste] is theoretically defined as the conditional expectation
of sequence lengths within a bucket, it is computationally
expensive to calculate in practice. Moreover, since request
length distributions can change over time, maintaining such

Algorithm 1 Adaptive Bucketing Mechanism

Require: Buckets B, maximum length L.

Require: Minimum split size m = Ny,,x, threshold 6 = 0.5
1: Initialize B < {[0, Liax)}
2: for each request r = (S, ¢, type) do
3: for each bucket b € B do

4 if bjo < S < byp then

5: Add r to b.requests
6: break

7 end if

8 end for

9: end for

10: function ADJUSTBUCKETS

11: total « ), |b.requests|

12: if total < Npax then

13: B <+ {[0, Limax)}

14: else

15: split_list « 0

16: for each bucket b € B do

17: mp <— (blow + bup)/2

18: Cs < |{r € b.requests | r.S < my}|

19: if Cg/|b.requests| > 6 and
|b.requests| > m then

20: split_list < split_list U{b}

21: end if

22: end for

23: for cach b € split_list do

24 mid < (Biow + bup)/2

25: Create by, < [biow, mid)

26: Create bp < [mid, byp)

27: Partition b.requests into by, br by S

28: B(—BU{bL,bR}\{b}

29: end for

30: end if

31: end function

boundaries dynamically introduces significant overhead and
algorithmic complexity. To address this challenge, we adopt
a simple but efficient approach based on interval bisection,
which approximates the optimal boundary while keeping the
system lightweight and responsive.

To ensure memory safety, the scheduler reserves 10% of
GPU memory for system overheads. The safe available mem-
ory is computed as:

Msafe =09 x Mremain; (5)

where M emain 18 the remaining memory after model alloca-
tions.
The maximum safe batch size is determined as:

N
Msafe

L < osafe 6

;SZ = 2LHDB}’ ©

which ensures that the KV cache remains within safe limits.

Npax = max{N eN




Algorithm 1 implements an adaptive bucketing mechanism
to manage request scheduling and resource allocation. Initially,
the system starts with a single bucket covering the full
sequence length range [0, Ly,ax ). Requests are assigned to the
appropriate bucket based on their sequence length S (lines 2-
6), where each incoming request is matched against the current
set of buckets.

When the total number of requests across all buckets ex-
ceeds Npax (computed via Eq. (6)), the algorithm triggers
a splitting strategy. Specifically, for each bucket b, if over
50% of its requests have sequence lengths below the midpoint
my = (bow + bup)/2 and the bucket contains more than
Nmax requests, it is split into two sub-buckets. This midpoint-
based decision (lines 14-19), serves as an approximation to
the optimal boundary defined in Eq. (4). Splitting helps reduce
padding by grouping similar-length sequences together. Then
it conducts a partitioning of requests into the new buckets
based on their sequence lengths (lines 23-29). This process
continues until all buckets are split depending on the current
workload.

Conversely, when the total number of requests drops below
Nmax, all buckets merge back into a single one to minimize
scheduling overhead (lines 11-13). After bucketing, offline
tasks use SJF or LJF scheduling within buckets to optimize
throughput, while online tasks prioritize buckets based on
earliest request arrival time to meet SLOs. The algorithm
balances efficiency and fairness through dynamic adjustments,
leveraging thresholds like § = 0.5 for splitting decisions and
Npax for batch size constraints.

The potential performance improvements include optimiz-
ing bucket search with data structures such as binary trees and
refining splitting criteria using distribution-aware methods.

Algorithm Complexity Analysis. The adaptive bucketing
algorithm consists of two main components. The first is
assigning requests to buckets: for each of the n requests, the
algorithm traverses all k£ buckets to find the appropriate one,
resulting in a time complexity of O(n-k). The second compo-
nent is the AdjustBuckets function. Calculating the total
number of requests requires O(k) time. For each bucket, the
algorithm performs constant-time computations and checks,
also totaling O(k). Splitting buckets and partitioning requests
can be done in O(k) time overall. Therefore, the time com-
plexity of the adjustment step is O(k). In summary, the
overall time complexity of the adaptive bucketing mechanism
is O(n - k + 4k).

V. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of BucketServe
compared with two baseline systems. Because BucketServe is
originally designed for offline tasks which have high through-
put requirement, we adapted it to online tasks, we found that
the performance of BucketServe outperforms baseline systems
in high concurrency scenarios.

A. Experiments Setup

Testbed. We evaluated BucketServe on a single-node cluster
equipped with 4 NVIDIA A100 40GB GPUs interconnected

via NVLink for high-bandwidth GPU-to-GPU communication.
The node also features 64 CPU cores and 1TB of high-speed
SSD storage. Our serving framework is built on the vLLM
backend, which supports continuous batching and paged at-
tention for high-performance inference.

Models and Datasets. We selected the LLaMA-2 [25] and
OPT [26] series as representative foundation models due to
their standardized architectures and widespread adoption in
academic research. To evaluate performance across diverse
task profiles, we used two benchmarking datasets: Stanford
Alpaca [23], characterized by short sequence lengths, and
LongBench [24], designed for long-text summarization sce-
narios. The Mixed configuration refers to a hybrid of these
two datasets. This setup enables a comprehensive evaluation
spanning both short and long sequence processing paradigms.

Metrics. BucketServe’s performance evaluation employs
two distinct metric categories tailored to task types. For offline
workloads, we prioritize throughput (measured in tokens per
second) and pay attention to resource utilization to quantify
system efficiency in handling large-scale request volumes. In
online scenarios, we adopt SLOs attainment rate and service
load capacity as the primary metrics.

Baselines. We compare BucketServe with two state-of-the-
art baseline systems including both aggregated and disaggre-
gated architectures:

o« UELLM [12]: A unified LLM serving framework that
integrates resource profiling, batch scheduling, and de-
ployment optimization. It employs a fine-tuned LLM to
predict resource demands, batches queries based on pre-
dicted profiles, and deploys models considering hardware
topology. However, UELLM still couples prefill/decoding
phases and lacks dynamic adaptation to workload fluctua-
tions, leading to suboptimal latency-SLO trade-offs under
heterogeneous traffic patterns.

o DistServe [9]: A disaggregated serving system that de-
couples prefill and decoding computation to eliminate
phase interference. It co-optimizes resource allocation
for each phase and minimizes communication overhead
via bandwidth aware placement. While under high con-
currency, DistServe lacks specialized process leading to
suboptimal performance in heterogeneous workloads.

B. Experiments Analysis

We first evaluate the performance of BucketServe in offline
tasks with those two baselines. To study the throughput
and average resource utilization, we conducted experiments
using Llama2-13B with varying batch sizes and sequence
lengths. We randomly sampled requests from the Alpaca and
LongBench datasets to simulate real-world workloads. The
results are shown in Fig. 5a and Fig. 5b. The max batch
size represents the largest number of requests the system
can actually handle in one batch under the current setup,
reflecting its realizable capacity. From this figure, we can see
that BucketServe achieves the highest throughput and average
GPU utilization especially under more requests. Specifically,
BucketServe outperforms UELLM by 3.58x and DistServe



—eo~ DistServe
BucketServe
—a— UELLM o

4000 81.66

<]
o

68.45

w
o
=3
S

o
o

Throughput (tokens/s)
- N
o o
o o
3 3

Average GPU Utilization (%)
N B
? o

57.87

mmm Prefill Util.
Decoding Util.

=] =
<] o
[ ]

67.88
60.86

49.47

SLO Attainment
o o
& o

N

— o |

2 3 4 5 6 7

o
[N]

—e— DistServe
Bucketserve

o
<}

-

1 2 4 8 16 32 64
Max Batch Size

(a) Throughput under Mixed Workload.

0
BucketServe

DistServe

(b) Average GPU Utilization.

UELLM Req/s

(c) SLO Attainment of Alpaca.

