
Distributed System Models

Most concepts are
drawn from Chapter 2
© Pearson Education

Dr. Minxian Xu
Associate Professor

Research Center for Cloud Computing

Shenzhen Institute of Advanced Technology, CAS

http://www.minxianxu.info/dcp

1

千磨万击还坚劲，任尔东西南北风。
——（清）郑板桥

Review

 Q1: When do we need multi-threading?

2

Review

3

Review

4

Review

 Q2: What is a thread and life cycle of a thread?

5

Review

6

Review

 Q3: What is synchronous access to shared

resources and how can we achieve it?

7

Review

8

Review

 Q4: Compare the worker pool multi-threading

architecture with the thread-per-request

architecture.

9

Review

10

Presentation Outline

 Introduction

 Physical Models:
 Three Generations of DS: Early, Internet-Scale, Contemporary

 Architectural Models

 Software Layers

 System Architectures

 Client-Server

 Clients and a Single Server, Multiple Servers, Proxy Servers with
Caches, Peer Model

 Alternative Client-Sever models driven by:

 Mobile code, mobile agents, network computers, thin clients, mobile
devices, and spontaneous networking

 Design Challenges/Requirements

 Fundamental Models – formal description

 Interaction, failure, and security models.

 Summary

11

Introduction

 Distributed systems should be designed to

function correctly in ALL circumstances/scenarios.

 Distributed system models helps in…
 ..classifying and understanding different implementations

 ..identifying their weaknesses and their strengths

 ..crafting new systems outs of pre-validated building blocks

 We will study distributed system models from

different perspectives
 Structure, organization, and placement of components

 Interactions

 Fundamental properties of systems

12

Characterization

 The structure and the organization of systems and

the relationship among their components should

be designed with the following goals in mind:
 To cover the widest possible range of circumstances.

 To cope with possible difficulties and threats.

 To meet the current and possibly the future demands.

 Architectural models provide both:
 a pragmatic starting point

 a conceptual view

to address these challenges.

In terms of implementation models and

basic blocks

In terms of logical view of the system,

interaction flow, and components

13

Characterization: Challenges

(Difficulties and Threats)

 Widely varying models of use
 High variation of workload, partial disconnection of components,

or poor connection.

 Wide range of system environments
 Heterogeneous hardware, operating systems, network, and

performance.

 Internal problems
 Non synchronized clocks, conflicting updates, various hardware

and software failures.

 External threats
 Attacks on data integrity, secrecy, and denial of service.

14

Characterization: Dealing with

Challenges

 Widely varying models of use
 The structure and the organization of systems allow for

distribution of workloads, redundant services, and high
availability.

 Wide range of system environments
 A flexible and modular structure allows for implementing

different solutions for different hardware, OS, and networks.

 Internal problems
 The relationship between components and the patterns of

interaction can resolve concurrency issues, while structure and
organization of component can support failover mechanisms.

 External threats
 Security has to be built into the infrastructure and it is

fundamental for shaping the relationship between components.

15

Models at a Glance

Physical, Architectural, and

Fundamental Models

16

Physical Models

 A representation of the underlying H/W elements of a DS

that abstracts away specific details of the

computer/networking technologies.

 Baseline physical model – a small set of nodes.

 Three Generations of DSs (Distributed Systems):

 Early DSs [70-80s]: LAN-based, 10-100 nodes

 Internet-scale DSs [early 90-2010]: Clusters, Grids, P2P (with

autonomous nodes)

 Contemporary DSs: dynamic nodes in Mobile Systems that offer

location-aware services, Clouds with resource pools offering

services on pay-as-you-go basis, and Internet of Things (IoT)

(seamless interaction between physical and cyber world for

smart * applications such as Smart Health and Smart Cities) Daily

visits of ChatGPT is 70 million at Dec 2023, requiring 512,000

A100 HGX servers if deployed as Google Search

17

Architectural model

 An Architectural model of a distributed system
is concerned with the placement of its parts
and relationship between them. Examples:

 Client-Server (CS) and Peer Process models.

 CS can be modified by:

 The partitioning of data/replication at cooperative
servers

 The caching of data by proxy servers or clients

 The use of mobile code and mobile agents

 The requirements to add or remove mobile devices.