1.0 R 8 BucketServe 81 BucketServe 7.3
\ 71 --e-- DistServe 71 --e-- DistServe
£08 = =22 e UELLM e UELLM
3 465 %637 L6 L6
£ g 9
£ 06 \ gs R
o 04 @3 @ 31
@ 2 o
0.24 —¢— DistServe 2 %]
BucketServe \ 1 11
T T T T r r T T 0 ; . . : . ; . 0 . T r r T T
1 2 3 4 5 6 7 8 0 1 2 3 5 6 7 8 0 1 2 3 4 5 6 7 8
Rea/s Client Req/s Client Req/s

(d) SLO Attainment of Mixed.

(e) RPS under Alpaca.

(f) Server RPS under Mixed.

Fig. 5: End-to-End performance evaluation across offline and online dimensions.

1.31x in throughput under high workloads, While dynamic
batching improve average GPU utilization to 81.66%. This
demonstrates the effectiveness of our adaptive bucketing and
dynamic batching strategy in optimizing resource utilization
and throughput.

For online tasks, we conducted experiments under varying
client RPS and SLO requirements across different datasets. As
shown in Fig. 5c and Fig. 5d, we compared BucketServe with
DistServe using two datasets. We measured the server RPS
and analyzed its relationship with SLO attainment.

As the server RPS increases, the SLO attainment of both
systems decreases. At an SLO attainment level of 80%,
BucketServe achieves 1.37x and 1.93x higher server RPS than
DistServe on the Alpaca and Mixed datasets, respectively. This
indicates that our system performs better under high workloads
and for heterogeneous length requests.

We also studied the relationship between the client request
sending rate and the server processing rate, as it reflects
the system’s capability to handle high concurrency. From
Fig. 5e and Fig. 5f, we observe that, under both datasets,
BucketServe’s server RPS closely follows the ideal y = x line,
indicating excellent scalability and efficiency.

On the Alpaca dataset, DistServe shows little performance
degradation, but BucketServe still outperforms UELLM by
1.975x in terms of server RPS. On the Mixed dataset,
BucketServe exhibits almost no performance degradation and
achieves 1.4x and 3.47x higher server RPS than DistServe
and UELLM, respectively. These results demonstrate Bucket-
Serve’s superior effectiveness, particularly under high work-
loads and for long-sequence processing.

Fig. 6 presents a breakdown of the end-to-end execution

duration for BucketServe and the associated bucketing over-
head. As shown in Fig. 6a, the decoding phase constitutes the
majority of the execution time, accounting for approximately
90% of the total under typical workloads. When the RPS is set
to 32, some requests are queued waiting for the prefill stage,
resulting in an increased average prefill duration.

The red bar representing bucketing overhead is barely
visible in the figure, indicating that the cost of bucketing is
relatively low. As a result, our system introduces negligible
overhead from bucketing and dynamic batching—Iless than
1% of the total execution time. This highlights the efficiency
of our adaptive bucketing and dynamic batching strategy in
optimizing resource utilization and improving throughput.

Fig. 6b further illustrates the bucketing overhead. It shows
that as the number of buckets increases, the algorithmic
overhead remains stable, demonstrating its scalability and
computational efficiency.

To summarize, by introducing bucketing and dynamic
batching, BucketServe effectively addresses the challenges
of resource under-utilization and scheduling complexity in
disaggregated LLM inference architectures, while introducing
negligible overhead and maintaining performance comparable
to prior approaches.

VI. RELATED WORK

Recent advancements in LLM inference optimization fo-
cus on enhancing end-to-end performance through diverse
approaches [9]-[14], [19], [21], [22], [27], [28], which can be
broadly categorized into three domains: prefill-decoding dis-
aggregation architectures, attention mechanism optimizations,
and dynamic batching techniques.
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Fig. 6: End-to-End Latency Breakdown and Bucketing Over-
head Analysis.