18

Fundamental Models

 Fundamental Models are concerned with a formal

description of the properties that are common in all

of the architectural models

 Models addressing time synchronization, message

delays, failures, security issues are addressed as:

 Interaction Model – deals with performance and the

difficulty of setting of time limits in a distributed system.

 Failure Model – specification of the faults that can be

exhibited by processes

 Security Model – discusses possible threats to processes

and communication channels.

19

Presentation Outline

 Introduction

 Architectural Models

 Software Layers

 System Architectures

 Client-Server

 Clients and a Single Sever, Multiple Servers, Proxy Servers with
Caches, Peer Model

 Alternative Client-Sever models driven by:

 Mobile code, mobile agents, network computers, thin clients, mobile
devices and spontaneous networking

 Design Challenges/Requirements

 Fundamental Models – formal description

 Interaction, Failure, and Security models.

 Summary

20

Architectural Models – Intro [1]

 The architecture of a system is its structure in terms
of separately specified components.
 Its goal is to meet present and likely future demands.

 Major concerns are making the system reliable,
manageable, adaptable, and cost-effective.

 Architectural Model:
 Simplifies and abstracts the functions of individual

components

 The placement of the components across a network of
computers – define patterns for the distribution of data and
workloads

 The interrelationship between the components – ie.,
functional roles and the patterns of communication
between them.

21

Architectural Models – Intro [2]

 Architectural Model - simplifies and abstracts

the functions of individual components:

 An initial simplification is achieved by classifying

processes as:

 Server processes

 Client processes

 Peer processes

 Cooperate and communicate in a symmetric manner to

perform a task.

client
server

peer

peer

22

Software Architecture and Layers

 The term software architecture referred:
 Originally to the structure of software as layers or modules in a single computer.

 More recently in terms of services offered and requested between processes in the
same or different computers.

 Breaking up the complexity of systems by designing them through layers and
services
 Layer: a group of related functional components

 Service: functionality provided to the next layer.

Layer 1

Layer 2

Layer N

(services offered to above layer)

…

23

Software and hardware service layers

in distributed systems

Applications, services

Computer and network hardware

Platform

Operating system

Middleware

24

Platform

 The lowest hardware and software layers are often
referred to as a platform for distributed systems and
applications.

 These low-level layers provide services to the layers
above them, which are implemented independently
in each computer.

 Major Examples
 Intel x86/Windows

 Intel x86/Linux

 Intel x86/Solaris

 PowerPC/MacOS

 iPhone/iOS

 Samsung Galaxy/Android/HarmonyOS

25

Middleware

 A layer of software whose purpose is to mask heterogeneity present
in distributed systems and to provide a convenient programming
model to application developers.

 Major Examples:

 Sun RPC (Remote Procedure Call)

 OMG CORBA (Common Object Request Broker Architecture)

 Microsoft D-COM (Distributed Components Object Model)

 Sun Java RMI (Remote Method Invocation)

 Modern Middleware Examples:

 Manjrasoft Aneka– for Cloud computing

 IBM WebSphere

 Microsoft .NET

 Sun J2EE

 Google AppEngine

 Microsoft Azure

26

System Architecture

 The most evident aspect of DS design is the

division of responsibilities between system

components (applications, servers, and other

processes) and the placement of the

components on computers in the network.

 It has major implication for:

 Performance, reliability, and security of the

resulting system.

27

Client-Server Basic Model:

Clients invoke individual servers

 Client processes interact with individual server processes in a separate computer
in order to access data or resource. The server in turn may use services of other
servers.

 Example:
 A Web Server is often a client of file server.

 Browser  search engine -> crawlers  other web servers.

Server

Client

Client

invocation

result

Server
invocation

result

Process:
Key:

Computer:

28

 Two-tier model (classic)

 Three-tier (when the server, becomes a client)

 Multi-tier (cascade model)

Client-Server Architecture Types

(Tier arch compliments layer architecture)

client server

client Server/client server

client Server/client
server

Server/client

server

29

Clients and Servers

 General interaction between a client and a server.

30

Clients and Servers

 Complex interaction between a client and a server (Alibaba

scenario).

31

Minxian Xu, et al., Practice of Alibaba Cloud on Elastic Resource Provisioning for Large-scale Microservices
Cluster, Software: Practice and Experience (SPE), Vol. 54, Issue 1, pp. 39-57, 2024.

A service provided by multiple servers

 Services may be implemented as several server processes in separate host computers.

 Example: Cluster based Web servers and apps such as Google, parallel databases Oracle

Server

Server

Server

Service

Client

Client

32

Proxy servers (replication transparency) and

caches: Web proxy server

 A cache is a store of recently used data.

Client

Proxy

Web

server

Web

server

server
Client

33

Peer Processes: A distributed

application based on peer processes

 All of the processes play similar roles, interacting cooperatively as peers to
perform distributed activities or computations without distinction between clients
and servers. E.g., music sharing systems Napster, Gnutella, Kaza, BitTorrent.

 Distributed “white board” – users on several computers to view and interactively
modify a picture between them.

Application

Application

Application

Peer 1

Peer 2

Peer 3

Peers 5 N

Sharable
objects

Application

Peer 4

34

P2P with a Centralized Index Server

(e.g. Napster Architecture)

peer

peer

peer

peer

peer

peer

peer

35

Variants of Client Sever Model: Mobile

code and Web applets

 Applets downloaded to clients give good interactive response

 Mobile codes such as Applets are potential security threat, so the
browser gives applets limited access to local resources (e.g. NO
access to local/user file system).

a) client request results in the downloading of applet code

Web

server

Client
Web

serverApplet

Applet code

Client

b) client i nteracts with the applet

36

Variants of Client Sever Model: Mobile

Agents

 A running program (code and data) that travels from one
computer to another in a network carrying out an autonomous
task, usually on behalf of some other process
 advantages: flexibility, savings in communications cost

 virtual markets, software maintain on the computers within an organisation.

 Potential security threat to the resources in computers they visit.
The environment receiving agent should decide which of the local
resource to allow. (e.g., crawlers and web servers).

 Agents themselves can be vulnerable – they may not be able to
complete task if they are refused access.

 Example technology:
 Java Agent Development Framework (JADE)

37

Thin clients and compute servers

 Network computer: download OS and applications from the
network and run on a desktop (solve up-gradation problem) at
runtime.

 Thin clients: Windows-based UI on the user machine and
application execution on a remote computer. E.g, X-11 system.

Thin
Client

Application
Process

Network computer or PC
Compute server

network

38

Mobile devices and spontaneous networking

[3rd Generation Distributed System]

 The world is increasingly populated by small and portable
computing devices.

 W-LAN needs to handle constantly changing heterogeneous,
roaming devices

 Need to provide discovery services: (1) registration service to
enable servers to publish their services and (2) lookup service to
allow clients to discover services that meet their requirements.

39

Distributed Deep

Reinforcement Learning

 Deep reinforcement learning needs to address data inefficiency,

exploration-exploitation trade-off, and multi-task learning

 Distributed modifications of DRL

 Agents could be run on many machines simultaneously

40

A3C ArchitectureGORILA Architecture

Summary - Models and Implications

 The use of CS (Client-Server) has impact on the
software architecture followed:
 Distribution of responsibilities

 Synchronization mechanisms between client and server

 Admissible types of requests/responses

 Basic CS model, responsibility is statically allocated.
 File server is responsible for file, not for web pages.

 Peer Process model, responsibility is dynamically
allocated:
 In fully decentralized music file sharing system, search

process may be delegated to different peers at runtime.

41

Design Requirements/Challenges of

Distributed Systems

 Performance Issues
 Responsiveness

 Support interactive clients
 Use caching and replication

 Throughput

 Load balancing and timeliness

 Quality of Service:
 Reliability

 Security

 Adaptive performance.

 Dependability issues:
 Correctness, security, and fault tolerance

 Dependable applications continue to work in the presence of
faults in hardware, software, and networks.

42

Presentation Outline

 Introduction

 Architectural Models

 Software Layers

 System Architectures

 Client-Server

 Clients and a Single Sever, Multiple Servers, Proxy Servers with
Caches, Peer Model

 Alternative Client-Sever models driven by:

 Mobile code, mobile agents, network computers, thin clients, mobile
devices and spontaneous networking

 Design Challenges/Requirements

 Fundamental Models – formal description

 Interaction, Failure, and Security models.

 Summary

43

Fundamental Models at Glance

 Fundamental Models are concerned with a formal

description of the properties that are common in all of the

architectural models

 All architectural models are composed of processes that

communicate with each other by sending messages over

a computer networks.