Prefill-Decoding Disaggregation. This optimization tech-
nique aims to decouple the distinct computational phases of
LLM inference—Prefill and Decoding—to improve resource
allocation. DistServe [9] pioneers this approach introducing an
optimal configuration algorithm to dynamically allocate GPU
resources and model parallelism strategies. In its design, to
prioritize Time-to-First-Token (TTFT), waiting Prefill requests
can preempt Decoding resources. While this reduces TTFT,
it increases tail latency for Time-Between-Tokens (TBT) by
up to 30% due to frequent context switching. SplitWise
[21] introduces a Prompt Phase and Token-Generation Phase,
decomposing tasks into subtasks and mapping them to het-
erogeneous hardware via layer-wise KV cache transfer. This
approach achieves 40% higher resource utilization through
task parallelism but incurs overhead in short-sequence work-
loads, increasing end-to-end latency. Tetrilnfer [28] partitions
prompts into fixed-size chunks and employs a two-level sched-
uler to optimize batching, reducing average TTFT by 97%
and JCT by 47% while cutting resource usage by 38%.
However, its chunked computation introduces communication
overhead in high-throughput, long-sequence scenarios. Moon-
cake [29] decouples KV cache storage from computation,
leveraging Chunked Pipeline Parallelism (a variant of TeraPipe
[30]) and prediction-guided early rejection to improve request
throughput by 75% under high load. However, inaccuracies in
prediction models (>15% error rates) lead to false rejections,
harming throughput. LoongServe [31] introduces Elastic Se-

quence Parallelism, dynamically adjusting model parallelism
degrees and optimizing KV cache migration to achieve higher
throughput, while consistency maintenance for long sequences
(1000+ tokens) adds significant overhead (e.g. 18% computa-
tion). BucketServe also applies this architecture while using
bucket-based scheduling to enhance system performance.
Attention Mechanism. This type of technology focuses
on reducing memory and computational bottlenecks in the
attention module. vLLM’s PagedAttention [10] organizes KV
cache into fixed-size blocks (similar to OS virtual memory),
reducing fragmentation from 35% to 5% and boosting through-
put by 2.4x. FlashAttention [27] fuses attention operations
into a single kernel, accelerating computation by 1.8x on
A100 GPUs through tiling and SRAM-based intermediate
storage. FlashAttention-2 [13] further improves parallelization
and supports advanced features like multi-query attention.
Grouped Query Attention [32] balances efficiency and quality
by grouping attention heads, enabling scalable context win-
dows and batch sizes while retaining near-MHA performance.
However, these work do not focus on requests scheduling.
Dynamic Batching. It aims to maximize GPU utilization
by adapting to variable-length sequences while currently lim-
ited work consider batching dynamically. Orca [20] employs
iteration-level scheduling, where batch sizes are determined
per forward-backward pass. By replacing completed sequences
immediately, it achieves higher GPU utilization than static
batching, however, it only considers simple P/D disaggrega-
tion. FastServe [33] uses preemptive scheduling with a skip-
join Multi-Level Feedback Queue to minimize JCT. Leverag-
ing the semi-stateless nature of LLM inference, it dynamically
prioritizes jobs based on input length, skipping lower-priority
queues to reduce latency. FastServe also integrates efficient
GPU memory management to handle variable workloads while
the batch algorithm is not adaptive to dynamic workloads.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we present BucketServe, a bucket-based dy-
namic batching framework designed to address the challenges
of efficient LLM inference serving under concurrent and
heterogeneous workloads. BucketServe introduces an adap-
tive bucketing mechanism that groups requests by sequence
length, thereby reducing padding overhead and improving
GPU memory utilization. The system further employs a dy-
namic batching controller that adjusts batch sizes in real time
based on current GPU memory constraints, ensuring mem-
ory safety and maximizing throughput. Our comprehensive
evaluations demonstrate that BucketServe achieves substantial
improvements over existing baselines, including up to 3.58x
higher throughput and nearly 2x greater system load capacity,
while maintaining SLO attainment and incurring minimal
overhead. These results validate the effectiveness of combining
adaptive bucketing with dynamic batching for scalable, high-
performance LLM serving. As for future work, we would like
to explore multi-level load balancing strategies that can further
enhance the system’s performance under varying workloads on
multi-nodes clusters.
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