 Models addressing time synchronization, message

delays, failures, security issues are addressed as:

 Interaction Model – deals with performance and the difficulty of

setting of time limits in a distributed system.

 Failure Model – specification of the faults that can be exhibited by

processes

 Security Model – discusses possible threats to processes and

communication channels.

44

Interaction Model

 Computation occurs within processes;

 The processes interact by passing messages,
resulting in:
 Communication (information flow)

 Coordination (synchronization and ordering of activities)
between processes.

 Two significant factors affecting interacting
processes in a distributed system are:
 Communication performance is often a limiting

characteristic.

 It is impossible to maintain a single global notion of time.

45

Interaction Model:

Performance of Communication Channel

 The communication channel in our model is realised in a variety
of ways in DSs. E.g., by implementation of:
 Streams

 Simple message passing over a network.

 Communication over a computer network has performance
characteristics:
 Latency:

 A delay between the start of a message’s transmission from one
process to the beginning of reception by another.

 Bandwidth:
 the total amount of information that can be transmitted over in a

given time. Eg. 100 Mbps (megabits per second)

 Communication channels using the same network, have to share the
available bandwidth.

 Jitter
 The variation in the time taken to deliver a series of messages. It is

very relevant to multimedia data.

46

Interaction Model:

Computer clocks and timing events

 Each computer in a DS has its own internal clock, which can be
used by local processes to obtain the value of the current time.

 Therefore, two processes running on different computers can
associate timestamp with their events.

 However, even if two processes read their clocks at the same
time, their local clocks may supply different time.
 This is because computer clock drifts from perfect time and their

drift rates differ from one another.

 Even if the clocks on all the computers in a DS are set to the
same time initially, their clocks would eventually vary quite
significantly unless corrections are applied.
 There are several techniques to correct time on computer clocks.

For example, computers may use radio receivers to get readings
from GPS (Global Positioning System) with an accuracy about 1
microsecond.

47

Interaction Model:

Two variants of the interaction model

 In a DS it is hard to set time limits on the time taken for process
execution, message delivery or clock drift.

 Synchronous DS – hard to achieve:

 The time taken to execute a step of a process has known lower
and upper bounds.

 Each message transmitted over a channel is received within a
known bounded time.

 Each process has a local clock whose drift rate from real time has
known bound.

 Asynchronous DS: There is NO bounds on:

 Process execution speeds

 Message transmission delays

 Clock drift rates.

48

Interaction Model:

Event Ordering

 In many DS applications we are interested in

knowing whether an event occurred before,

after, or concurrently with another event at

other processes.

 The execution of a system can be described in

terms of events and their ordering despite the lack

of accurate clocks.

 Consider a mailing list with:

users X, Y, Z, and A.

49

Real-time ordering of events

send

receive

send

receive

m1 m2

2

1

3

4
X

Y

Z

Physical

time

A

m3

receive receive

send

receive receive receive

t1 t2 t3

receive

receive

m2

m1

50

Inbox of User A looks like:

 Due to independent delivery in message delivery, message may
be delivered in different order.

 If messages m1, m2, m3 carry their time t1, t2, t3, then they can
be displayed to users accordingly to their time ordering.

Item From Subject

23 Z Re: Meeting

24 X Meeting

26 Y Re: Meeting

51

Failure Model

 In a DS, both processes and communication

channels may fail – i.e., they may depart from

what is considered to be correct or desirable

behavior.

 Types of failures:

 Omission Failure

 Arbitrary Failure

 Timing Failure

52

Processes and channels

 Communication channel produces an omission failure if it
does not transport a message from “p”s outgoing
message buffer to “q”’s incoming message buffer. This is
known as “dropping messages” and is generally caused
by a lack of buffer space at the receiver or at gateway or
by a network transmission error.

process p process q

Communication channel

send

Outgoing message buffer Incoming message buffer

receivem

53

Omission and arbitrary failures

Class of failure Affects Description

Fail-stop Process Process halts and remains halted. Other processes may
detect this state.

Crash Process Process halts and remains halted. Other processes may
not be able to detect this state.

Omission Channel A message inserted in an outgoing message buffer never
arrives at the other end’s incoming message buffer.

Send-omission Process A process completes a send, but the message is not
put in its outgoing message buffer.

Receive-omission Process A message is put in a process’s incoming message
buffer, but that process does not receive it.

Arbitrary
(Byzantine)

Process or
channel

Process/channel exhibits arbitrary behaviour: it may
send/transmit arbitrary messages at arbitrary times,
commit omissions; a process may stop or take an
incorrect step.

54

Timing failures

Class of Failure Affects Description

Clock Process Process’s local clock exceeds the bounds on its
rate of drift from real time.

Performance Process Process exceeds the bounds on the interval
between two steps.

Performance Channel A message’s transmission takes longer than the
stated bound.

55

Masking Failures

 It is possible to construct reliable services from

components that exhibit failures.

 For example, multiple servers that hold replicas of data can

continue to provide a service when one of them crashes.

 A knowledge of failure characteristics of a

component can enable a new service to be designed

to mask the failure of the components on which it

depends:

 Checksums are used to mask corrupted messages.

56

Security Model

 The security of a DS can be achieved by

securing the processes and the channels

used in their interactions and by protecting

the objects that they encapsulate against

unauthorized access.

57

Protecting Objects: Objects and

principals

 Use “access rights” that define who is allowed to perform operation on a
object.

 The server should verify the identity of the principal (user) behind each
operation and checking that they have sufficient access rights to perform
the requested operation on the particular object, rejecting those who do
not.

Network

invocation

result

Client
Server

Principal (user) Principal (server)

ObjectAccess rights

58

The enemy

 To model security threats, we assume an enemy that is capable of
sending any process or reading/copying message between a pair of
processes

 Threats form a potential enemy: threats to processes, threats to
communication channels, and denial of service.

Communication channel

Copy of m

Process p Process qm

The enemy
m’

59

Defeating security threats: Secure

channels

 Encryption and authentication are use to build secure channels.

 Each of the processes knows the identity of the principal on
whose behalf the other process is executing and can check their
access rights before performing an operation.

Principal A

Secure channelProcess p Process q

Principal B

60

Presentation Outline

 Introduction

 Architectural Models

 Software Layers

 System Architectures

 Client-Server

 Clients and a Single Sever, Multiple Servers, Proxy Servers with
Caches, Peer Model

 Alternative Client-Sever models driven by:

 Mobile code, mobile agents, network computers, thin clients, mobile
devices and spontaneous networking

 Design Challenges/Requirements

 Fundamental Models – formal description

 Interaction, Failure, and Security models.

 Summary

61

Summary

 Most DSs are arranged accordingly to one of a
variety of architectural models:
 Client-Server

 Clients and a Single Sever, Multiple Servers, Proxy Servers
with Cache, Peer Model

 Alternative Client-Sever models driven by:

 Mobile code, mobile agents, network computers, thin clients,
mobile devices and spontaneous networking

 Fundamental Models – formal description

 Interaction, failure, and security models.

 The concepts discussed in the module play an
important role while architecting DS and apps.

62

 Demo: Building a Swing GUI

63

Install WindowBuilder

1. Open Eclipse

2. Click Help…

3. Select Install new software…

4. Access the following website:

https://www.eclipse.org/windowbuilder/download.php

http://download.eclipse.org/windowbuilder/WB/integration/

4.6/ （search windowbuilder in Eclipse Marketplace）
5. Copy the installation URL that matches your eclipse

version to the “work with:” field.

6. Install WindowsBuilder

7. Restart Eclipse

https://www.eclipse.org/windowbuilder/download.php
http://download.eclipse.org/windowbuilder/WB/integration/4.6/

Create a Project with WindowBuilder

1. Create a new Java Project

2. Then Right Click on the src folder and do:

New > Other > WindowBuilder > Swing

Designer > Application Window

Layouts - A crash course

Absolute Layout : Does not scale when resized

Grid Layout: Items are rendered on a grid and

will stack or unstack depending on the size of the

window

GridBagLayout:

https://docs.oracle.com/javase/tutorial/uiswing/lay

out/gridbag.html

https://docs.oracle.com/javase/tutorial/uiswing/layout/gridbag.html

Add things to the GUI as desired

Event Handlers

Right click a component (i.e. a button) and

select

Event Handler > action > actionPerformed

See line 85 - 89 of MainWindow.java

